Photosynthesis Research

, Volume 124, Issue 2, pp 199–215 | Cite as

How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures?

  • Urtzi Leibar
  • Ana Aizpurua
  • Olatz Unamunzaga
  • Inmaculada Pascual
  • Fermín Morales
Regular Paper

Abstract

While photosynthetic responses to elevated CO2, elevated temperature, or water availability have previously been reported for grapevine as responses to single stress factors, reports on the combined effect of multiple stress factors are scarce. In the present work, we evaluated effects of simulated climate change [CC; 700 ppm CO2, 28/18 °C, and 33/53 % relative humidity (RH), day/night] versus current conditions (375 ppm CO2, 24/14 °C, and 45/65 % RH), water availability (well-irrigated vs. water deficit), and different types of soil textures (41, 19, and 8 % of soil clay contents) on grapevine (Vitis vinifera L. cv. Tempranillo) photosynthesis. Plants were grown using the fruit-bearing cutting model. CC increased the photosynthetic activity of grapevine plants grown under well-watered conditions, but such beneficial effects of elevated CO2, elevated temperature, and low RH were abolished by water deficit. Under water-deficit conditions, plants subjected to CC conditions had similar photosynthetic rates as those grown under current conditions, despite their higher sub-stomatal CO2 concentrations. As expected, water deficit reduced photosynthetic activity in association with inducing stomatal closure that prevents water loss. Evidence for photosynthetic downregulation under elevated CO2 was observed, with decreases in photosynthetic capacity and leaf N content and increases in the C/N ratio in plants subjected to CC conditions. Soil texture had no marked effects on photosynthesis and did not modify the photosynthetic response to CC and water-deficit conditions. However, in mature well-irrigated plants grown in the soils with the highest sand content, an important decrease in stomatal conductance was observed as well as a slight decrease in the utilization of absorbed light in photosynthetic electron transport (measured as photochemical quenching), possibly related to a low water-retention capacity of these soils even under well-watered conditions.

Keywords

Climate change Grapevine Photosynthesis Soil texture Water deficit 

Abbreviations

AN

Net photosynthesis

CC

Climate change

Chl

Chlorophyll

Ci

Sub-stomatal CO2 concentration

Curr

Current conditions

E

Transpiration

ETR

Electron transport rate

Φexc.

Intrinsic PSII efficiency

ΦPSII

Actual PSII efficiency

GCG

Growth chamber greenhouse

gS

Stomatal conductance

IPCC

Intergovernmental Panel on Climate Change

PPFD

Photosynthetic photon flux density

PSII

Photosystem II

qP

Photochemical quenching

RD

Dark respiration

RH

Relative humidity

RL

Photorespiration rate

T

Temperature

VPD

Vapor pressure deficit

WUE

Water use efficiency of photosynthesis

ψ

Stem water potential

References

  1. Abadía J, Morales F, Abadía A (1999) Photosystem II efficiency in low chlorophyll, iron-deficient leaves. Plant Soil 215:183–192CrossRefGoogle Scholar
  2. Albert KR, Mikkelsen TN, Michelsen A, Ro-Poulsen H, van der Linden L (2011) Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. J Plant Physiol 168:1550–1561CrossRefPubMedGoogle Scholar
  3. Anderson K, Findlay C, Fuentes S, Tyerman S (2008) Viticulture, wine and climate change. Commissioned to Garnaut climate change review. www.garnautreview.org.au. Accessed 17 March 2015
  4. Andrews JT, Lorimer GH (1987) Rubisco: structure, mechanisms and prospects for improvement. In: Hatch MD, Broadman NK (eds) Biochemistry of plants, vol 10. Academic, New York, pp 132–207Google Scholar
  5. Antolín MC, Ayari M, Sánchez-Díaz M (2006) Effects of partial rootzone drying on yield, ripening and berry ABA in potted Tempranillo grapevines with split roots. Aust J Grape Wine Res 12:13–20CrossRefGoogle Scholar
  6. Antolín MC, Santesteban H, Ayari M, Aguirreolea J, Sánchez-Díaz M (2010) Grapevine fruiting cuttings: an experimental system to study grapevine physiology under water deficit conditions. In: Delrot S, Medrano H, Or E (eds) Methodologies and results in grapevine research. Springer, Dordrecht, pp 151–163Google Scholar
  7. Aranjuelo I, Pérez P, Hernández L, Irigoyen JJ, Zita G, Martínez-Carrasco R, Sánchez-Díaz M (2005) The response of nodulated alfalfa to water supply, temperature and elevated CO2: photosynthetic down-regulation. Physiol Plant 123:348–358CrossRefGoogle Scholar
  8. Arp WJ (1991) Effects of source–sink relations on photosynthetic acclimation to elevated CO2. Plant, Cell Environ 14:869–875CrossRefGoogle Scholar
  9. Ashour EK, Al-Najar H (2012) The impact of climate change and soil salinity in irrigation water demand in the Gaza strip. J Earth Sci Clim Change 3:120CrossRefGoogle Scholar
  10. Baby T, Hocking B, Tyerman SD, Gilliham M, Collins C (2014) Modified method for producing grapevine plants in controlled environments. Am J Enol Vitic 65:261–267CrossRefGoogle Scholar
  11. Begg JE, Turner NC (1970) Water potential gradients in field tobacco. Plant Physiol 46:343–346CrossRefPubMedCentralPubMedGoogle Scholar
  12. Bindi M, Fibbi L, Gozzini B, Orlandini S, Miglietta F (1996) Modelling the impact of future climate scenarios on yield and yield variability of grapevine. Clim Res 7:213–224CrossRefGoogle Scholar
  13. Bindi M, Fibbi L, Lanini M, Miglietta F (2001) Free Air CO2 Enrichment (FACE) of grapevine (Vitis vinifera L.): I. Development and testing of the system for CO2 enrichment. Eur J Agron 14:135–143CrossRefGoogle Scholar
  14. Bodin F, Morlat R (2006) Characterization of viticultural terroirs using a simple field model based on soil depth. II Validation of the grape yield and berry quality in the Anjou vineyard (France). Plant Soil 281:55–69CrossRefGoogle Scholar
  15. Bowen PA, Bogdanoff CP, Estergaard B (2004) Impacts of using polyethylene sleeves and wavelength selective mulch in vineyards. II. Effects on growth, leaf gas exchange, yield components and fruit quality of Vitis vinifera cv. Merlot. Can J Plant Sci 84:555–568CrossRefGoogle Scholar
  16. Bunce JA (1996) Growth at elevated carbon dioxide concentration reduces hydraulic conductance in alfalfa and soybean. Glob Change Biol 2:155–158CrossRefGoogle Scholar
  17. Bunce JA, Ziska LH (1998) Decreased hydraulic conductance in plants at elevated carbon dioxide. Plant, Cell Environ 21:121–126CrossRefGoogle Scholar
  18. Caffarra A, Eccel E (2011) Projecting the impacts of climate change on the phenology of grapevine in a mountain area. Aust J Grape Wine Res 17:52–61CrossRefGoogle Scholar
  19. Campbell WJ, Allen JRLH, Bowes G (1990) Response of soybean canopy photosynthesis to CO2 concentration, light, and temperature. J Exp Bot 41:427–433CrossRefGoogle Scholar
  20. Centritto M, Lee HSJ, Jarvis PG (1999) Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings. New Phytol 141:129–140CrossRefGoogle Scholar
  21. Chaves MM, Zarrouk O, Francisco R, Costa JM, Santos T, Regalado AP, Rodrigues ML, Lopes CM (2010) Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot 105:661–676CrossRefPubMedCentralPubMedGoogle Scholar
  22. Domec J-C, Palmroth S, Ward E, Maier CA, Thérézien M, Oren R (2009) Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilization. Plant, Cell Environ 32:1500–1512CrossRefGoogle Scholar
  23. Drake BG, Gonzalez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2. Annu Rev Plant Physiol Plant Mol Biol 48:609–639CrossRefPubMedGoogle Scholar
  24. Eamus D (1991) The interaction of rising CO2 and temperatures with water use efficiency. Plant, Cell Environ 14:843–852CrossRefGoogle Scholar
  25. Erice G, Irigoyen JJ, Pérez P, Martínez-Carrasco R, Sánchez-Díaz M (2006) Effect of elevated CO2, temperature and drought on photosynthesis of nodulated alfalfa during a cutting regrowth cycle. Physiol Plant 126:458–468CrossRefGoogle Scholar
  26. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90CrossRefPubMedGoogle Scholar
  27. Flexas J, Bota J, Escalona JM, Sampol B, Medrano H (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Funct Plant Biol 29:461–471CrossRefGoogle Scholar
  28. Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA (2012) An overview of climate change impacts on European viticulture. Food Energy Secur 1:94–110CrossRefGoogle Scholar
  29. Fraga H, Malheiro AC, Moutinho-Pereira J, Jones GV, Alves F, Pinto JG, Santos JA (2014) Very high resolution bioclimatic zoning of Portuguese wine regions: present and future scenarios. Reg Environ Change 14:295–306CrossRefGoogle Scholar
  30. Greer DH, Sicard SM (2009) The net carbon balance in relation to growth and biomass accumulation of grapevines (Vitis vinifera cv. Semillon) grown in a controlled environment. Funct Plant Biol 36:645–653CrossRefGoogle Scholar
  31. Greer DH, Weston C (2010) Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Funct Plant Biol 37:206–214CrossRefGoogle Scholar
  32. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32Google Scholar
  33. IPCC (2007) Climate change and its impacts in the near and long term under different scenarios. In: Pachauri RK, Reisinger A (eds) Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Core Writing Team. IPCC, GenevaGoogle Scholar
  34. IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  35. Irigoyen JJ, Goicoechea N, Antolín MC, Pascual I, Sánchez-Díaz M, Aguirreolea J, Morales F (2014) Growth, photosynthetic acclimation and yield quality in legumes grown under climate change simulations: an updated survey. Plant Sci 226:22–29CrossRefPubMedGoogle Scholar
  36. Jones GV, Alves F (2012) Impact of climate change on wine production: a global overview and regional assessment in the Douro Valley of Portugal. Int J Glob Warm 4:383–406CrossRefGoogle Scholar
  37. Krall JP, Edwards GE (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant 86:180–187CrossRefGoogle Scholar
  38. Lebon G, Duchene E, Brun O, Clément C (2005) Phenology of flowering and starch accumulation in grape (Vitis vinifera L.) cuttings and vines. Ann Bot 95:943–948CrossRefPubMedCentralPubMedGoogle Scholar
  39. Lebon G, Wojnarowiez G, Holzapfel B, Fontaine F, Vaillant-Gaveau N, Clément C (2008) Sugars and flowering in the grapevine (Vitis vinifera L.). J Exp Bot 59:2565–2578CrossRefPubMedGoogle Scholar
  40. Long SP (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant, Cell Environ 14:729–739CrossRefGoogle Scholar
  41. Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628CrossRefPubMedGoogle Scholar
  42. MAPA (1994) Métodos de Análisis para Suelos. En: Métodos Oficiales de Análisis. Tomo III. Ministerio de Agricultura, Pesca y Alimentación (MAPA), MadridGoogle Scholar
  43. Maroco JP, Breia E, Faria T, Pereira JS, Chaves MM (2002) Effects of long-term exposure to elevated CO2 and N fertilization on the development of photosynthetic capacity and biomass accumulation in Quercus suber L. Plant, Cell Environ 25:105–113CrossRefGoogle Scholar
  44. Martínez-Lüscher J (2014) Effects of UV-B radiation on grapevine (Vitis vinifera cv. Tempranillo) leaf physiology and berry composition, framed within the climate change scenario (water deficit, elevated CO2 and elevated temperature). PhD Thesis, University of Navarra, SpainGoogle Scholar
  45. Martínez-Lüscher J, Morales F, Delrot S, Sánchez-Díaz M, Gomès E, Aguirreolea J, Pascual I (2013) Short- and long-term physiological responses of grapevine leaves to UV-B radiation. Plant Sci 213:114–122CrossRefPubMedGoogle Scholar
  46. Martínez-Lüscher J, Sánchez-Díaz M, Delrot S, Aguirreolea J, Pascual I, Gomès E (2014a) Ultraviolet-B radiation and water deficit interact to alter flavonol and anthocyanin profile in grapevine berries through transcriptomic regulation. Plant Cell Physiol 55:1925–1936CrossRefPubMedGoogle Scholar
  47. Martínez-Lüscher J, Torres N, Hilbert G, Richard T, Sánchez-Díaz M, Delrot S, Aguirreolea J, Pascual I, Gomès E (2014b) Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries. Phytochemistry 102:106–114CrossRefPubMedGoogle Scholar
  48. Medrano H, Parry MAJ, Socías X, Lawlor DW (1997) Long term water stress inactivates Rubisco in subterranean clover. Ann Appl Biol 131:491–501CrossRefGoogle Scholar
  49. Morales F, Abadía A, Abadía J (1991) Chlorophyll fluorescence and photon yield of oxygen evolution in iron-deficient sugar beet (Beta vulgaris L.). Plant Physiol 97:886–893CrossRefPubMedCentralPubMedGoogle Scholar
  50. Morales F, Abadía A, Abadía J (2006) Photoinhibition and photoprotection under nutrient deficiencies, drought and salinity. In: Demmig-Adams B, Adams WW III, Mattoo AK (eds) Photoprotection, photoinhibition, gene regulation and environment. Springer, Dordrecht, pp 65–85CrossRefGoogle Scholar
  51. Morales F, Pascual I, Sánchez-Díaz M, Aguirreolea J, Irigoyen JJ, Goicoechea N, Antolín MC, Oyarzun M, Urdiain A (2014) Methodological advances: using greenhouses to simulate climate change scenarios. Plant Sci 226:30–40CrossRefPubMedGoogle Scholar
  52. Moutinho-Pereira J, Gonçalves B, Bacelar E, Cunha JB, Coutinho J, Correia CM (2009) Effects of elevated CO2 on grapevine (Vitis vinifera L.): physiological and yield attributes. Vitis 48:159–165Google Scholar
  53. Mullins MG (1966) Test-plants for investigations of the physiology of flowering in Vitis vinifera L. Nature 209:419–420CrossRefGoogle Scholar
  54. Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998CrossRefPubMedGoogle Scholar
  55. National Academy of Sciences (2014) Climate change: evidence and causes: set of 5 booklets. The National Academies Press, Washington, DCGoogle Scholar
  56. Nijensohn L, Pizarro OC (1960) Un procedimiento para la determinación del calcáreo activo en suelos orgánico-yesosos. Boletín técnico nº 2. Inst. Prov. MendozaGoogle Scholar
  57. Ögren E, Evans JR (1993) Photosynthetic light-response curves. I. The influence of CO2 partial pressure and leaf inversion. Planta 189:180–190CrossRefGoogle Scholar
  58. Ollat N, Geny L, Soyer J (1998) Les boutures fructifères de vigne: validation d’un modèle d’étude du development de la physiologie de la vigne, I Caractèristiques de l’appareil vegetative. J Int Sci Vigne Vin 32:1–9Google Scholar
  59. Perez-Martin A, Flexas J, Ribas-Carbó M, Bota J, Tomàs M, Infante JM, Díaz-Espejo A (2009) Interactive effects of soil water deficit and air vapour pressure deficit on mesophyll conductance to CO2 in Vitis vinifera and Olea europaea. J Exp Bot 60:2391–2405CrossRefPubMedGoogle Scholar
  60. Ramos MC, Martínez-Casasnovas JA (2010) Effects of precipitation patterns and temperature trends on soil water available for vineyards in a Mediterranean climate area. Agric Water Manag 97:1495–1505CrossRefGoogle Scholar
  61. Richards LA (1941) A pressure-membrane extraction apparatus for soil solution. Soil Sci 51:377–386CrossRefGoogle Scholar
  62. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmosphere general circulation model ECHAM5, part 1: model description. Technical report no. 349. Max-Planck-Institut für MeteorologieGoogle Scholar
  63. Sadras VO, Montoro A, Moran MA, Aphalo PJ (2012) Elevated temperature altered the reaction norms of stomatal conductance in field-grown grapevine. Agric For Meteorol 165:35–42CrossRefGoogle Scholar
  64. Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Morales F (2010) Effects of climate change scenarios on Tempranillo grapevine (Vitis vinifera L.) ripening: response to a combination of elevated CO2 and temperature, and moderate drought. Plant Soil 337:179–191CrossRefGoogle Scholar
  65. Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Morales F (2012a) Photosynthetic response of Tempranillo grapevine to climate change scenarios. Ann Appl Biol 161:277–292CrossRefGoogle Scholar
  66. Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Morales F (2012b) Climate change (elevated CO2, elevated temperature and moderate drought) triggers the antioxidant enzymes’ response of grapevine cv. Tempranillo, avoiding oxidative damage. Physiol Plant 144:99–110CrossRefPubMedGoogle Scholar
  67. Salazar-Parra C, Aranjuelo I, Pascual I, Erice G, Sanz-Sáez A, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Araus JL, Morales F (2015) Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses. J Plant Physiol 174:97–109CrossRefPubMedGoogle Scholar
  68. Santa María E (2004) Incidencia de Botrytis cinerea en relación con diferentes aspectos fisiológicos de la vid. PhD Thesis, University of Navarra, SpainGoogle Scholar
  69. Sanz-Sáez A, Erice G, Aranjuelo I, Nogués S, Irigoyen JJ, Sánchez-Díaz M (2010) Photosynthetic down-regulation under elevated CO2 exposure can be prevented by nitrogen supply in nodulated alfalfa. J Plant Physiol 167:1558–1565CrossRefPubMedGoogle Scholar
  70. Sanz-Sáez A, Erice G, Aguirreolea J, Irigoyen JJ, Sánchez-Díaz M (2012) Alfalfa yield under elevated CO2 and temperature depends on the Sinorhizobium strain and growth season. Environ Exp Bot 77:267–273CrossRefGoogle Scholar
  71. Sanz-Sáez A, Erice G, Aranjuelo I, Aroca R, Ruiz-Lozano JM, Aguirreolea J, Irigoyen JJ, Sánchez-Díaz M (2013) Photosynthetic and molecular markers of CO2-mediated photosynthetic down-regulation in nodulated alfalfa. J Integr Plant Biol 55:721–734CrossRefPubMedGoogle Scholar
  72. Scholander PF, Bradstreet ED, Hemmingsen EA, Hammel HT (1965) Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science 148:339–346CrossRefPubMedGoogle Scholar
  73. Schultz HR (1996) Leaf absorptance of visible radiation in Vitis vinifera L. estimates of age and shade effects with a simple field method. Sci Hortic 66:93–102CrossRefGoogle Scholar
  74. Soar CJ, Collins MJ, Sadras VO (2009) Irrigated Shiraz vines up-regulate gas exchange and maintain berry growth under short spells of high maximum temperature in the field. Funct Plant Biol 36:801–814CrossRefGoogle Scholar
  75. Sousa TA, Oliveira MT, Pereira JM (2006) Physiological indicators of plant water status of irrigated and non-irrigated grapevines in low rainfall area of Portugal. Plant Soil 282:127–134CrossRefGoogle Scholar
  76. Stitt M (1991) Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant, Cell Environ 14:741–762CrossRefGoogle Scholar
  77. Tardáguila J, Baluja J, Arpon L, Balda P, Oliveira M (2011) Variations of soil properties affect the vegetative growth and yield components of “Tempranillo” grapevines. Precis Agric 12:762–773CrossRefGoogle Scholar
  78. Tramontini S, van Leeuwen C, Domec JC, Destrac-Irvine A, Basteau C, Vitali M, Mosbach-Schulz O, Lovisolo C (2013) Impact of soil texture and water availability on the hydraulic control of plant and grape-berry development. Plant Soil 368:215–230CrossRefGoogle Scholar
  79. Tramontini S, Döring J, Vitali M, Ferrandino A, Stoll M, Lovisolo C (2014) Soil water-holding capacity mediates hydraulic and hormonal signals of near-isohydric and near-anisohydric Vitis cultivars in potted grapevines. Funct Plant Biol 41:1119–1128CrossRefGoogle Scholar
  80. USDA (1999) Soil quality test kit guide. USDA-Agriculture Research Service, SCS, USAGoogle Scholar
  81. Valentini R, Epron D, De Angelis P, Matteucci G, Dreyer E (1995) In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. Plant, Cell Environ 18:631–640CrossRefGoogle Scholar
  82. van Leeuwen C, Tregoat O, Choné X, Bois B, Pernet D, Gaudillère JP (2009) Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? J Int Sci Vigne Vin 43:121–134Google Scholar
  83. Wand SE, Midgley GF, Jones MC, Curtis PC (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Glob Change Biol 5:723–741CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Urtzi Leibar
    • 1
  • Ana Aizpurua
    • 1
  • Olatz Unamunzaga
    • 1
  • Inmaculada Pascual
    • 2
  • Fermín Morales
    • 2
    • 3
  1. 1.Environment Quality Department, Neiker-TecnaliaBizkaia Technological ParkDerioSpain
  2. 2.Plant Stress Physiology Group, Environmental Biology DepartmentUniversidad de Navarra, Associated Unit to CSIC, EEAD Zaragoza and ICVV, LogroñoPamplonaSpain
  3. 3.Department of Plant Nutrition, Aula Dei Experimental StationCSICZaragozaSpain

Personalised recommendations