Photosynthesis Research

, Volume 121, Issue 1, pp 61–68 | Cite as

Characterization of the intramolecular transfer state of marine carotenoid fucoxanthin by femtosecond pump–probe spectroscopy

Regular Paper

Abstract

Fucoxanthin, containing a carbonyl group in conjugation with its polyene backbone, is a naturally occurring pigment in marine organisms and is essential to the photosynthetic light-harvesting function in brown alga and diatom. Fucoxanthin exhibits optical characteristics attributed to an intramolecular charge transfer (ICT) state that arises in polar environments due to the presence of the carbonyl group. In this study, we report the spectroscopic properties of fucoxanthin in methanol (polar and protic solvent) observed by femtosecond pump–probe measurements in the near-infrared region, where transient absorption associated with the optically allowed S2 (11Bu+) state and stimulated emission from the strongly coupled S1/ICT state were observed following one-photon excitation to the S2 state. The results showed that the amplitude of the stimulated emission of the S1/ICT state increased with decreasing excitation energy, demonstrating that the fucoxanthin form associated with the lower energy of the steady-state absorption exhibits stronger ICT character.

Keywords

Photosynthesis Carotenoids Intramolecular charge transfer Marine algae 

References

  1. Akimoto S, Takaichi S, Ogata T, Nishimura Y, Yamazaki I, Mimuro M (1996) Excitation energy transfer in carotenoid–chlorophyll protein complexes probed by femtosecond fluorescence decays. Chem Phys Lett 260(1–2):147–152. doi:10.1016/0009-2614(96)00863-9 CrossRefGoogle Scholar
  2. Akimoto S, Yokono M, Higuchi M, Tomo T, Takaichi S, Murakami A, Mimuro M (2008) Solvent effects on excitation relaxation dynamics of a keto-carotenoid, siphonaxanthin. Photochem Photobiol Sci 7(10):1206–1209. doi:10.1039/b802658k PubMedCrossRefGoogle Scholar
  3. Bautista JA, Connors RE, Raju BB, Hiller RG, Sharples FP, Gosztola D, Wasielewski MR, Frank HA (1999a) Excited state properties of peridinin: observation of a solvent dependence of the lowest excited singlet state lifetime and spectral behavior unique among carotenoids. J Phys Chem B 103(41):8751–8758. doi:10.1021/jp9916135 CrossRefGoogle Scholar
  4. Bautista JA, Hiller RG, Sharples FP, Gosztola D, Wasielewski M, Frank HA (1999b) Singlet and triplet energy transfer in the peridinin–chlorophyll a–protein from Amphidinium carterae. J Phys Chem A 103(14):2267–2273. doi:10.1021/jp983943f CrossRefGoogle Scholar
  5. Berera R, van Stokkum IHM, Gwizdala M, Wilson A, Kirilovsky D, van Grondelle R (2012) The photophysics of the orange carotenoid protein, a light-powered molecular switch. J Phys Chem B 116(8):2568–2574. doi:10.1021/jp2108329 PubMedCrossRefGoogle Scholar
  6. Chábera P, Fuciman M, Hribek P, Polívka T (2009) Effect of carotenoid structure on excited-state dynamics of carbonyl carotenoids. Phys Chem Chem Phys 11(39):8795–8803. doi:10.1039/b909924g PubMedCrossRefGoogle Scholar
  7. Chábera P, Fuciman M, Razi Naqvi K, Polívka T (2010) Ultrafast dynamics of hydrophilic carbonyl carotenoids—relation between structure and excited-state properties in polar solvents. Chem Phys 373(1–2):56–64. doi:10.1016/j.chemphys.2010.01.007 CrossRefGoogle Scholar
  8. Chatterjee N, Niedzwiedzki DM, Kajikawa T, Hasegawa S, Katsumura S, Frank HA (2008) Effect of π-electron conjugation length on the solvent-dependent S1 lifetime of peridinin. Chem Phys Lett 463(1–3):219–224. doi:10.1016/j.cplett.2008.08.056 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Chatterjee N, Niedzwiedzki DM, Aoki K, Kajikawa T, Katsumura S, Hashimoto H, Frank HA (2009) Effect of structural modifications on the spectroscopic properties and dynamics of the excited states of peridinin. Arch Biochem Biophys 483(2):146–155. doi:10.1016/j.abb.2008.10.035 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Enriquez MM, Fuciman M, LaFountain AM, Wagner NL, Birge RR, Frank HA (2010) The intramolecular charge transfer state in carbonyl-containing polyenes and carotenoids. J Phys Chem B 114(38):12416–12426. doi:10.1021/jp106113h PubMedCentralPubMedCrossRefGoogle Scholar
  11. Frank HA, Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63(3):257–264. doi:10.1111/j.1751-1097.1996.tb03022.x PubMedCrossRefGoogle Scholar
  12. Frank HA, Bautista JA, Josue J, Pendon Z, Hiller RG, Sharples FP, Gosztola D, Wasielewski MR (2000) Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids. J Phys Chem B 104(18):4569–4577. doi:10.1021/Jp000079u CrossRefGoogle Scholar
  13. Gildenhoff N, Herz J, Gundermann K, Büchel C, Wachtveitl J (2010) The excitation energy transfer in the trimeric fucoxanthin–chlorophyll protein from Cyclotella meneghiniana analyzed by polarized transient absorption spectroscopy. Chem Phys 373(1–2):104–109. doi:10.1016/j.chemphys.2010.02.012 CrossRefGoogle Scholar
  14. He Z, Gao G, Hand ES, Kispert LD, Strand A, Liaaen-Jensen S (2002) Iodine-catalyzed R/S isomerization of allenic carotenoids. J Phys Chem A 106(11):2520–2525. doi:10.1021/Jp013006z CrossRefGoogle Scholar
  15. Hudson BS, Kohler BE, Schulten K (eds) (1982) Linear polyene electronic structure and potential surfaces, excited states, vol 6. Academic Press, New YorkGoogle Scholar
  16. Kosumi D, Yanagi K, Fujii R, Hashimoto H, Yoshizawa M (2006) Conjugation length dependence of relaxation kinetics in β-carotene homologs probed by femtosecond Kerr-gate fluorescence spectroscopy. Chem Phys Lett 425(1–3):66–70. doi:10.1016/j.cplett.2006.05.023 CrossRefGoogle Scholar
  17. Kosumi D, Fujiwara M, Fujii R, Cogdell RJ, Hashimoto H, Yoshizawa M (2009a) The dependence of the ultrafast relaxation kinetics of the S2 and S1 states in b-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies. J Chem Phys 130(21):214506. doi:10.1063/1.3147008 PubMedCrossRefGoogle Scholar
  18. Kosumi D, Kusumoto T, Fujii R, Sugisaki M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Frank HA, Hashimoto H (2009b) One- and two-photon pump–probe optical spectroscopic measurements reveal the S1 and intramolecular charge transfer states are distinct in fucoxanthin. Chem Phys Lett 483(1–3):95–100. doi:10.1016/j.cplett.2009.10.077 CrossRefGoogle Scholar
  19. Kosumi D, Abe K, Karasawa H, Fujiwara M, Cogdell RJ, Hashimoto H, Yoshizawa M (2010) Ultrafast relaxation kinetics of the dark S1 state in all-trans-β-carotene explored by one- and two-photon pump–probe spectroscopy. Chem Phys 373(1–2):33–37. doi:10.1016/j.chemphys.2009.12.013 CrossRefGoogle Scholar
  20. Kosumi D, Kusumoto T, Fujii R, Sugisaki M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Frank HA, Hashimoto H (2011a) Ultrafast excited state dynamics of fucoxanthin: excitation energy dependent intramolecular charge transfer dynamics. Phys Chem Chem Phys 13(22):10762–10770. doi:10.1039/c0cp02568b PubMedCrossRefGoogle Scholar
  21. Kosumi D, Kusumoto T, Fujii R, Sugisaki M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Frank HA, Hashimoto H (2011b) Ultrafast S1 and ICT state dynamics of a marine carotenoid probed by femtosecond one- and two-photon pump–probe spectroscopy. J Lumin 131(3):515–518. doi:10.1016/j.jlumin.2010.09.018 CrossRefGoogle Scholar
  22. Kosumi D, Kita M, Fujii R, Sugisaki M, Oka N, Takaesu Y, Taira T, Iha M, Hashimoto H (2012) Excitation energy-transfer dynamics of brown algal photosynthetic antennas. J Phys Chem Lett 3(18):2659–2664. doi:10.1021/jz300612c CrossRefGoogle Scholar
  23. Kosumi D, Kajikawa T, Okumura S, Sugisaki M, Sakaguchi K, Katsumura S, Hashimoto H (2014) Elucidation and control of an intramolecular charge transfer property of fucoxanthin by modification of its polyene chain length. J Phys Chem Lett 5(5):792–797. doi:10.1021/jz5000287 CrossRefGoogle Scholar
  24. Lenzer T, Oum K, Seehusen J, Seidel MT (2006) Transient lens spectroscopy of ultrafast internal conversion processes in citranaxanthin. J Phys Chem A 110(9):3159–3164. doi:10.1021/jp054563e PubMedCrossRefGoogle Scholar
  25. Linden PA, Zimmermann J, Brixner T, Holt NE, Vaswani HM, Hiller RG, Fleming GR (2004) Transient absorption study of peridinin and peridinin–chlorophyll a–protein after two-photon excitation. J Phys Chem B 108(29):10340–10345. doi:10.1021/Jp031331b CrossRefGoogle Scholar
  26. Mimuro M, Nagashima U, Takaichi S, Nishimura Y, Yamazaki I, Katoh T (1992) Molecular structure and optical properties of carotenoids for the in vivo energy transfer function in the algal photosynthetic pigment system. Biochim Biophys Acta 1098(2):271–274CrossRefGoogle Scholar
  27. Niedzwiedzki D, Koscielecki JF, Cong H, Sullivan JO, Gibson GN, Birge RR, Frank HA (2007) Ultrafast dynamics and excited state spectra of open-chain carotenoids at room and low temperatures. J Phys Chem B 111(21):5984–5998. doi:10.1021/Jp070500f PubMedCrossRefGoogle Scholar
  28. Niedzwiedzki DM, Chatterjee N, Enriquez MM, Kajikawa T, Hasegawa S, Katsumura S, Frank HA (2009) Spectroscopic investigation of peridinin analogues having different π-electron conjugated chain lengths: exploring the nature of the intramolecular charge transfer state. J Phys Chem B 113(41):13604–13612. doi:10.1021/jp903923r PubMedCentralPubMedCrossRefGoogle Scholar
  29. Oum K, Lohse PW, Ehlers F, Scholz M, Kopczynski M, Lenzer T (2010) 12′-Apo-β-caroten-12′-al: an ultrafast “spy” molecule for probing local interactions in ionic liquids. Angew Chem Int Ed 49(12):2230–2232. doi:10.1002/anie.200906046 CrossRefGoogle Scholar
  30. Papagiannakis E, Larsen DS, van Stokkum IH, Vengris M, Hiller RG, van Grondelle R (2004) Resolving the excited state equilibrium of peridinin in solution. Biochemistry 43(49):15303–15309. doi:10.1021/bi047977r PubMedCrossRefGoogle Scholar
  31. Papagiannakis E, HMvS I, Fey H, Buchel C, van Grondelle R (2005) Spectroscopic characterization of the excitation energy transfer in the fucoxanthin–chlorophyll protein of diatoms. Photosynth Res 86(1–2):241–250. doi:10.1007/s11120-005-1003-8 PubMedCrossRefGoogle Scholar
  32. Polívka T, Frank HA (2010) Molecular factors controlling photosynthetic light harvesting by carotenoids. Acc Chem Res 43(8):1125–1134. doi:10.1021/ar100030m PubMedCentralPubMedCrossRefGoogle Scholar
  33. Polívka T, Sundström V (2004) Ultrafast dynamics of carotenoid excited states—from solution to natural and artificial systems. Chem Rev 104(4):2021–2071. doi:10.1021/cr020674n PubMedCrossRefGoogle Scholar
  34. Polívka T, Sundström V (2009) Dark excited states of carotenoids: consensus and controversy. Chem Phys Lett 477(1–3):1–11. doi:10.1016/j.cplett.2009.06.011 CrossRefGoogle Scholar
  35. Polívka T, Kerfeld CA, Pascher T, Sundström V (2005) Spectroscopic properties of the carotenoid 3′-hydroxyechinenone in the orange carotenoid protein from the cyanobacterium Arthrospira maxima. Biochemistry 44(10):3994–4003. doi:10.1021/bi047473t PubMedCrossRefGoogle Scholar
  36. Polívka T, van Stokkum IH, Zigmantas D, van Grondelle R, Sundström V, Hiller RG (2006) Energy transfer in the major intrinsic light-harvesting complex from Amphidinium carterae. Biochemistry 45(28):8516–8526. doi:10.1021/bi060265b PubMedCrossRefGoogle Scholar
  37. Polívka T, Frank HA, Enriquez MM, Niedzwiedzki DM, Liaaen-Jensen S, Hemming J, Helliwell JR, Helliwell M (2010) X-ray crystal structure and time-resolved spectroscopy of the blue carotenoid violerythrin. J Phys Chem B 114(26):8760–8769. doi:10.1021/jp101296a PubMedCrossRefGoogle Scholar
  38. Polívka T, Kaligotla S, Chabera P, Frank HA (2011) An intramolecular charge transfer state of carbonyl carotenoids: implications for excited state dynamics of apo-carotenals and retinal. Phys Chem Chem Phys 13(22):10787–10796. doi:10.1039/c1cp20269c PubMedCrossRefGoogle Scholar
  39. Polli D, Cerullo G, Lanzani G, DeSilvestri S, Yanagi K, Hashimoto H, Cogdell RJ (2004) Conjugation length dependence of internal conversion in carotenoids: role of the intermediate state. Phys Rev Lett 93(16):163002. doi:10.1103/PhysRevLett.93.163002 PubMedCrossRefGoogle Scholar
  40. Slouf V, Chábera P, Olsen JD, Martin EC, Qian P, Hunter CN, Polívka T (2012) Photoprotection in a purple phototrophic bacterium mediated by oxygen-dependent alteration of carotenoid excited-state properties. Proc Natl Acad Sci USA 109(22):8570–8575. doi:10.1073/pnas.1201413109 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Zigmantas D, Polívka T, Hiller RG, Yartsev A, Sundström V (2001) Spectroscopic and dynamic properties of the peridinin lowest singlet excited states. J Phys Chem A 105(45):10296–10306. doi:10.1021/Jp010022n CrossRefGoogle Scholar
  42. Zigmantas D, Hiller RG, Sundström V, Polívka T (2002) Carotenoid to chlorophyll energy transfer in the peridinin–chlorophyll-a–protein complex involves an intramolecular charge transfer state. Proc Natl Acad Sci USA 99(26):16760–16765. doi:10.1073/pnas.262537599 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Zigmantas D, Hiller RG, Yartsev A, Sundström V, Polívka T (2003) Dynamics of excited states of the carotenoid peridinin in polar solvents: dependence on excitation wavelength, viscosity, and temperature. J Phys Chem B 107(22):5339–5348CrossRefGoogle Scholar
  44. Zigmantas D, Hiller RG, Sharples FP, Frank HA, Sundström V, Polívka T (2004) Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys Chem Chem Phys 6(11):3009–3016. doi:10.1039/b315786e CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Daisuke Kosumi
    • 1
  • Ritsuko Fujii
    • 1
    • 2
  • Mitsuru Sugisaki
    • 3
  • Naohiro Oka
    • 4
  • Masahiko Iha
    • 4
  • Hideki Hashimoto
    • 1
    • 3
  1. 1.The Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA)Sumiyoshi-kuJapan
  2. 2.JST/PRESTOKawaguchiJapan
  3. 3.Department of Physics, Graduate School of ScienceOsaka City UniversitySumiyoshi-kuJapan
  4. 4.South Product Co. LtdUruma-shiJapan

Personalised recommendations