Photosynthesis Research

, Volume 123, Issue 3, pp 255–263 | Cite as

Algal omics: unlocking bioproduct diversity in algae cell factories



Rapid advances in “omic” technologies are helping to unlock the full potential of microalgae as multi-use feedstocks, with utility in an array of industrial biotechnology, biofuel, and biomedical applications. In turn, algae are emerging as highly attractive candidates for development as microbial cell factories. In this review, we examine the wide array of potential algal bioproducts, with a focus upon the role of omic technologies in driving bioproduct discovery and optimization in microalgal systems.


Algae  Cell factory Omics Biofuels Biotechnology 


  1. Adarme-Vega TC et al (2012) Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact 11:96CrossRefPubMedCentralPubMedGoogle Scholar
  2. Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215CrossRefGoogle Scholar
  3. Baba M, Ioki M, Nakajima N, Shiraiwa Y, Watanabe MM (2012) Transcriptome analysis of an oil-rich race A strain of Botryococcus braunii (BOT-88-2) by de novo assembly of pyrosequencing cDNA reads. Bioresour Technol 109:282CrossRefPubMedGoogle Scholar
  4. Boyle NR et al (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287:15811Google Scholar
  5. Boynton JE et al (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534Google Scholar
  6. Cordero BF, Couso I, Leon R, Rodriguez H, Vargas MA (2011) Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis. Appl Microbiol Biotechnol 91:341Google Scholar
  7. Couso I, Vila M, Rodriguez H, Vargas MA, Leon R (2011) Overexpression of an exogenous phytoene synthase gene in the unicellular alga Chlamydomonas reinhardtii leads to an increase in the content of carotenoids. Biotechnol Prog 27:54CrossRefPubMedGoogle Scholar
  8. Dennis J, Stephenson AL, Howe CJ, Scott SA, Smith AG (2010) Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1:47Google Scholar
  9. Dong Z, Chen Y (2013) Transcriptomics: advances and approaches. Sci China Life Sci 56:960CrossRefPubMedGoogle Scholar
  10. Eisenberg D, Marcotte EM, Xenarios I, Yeates TO (2000) Protein function in the post-genomic era. Nature 405:823CrossRefPubMedGoogle Scholar
  11. Eom H, Lee CG, Jin E (2006) Gene expression profile analysis in astaxanthin-induced Haematococcus pluvialis using a cDNA microarray. Planta 223:1231CrossRefPubMedGoogle Scholar
  12. Fan J, Andre C, Xu C (2011) A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Lett 585:1985CrossRefPubMedGoogle Scholar
  13. Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219CrossRefPubMedCentralPubMedGoogle Scholar
  14. Ghirardi ML et al (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71CrossRefPubMedGoogle Scholar
  15. Gillet S, Decottignies P, Chardonnet S, Le Marechal P (2006) Cadmium response and redoxin targets in Chlamydomonas reinhardtii: a proteomic approach. Photosynth Res 89:201CrossRefPubMedGoogle Scholar
  16. Golueke CG, Oswald WJ (1959) Biological conversion of light energy to the chemical energy of methane. Appl Microbiol 7:219PubMedCentralPubMedGoogle Scholar
  17. Gregory JA, Topol AB, Doerner DZ, Mayfield S (2013) Alga-produced cholera toxin-Pfs25 fusion proteins as oral vaccines. Appl Environ Microbiol 79:3917CrossRefPubMedCentralPubMedGoogle Scholar
  18. Grossman AR (2005) Paths toward algal genomics. Plant Physiol 137:410CrossRefPubMedCentralPubMedGoogle Scholar
  19. Grossman AR et al (2007) Novel metabolism in Chlamydomonas through the lens of genomics. Curr Opin Plant Biol 10:190Google Scholar
  20. Guarnieri MT (2013) Comparative proteomics lends insight into genotype-specific pathogenicity. Proteomics 13:2544CrossRefPubMedGoogle Scholar
  21. Guarnieri MT et al (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS One 6:e25851CrossRefPubMedCentralPubMedGoogle Scholar
  22. Guarnieri MT, Nag A, Yang S, Pienkos PT (2013) Proteomic analysis of Chlorella vulgaris: potential targets for enhanced lipid accumulation. J Proteomics 93:245CrossRefPubMedGoogle Scholar
  23. Hildebrand M et al (2013) Metabolic and cellular organization in evolutionarily diverse microalgae as related to biofuels production. Curr Opin Chem Biol 17:506CrossRefPubMedGoogle Scholar
  24. Hu Q et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621CrossRefPubMedGoogle Scholar
  25. Ioki M et al (2012a) Modes of hydrocarbon oil biosynthesis revealed by comparative gene expression analysis for race A and race B strains of Botryococcus braunii. Bioresour Technol 109:271CrossRefPubMedGoogle Scholar
  26. Ioki M, Baba M, Nakajima N, Shiraiwa Y, Watanabe MM (2012b) Transcriptome analysis of an oil-rich race B strain of Botryococcus braunii (BOT-70) by de novo assembly of 5′-end sequences of full-length cDNA clones. Bioresour Technol 109:277CrossRefPubMedGoogle Scholar
  27. Ioki M, Baba M, Nakajima N, Shiraiwa Y, Watanabe MM (2012c) Transcriptome analysis of an oil-rich race B strain of Botryococcus braunii (BOT-22) by de novo assembly of pyrosequencing cDNA reads. Bioresour Technol 109:292CrossRefPubMedGoogle Scholar
  28. Jamers A, Blust R, De Coen W (2009) Omics in algae: paving the way for a systems biological understanding of algal stress phenomena? Aquat Toxicol 92:114CrossRefPubMedGoogle Scholar
  29. Jones CS, Mayfield SP (2012) Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol 23:346CrossRefPubMedGoogle Scholar
  30. Karpowicz SJ, Prochnik SE, Grossman AR, Merchant SS (2011) The GreenCut2 resource, a phylogenomically derived inventory of proteins specific to the plant lineage. J Biol Chem 286:21427CrossRefPubMedCentralPubMedGoogle Scholar
  31. Knoshaug EP, Shi B, Shannon TG, Mleziva MM, Pienkos PT (2013) The potential of photosynthetic aquatic species as sources of useful cellulose fibers—a review. J Appl Phycol 25:1123Google Scholar
  32. Lee do Y, Park JJ, Barupal DK, Fiehn O (2012) System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium. Mol Cell Proteomics 11:973CrossRefPubMedCentralPubMedGoogle Scholar
  33. Leon-Banares R, Gonzalez-Ballester D, Galvan A, Fernandez E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45CrossRefPubMedGoogle Scholar
  34. Liu GN, Zhu YH, Jiang JG (2009) The metabolomics of carotenoids in engineered cell factory. Appl Microbiol Biotechnol 83:989CrossRefPubMedGoogle Scholar
  35. Lohr M, Im CS, Grossman AR (2005) Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. Plant Physiol 138:490CrossRefPubMedCentralPubMedGoogle Scholar
  36. Lohr M, Schwender J, Polle JE (2012) Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci 185–186:9CrossRefPubMedGoogle Scholar
  37. Lopez D, Casero D, Cokus SJ, Merchant SS, Pellegrini M (2011) Algal functional annotation tool: a web-based analysis suite to functionally interpret large gene lists using integrated annotation and expression data. BMC Bioinform 12:282CrossRefGoogle Scholar
  38. Lu Y, Oyler GA (2009) Green algae as a platform to express therapeutic proteins. Discov Med 8:28PubMedGoogle Scholar
  39. Lv H et al (2013) Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation. Genomics 101:229CrossRefPubMedGoogle Scholar
  40. Matsushima D et al (2012) The single cellular green microalga Botryococcus braunii, race B possesses three distinct 1-deoxy-d-xylulose 5-phosphate synthases. Plant Sci 185–186:309CrossRefPubMedGoogle Scholar
  41. Mayfield SP, Kindle KL (1990) Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker. Proc Natl Acad Sci USA 87:2087CrossRefPubMedCentralPubMedGoogle Scholar
  42. Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 100:438CrossRefPubMedCentralPubMedGoogle Scholar
  43. Merchant SS et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245CrossRefPubMedCentralPubMedGoogle Scholar
  44. Miller R et al (2010) Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154:1737CrossRefPubMedCentralPubMedGoogle Scholar
  45. Moellering ER, Benning C (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell 9:97CrossRefPubMedCentralPubMedGoogle Scholar
  46. Molnar I et al (2012) Bio-crude transcriptomics: gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa). BMC Genom 13:576CrossRefGoogle Scholar
  47. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255CrossRefPubMedGoogle Scholar
  48. Msanne J et al (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75:50CrossRefPubMedGoogle Scholar
  49. Murphy CD (2012) The microbial cell factory. Org Biomol Chem 10:1949CrossRefPubMedGoogle Scholar
  50. Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475CrossRefPubMedGoogle Scholar
  51. Nguyen AV et al (2008) Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii. Eukaryot Cell 7:1965CrossRefPubMedCentralPubMedGoogle Scholar
  52. Nguyen HM et al (2011) Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11:4266CrossRefPubMedGoogle Scholar
  53. Niehaus TD et al (2011) Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii. Proc Natl Acad Sci USA 108:12260CrossRefPubMedCentralPubMedGoogle Scholar
  54. Niehaus TD et al (2012) Functional identification of triterpene methyltransferases from Botryococcus braunii race B. J Biol Chem 287:8163CrossRefPubMedCentralPubMedGoogle Scholar
  55. Okazaki Y, Saito K (2012) Recent advances of metabolomics in plant biotechnology. Plant Biotechnol Rep 6:1CrossRefPubMedCentralPubMedGoogle Scholar
  56. Patel N et al (2004) Differential gene expression of Chlamydomonas reinhardtii in response to 2,4,6-trinitrotoluene (TNT) using microarray analysis. Plant Sci 167:1109CrossRefGoogle Scholar
  57. Patel VJ et al (2009) A comparison of labeling and label-free mass spectrometry-based proteomics approaches. J Proteome Res 8:3752CrossRefPubMedGoogle Scholar
  58. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486CrossRefPubMedCentralPubMedGoogle Scholar
  59. Ramos AA et al (2009) Molecular and functional characterization of a cDNA encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase from Dunaliella salina. J Plant Physiol 166:968CrossRefPubMedGoogle Scholar
  60. Rasala BA et al (2012) Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One 7:e43349CrossRefPubMedCentralPubMedGoogle Scholar
  61. Rismani-Yazdi H, Haznedaroglu BZ, Hsin C, Peccia J (2012) Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol Biofuels 5:74CrossRefPubMedCentralPubMedGoogle Scholar
  62. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430CrossRefPubMedGoogle Scholar
  63. Sheehan J, Dunahay T, Bennemann J, Roessler P (1998) “DOE aquatic species program closeout report.
  64. Shrestha RP et al (2012) Whole transcriptome analysis of the silicon response of the diatom Thalassiosira pseudonana. BMC Genom 13:499CrossRefGoogle Scholar
  65. Simon DF, Descombes P, Zerges W, Wilkinson KJ (2008) Global expression profiling of Chlamydomonas reinhardtii exposed to trace levels of free cadmium. Environ Toxicol Chem 27:1668CrossRefPubMedGoogle Scholar
  66. Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32:1373CrossRefPubMedCentralPubMedGoogle Scholar
  67. Sun TH et al (2010) Coordinated regulation of gene expression for carotenoid metabolism in Chlamydomonas reinhardtii. J Integr Plant Biol 52:868CrossRefPubMedGoogle Scholar
  68. Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9:1101CrossRefPubMedCentralPubMedGoogle Scholar
  69. Toepel J et al (2013) New insights into Chlamydomonas reinhardtii hydrogen production processes by combined microarray/RNA-seq transcriptomics. Plant Biotechnol J 11:717CrossRefPubMedGoogle Scholar
  70. Tran M et al (2013a) Production of anti-cancer immunotoxins in algae: ribosome inactivating proteins as fusion partners. Biotechnol Bioeng 110:2826CrossRefPubMedGoogle Scholar
  71. Tran M et al (2013b) Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci USA 110:E15CrossRefPubMedCentralPubMedGoogle Scholar
  72. Vanderschuren H, Lentz E, Zainuddin I, Gruissem W (2013) Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement. J Proteomics 93:5CrossRefPubMedGoogle Scholar
  73. Wu Q, Yuan H, Zhang L, Zhang Y (2012) Recent advances on multidimensional liquid chromatography–mass spectrometry for proteomics: from qualitative to quantitative analysis—a review. Anal Chim Acta 731:1CrossRefPubMedGoogle Scholar
  74. Yang S, Guarnieri MT, Smolinski S, Ghirardi M, Pienkos PT (2013) De novo transcriptomic analysis of hydrogen production in the green alga Chlamydomonas moewusii through RNA-Seq. Biotechnol Biofuels 6:118CrossRefPubMedCentralPubMedGoogle Scholar
  75. Yohn C, Mendez M, Behnke C, Brand A (2011) Stress-induced lipid trigger. Patent No WO/2011 97261:11Google Scholar
  76. Yu Y et al (2013) Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory. Mar Drugs 11:2894CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2014

Authors and Affiliations

  1. 1.National Bioenergy CenterNational Renewable Energy LaboratoryGoldenUSA

Personalised recommendations