Photosynthesis Research

, Volume 125, Issue 1–2, pp 115–122 | Cite as

Energy transfer in the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, analyzed by time-resolved fluorescence spectroscopies

  • Seiji Akimoto
  • Toshiyuki Shinoda
  • Min Chen
  • Suleyman I. Allakhverdiev
  • Tatsuya Tomo
Regular Paper

Abstract

We prepared thylakoid membranes from Halomicronema hongdechloris cells grown under white fluorescent light or light from far-red (740 nm) light-emitting diodes, and observed their energy-transfer processes shortly after light excitation. Excitation–relaxation processes were examined by steady-state and time-resolved fluorescence spectroscopies. Two time-resolved fluorescence techniques were used: time-correlated single photon counting and fluorescence up-conversion methods. The thylakoids from the cells grown under white light contained chlorophyll (Chl) a of different energies, but were devoid of Chl f. At room temperature, the excitation energy was equilibrated among the Chl a pools with a time constant of 6.6 ps. Conversely, the thylakoids from the cells grown under far-red light possessed both Chl a and Chl f. Two energy-transfer pathways from Chl a to Chl f were identified with time constants of 1.3 and 5.0 ps, and the excitation energy was equilibrated between the Chl a and Chl f pools at room temperature. We also examined the energy-transfer pathways from phycobilisome to the two photosystems under white-light cultivation.

Keywords

Energy transfer Fluorescence Light adaptation Chlorophyll f Pigment-protein complex Time-resolved spectroscopy 

Abbreviations

Chl

Chlorophyll

DV-Chl

3,8-Divinyl chlorophyll

LED

Light-emitting diodes

PBS

Phycobilisome

PS

Photosystem

TRFS

Time-resolved fluorescence spectrum (spectra)

References

  1. Akimoto S, Yokono M, Ohmae M, Yamazaki I, Tanaka A, Higuchi M, Tsuchiya T, Miyashita H, Mimuro M (2004) Ultrafast excitation relaxation dynamics and energy transfer in the siphonaxanthin-containing green alga Codium fragile. Chem Phys Lett 390:45–49CrossRefGoogle Scholar
  2. Akimoto S, Yokono M, Ohmae M, Yamazaki I, Tanaka A, Higuchi M, Tsuchiya T, Miyashita H, Mimuro M (2005) Ultrafast excitation relaxation dynamics of lutein in solution and in the light-harvesting complexes II isolated from Arabidopsis thaliana. J Phys Chem B 109:12612–12619PubMedCrossRefGoogle Scholar
  3. Akimoto S, Yokono M, Hamada F, Teshigahara A, Aikawa S, Kondo A (2012) Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochim Biophys Acta 1817:1483–1489PubMedCrossRefGoogle Scholar
  4. Akimoto S, Teshigahara A, Yokono M, Mimuro M, Nagao R, Tomo T (2014) Excitation relaxation dynamics and energy transfer in fucoxanthin-chlorophyll a/c-protein complexes, probed by time-resolved fluorescence. Biochim Biophys Acta 1837:1514–1521PubMedCrossRefGoogle Scholar
  5. Boardman NK, Thome SW, Anderson JM (1966) Fluorescence properties of particles obtained by digitonin fragmentation of spinach chloroplasts. Proc Natl Acad Sci USA 56:586–593PubMedCentralPubMedCrossRefGoogle Scholar
  6. Chen M, Schliep M, Willows RD, Cai ZL, Neilan BA, Scheer H (2010) A red-shifted chlorophyll. Science 329:1318–1319PubMedCrossRefGoogle Scholar
  7. Chen M, Li YQ, Birch D, Willows RD (2012) A cyanobacterium that contains chlorophyll f - a red-absorbing photopigment. FEBS Lett 586:3249–3254PubMedCrossRefGoogle Scholar
  8. Connelly JP, Müller MG, Bassi R, Croce R, Holzwarth AR (1997) Femtosecond transient absorption study of carotenoid to chlorophyll energy transfer in the light-harvesting complex II of photosystem II. Biochemistry 36:281–287PubMedCrossRefGoogle Scholar
  9. Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75CrossRefGoogle Scholar
  10. Gan F, Zhang S, Rockwell NC, Martin SS, Lagarias JC, Bryant DA (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345:1312–1317PubMedCrossRefGoogle Scholar
  11. Goedheer JC (1972) Fluorescence in relation to photosynthesis. Ann Rev Plant Physiol 23:87–112CrossRefGoogle Scholar
  12. Govindjee Satoh K (1986) Fluorescence properties of chlorophyll b- and chlorophyll c-containing algae. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Massachusetts, pp 497–537Google Scholar
  13. Govindjee (2004) Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Kluwer Academic Publishers, Boston, pp 1–42CrossRefGoogle Scholar
  14. Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M, Itoh S (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95:13319–13323PubMedCentralPubMedCrossRefGoogle Scholar
  15. Li Y, Scales N, Blankenship RE, Willows RD, Chen M (2012) Extinction coefficient for red-shifted chlorophylls: chlorophyll d and chlorophyll f. Biochim Biophys Acta 1817:1292–1298PubMedCrossRefGoogle Scholar
  16. Li Y, Cai ZL, Chen M (2013) Spectroscopic properties of chlorophyll f. J Phys Chem B 117:11309–11317PubMedCrossRefGoogle Scholar
  17. Mimuro M (2004) Photon capture, exciton migration and trapping and fluorescence emission in cyanobacteria and red algae. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Kluwer Academic Publishers, Boston, pp 173–195CrossRefGoogle Scholar
  18. Mimuro M, Akimoto S, Yamazaki I, Miyashita H, Miyachi S (1999) Fluorescence properties of chlorophyll d-dominating prokaryotic alga, Acaryochloris marina: studies using time-resolved fluorescence spectroscopy on intact cells. Biochim Biophys Acta 1412:37–46PubMedCrossRefGoogle Scholar
  19. Mimuro M, Hirayama K, Uezono K, Miyashita H, Miyachi S (2000) Uphill energy transfer in a chlorophyll d-dominating oxygenic photosynthetic prokaryote, Acaryochloris marina. Biochim Biophys Acta 1456:27–34PubMedCrossRefGoogle Scholar
  20. Mimuro M, Murakami A, Tomo T, Tsuchiya T, Watabe K, Yokono M, Akimoto S (2011) Molecular environments of divinyl chlorophylls in Prochlorococcus and Synechocystis: differences in fluorescence properties with chlorophyll replacement. Biochim Biophys Acta 1807:471–481PubMedCrossRefGoogle Scholar
  21. Murata N, Satoh K (1986) Absorption and fluorescence emission by intact cells, chloroplasts, and chlorophyll-protein complexes. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Massachusetts, pp 137–159Google Scholar
  22. Nakayama K, Yamaoka T, Katoh S (1979) Chromatographic separation of photosystems I and II from the thylakoid membrane isolated from a thermophilic blue-green alga. Plant Cell Physiol 20:1565–1576Google Scholar
  23. Nakayama K, Mimuro M, Nishimura Y, Yamazaki I, Okada M (1994) Kinetic analysis of energy transfer processes in LHC II isolated from a siphonous green alga Bryopsis maxima with use of a picosecond fluorescence spectroscopy. Biochim Biophys Acta 1188:117–124CrossRefGoogle Scholar
  24. Papagiannakis E, van Stokkum IHM, Fey H, Büchel C, van Grondelle R (2005) Spectroscopic characterization of the excitation energy transfer in the fucoxanthin–chlorophyll protein of diatoms. Photosynth Res 86:241–250PubMedCrossRefGoogle Scholar
  25. Rüdiger W, Schoch S (1988) Chlorophylls. In: Goodwin TW (ed) Plant pigments. Academic Press, Massachusetts, pp 1–59Google Scholar
  26. Schenderlein M, Çetin M, Barber J, Telfer A, Schlodder E (2008) Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium, Acaryochloris marina. Biochim Biophys Acta 1777:1400–1408PubMedCrossRefGoogle Scholar
  27. Schlodder E, Cetin M, Byrdin M, Terekhova IV, Karapetyan NV (2005) P700+- and 3P700-induced quenching of the fluorescence at 760 nm in trimeric photosystem I complexes from the cyanobacterium Arthrospira platensis. Biochim Biophys Acta 1706:53–67PubMedCrossRefGoogle Scholar
  28. Shubin VV, Murthy SDS, Karapetyan NV, Mohanty P (1991) Origin of the 77 K variable fluorescence at 758 nm in the cyanobacterium Spirulina platensis. Biochim Biophys Acta 1060:28–36CrossRefGoogle Scholar
  29. Shubin VV, Bezsmertnaya IN, Karapetyan NV (1992) Isolation from Spirulina membranes of two photosystem I-type complexes one of which contains chlorophyll responsible for the 77 K fluorescence band at 760 nm. FEBS Lett 309:340–342PubMedCrossRefGoogle Scholar
  30. Tomo T, Okubo T, Akimoto S, Yokono M, Miyashita H, Tsuchiya T, Noguchi T, Mimuro M (2007) Identification of the special pair of photosystem II in a chlorophyll d-dominated cyanobacterium. Proc Natl Acad Sci USA 104:7283–7288PubMedCentralPubMedCrossRefGoogle Scholar
  31. Tomo T, Kato Y, Suzuki T, Akimoto S, Okubo T, Noguchi T, Hasegawa K, Tsuchiya T, Tanaka K, Fukuya M, Dohmae N, Watanabe T, Mimuro M (2008) Characterization of highly purified photosystem I complexes from the chlorophyll d-dominated cyanobacterium Acaryochloris marina MBIC 11017. J Biol Chem 283:18198–18209PubMedCrossRefGoogle Scholar
  32. Tomo T, Shinoda T, Chen M, Allakhverdiev SI, Akimoto S (2014) Energy transfer processes in chlorophyll f-containing cyanobacteria using time-resolved fluorescence spectroscopy on intact cells. Biochim Biophys Acta 1837:1484–1489PubMedCrossRefGoogle Scholar
  33. van Grondelle R, Gobets B (2004) Transfer and trapping of excitations in plant photosystems. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Kluwer Academic Publishers, Boston, pp 107–132CrossRefGoogle Scholar
  34. van Grondelle R, Dekker JP, Gillbro T, Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187:1–65CrossRefGoogle Scholar
  35. Willows RD, Li Y, Scheer H, Chen M (2013) Structure of chlorophyll f. Org Lett 15:1588–1590PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Seiji Akimoto
    • 1
    • 2
  • Toshiyuki Shinoda
    • 3
  • Min Chen
    • 4
  • Suleyman I. Allakhverdiev
    • 5
    • 6
    • 7
  • Tatsuya Tomo
    • 3
    • 8
  1. 1.Molecular Photoscience Research CenterKobe UniversityKobeJapan
  2. 2.CRESTJapan Science and Technology Agency (JST)KobeJapan
  3. 3.Faculty of ScienceTokyo University of ScienceTokyoJapan
  4. 4.ARC Centre of Excellence for Translational Photosynthesis & School of Biological Sciences (A12)University of SydneySydneyAustralia
  5. 5.Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  6. 6.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchinoRussia
  7. 7.Department of Plant Physiology, Faculty of BiologyM.V. Lomonosov Moscow State UniversityMoscowRussia
  8. 8.PRESTOJapan Science and Technology Agency (JST)SaitamaJapan

Personalised recommendations