Advertisement

Photosynthesis Research

, Volume 121, Issue 2–3, pp 175–184 | Cite as

Isolation and characterization of novel high-CO2-requiring mutants of Chlamydomonas reinhardtii

  • Lianyong Wang
  • Takashi Yamano
  • Masataka Kajikawa
  • Masafumi Hirono
  • Hideya FukuzawaEmail author
Regular Paper

Abstract

Aquatic microalgae induce a carbon-concentrating mechanism (CCM) to maintain photosynthetic activity in low-CO2 (LC) conditions. Although the molecular mechanism of the CCM has been investigated using the single-cell green alga Chlamydomonas reinhardtii, and several CCM-related genes have been identified by analyzing high-CO2 (HC)-requiring mutants, many aspects of the CO2-signal transduction pathways remain to be elucidated. In this study, we report the isolation of novel HC-requiring mutants defective in the induction of CCM by DNA tagging. Growth rates of 20,000 transformants grown under HC and LC conditions were compared, and three HC-requiring mutants (H24, H82, and P103) were isolated. The photosynthetic CO2-exchange activities of these mutants were significantly decreased compared with that of wild-type cells, and accumulation of HLA3 and both LCIA and HLA3 were absent in mutants H24 and H82, respectively. Although the insertion of the marker gene and the HC-requiring phenotype were linked in the tetrad progeny of H82, and a calcium-sensing receptor CAS was disrupted by the insertion, exogenous expression of CAS alone could not complement the HC-requiring phenotype.

Keywords

Chlamydomonas reinhardtii Carbon-concentrating mechanism CO2-signal transduction High-CO2-requiring mutants 

Notes

Acknowledgments

We thank Dr. Yoshiki Nishimura for technical help and assistance with the tetrad analysis. We also thank Dr. Haru-aki Yanagisawa for providing the expression vectors, pGenD-aphVIII and pGenD-HA. We also thank Dr. Tan Inoue and Dr. Yoshihiko Fujita for letting us use the quantitative real-time PCR system, LightCycler 480. This work was supported by the Promotion of Science (JSPS) KAKENHI (Grant Nos. 23120514, 22380059, and 25120714 to H.F., and 25840109 to T.Y.) and the Japan Science and Technology Agency (JST), Advanced Low Carbon Technology Research and Development Program (ALCA).

Supplementary material

11120_2014_9983_MOESM1_ESM.docx (11 kb)
Supplementary material 1 (DOCX 11 kb)
11120_2014_9983_MOESM2_ESM.pdf (1.7 mb)
Supplementary material 2 (PDF 1705 kb)

References

  1. Berthold P, Schmitt R, Mages W (2002) An engineered Streptomyces hygroscopicus aph 7″ gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153:401–412PubMedCrossRefGoogle Scholar
  2. Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol 137:545–556PubMedCentralPubMedCrossRefGoogle Scholar
  3. Duanmu D, Miller AR, Horken KM, Weeks DP, Spalding MH (2009) Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3 transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 106:5990–5995PubMedCentralPubMedCrossRefGoogle Scholar
  4. Fang W, Si Y, Douglass S, Casero D, Merchant SS, Pellegrini M, Ladunga I, Liu P, Spalding MH (2012) Transcriptome-wide changes in Chlamydomonas reinhardtii gene expression regulated by carbon dioxide and the CO2-concentrating mechanism regulator CIA5/CCM1. Plant Cell 24:1876–1893PubMedCentralPubMedCrossRefGoogle Scholar
  5. Fukuzawa H, Ishizaki K, Miura K, Matsueda S, Matsueda S, Ino-ue T, Kucho K, Ohyama K (1998) Isolation and characterization of high-CO2 requiring mutants from Chlamydomonas reinhardtii by gene tagging. Can J Bot 76:1092–1097Google Scholar
  6. Fukuzawa H, Miura K, Ishizaki K, Kucho KI, Saito T, Kohinata T, Ohyama K (2001) Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Proc Natl Acad Sci USA 98:5347–5352PubMedCentralPubMedCrossRefGoogle Scholar
  7. Im CS, Grossman AR (2002) Identification and regulation of high light-induced genes in Chlamydomonas reinhardtii. Plant J 30:301–313PubMedCrossRefGoogle Scholar
  8. Lin H, Nauman NP, Albee AJ, Hsu S, Dutcher SK (2013) New mutations in flagellar motors identified by whole genome sequencing in Chlamydomonas. Cilia 2:14PubMedCrossRefGoogle Scholar
  9. Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681PubMedCrossRefGoogle Scholar
  10. Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463PubMedCrossRefGoogle Scholar
  11. Lodha M, Schulz-Raffelt M, Schroda M (2008) A new assay for promoter analysis in Chlamydomonas reveals roles for heat shock elements and the TATA box in HSP70A promoter-mediated activation of transgene expression. Eukaryot Cell 7:172–176PubMedCentralPubMedCrossRefGoogle Scholar
  12. Lucker B, Kramer DM (2013) Regulation of cyclic electron flow in Chlamydomonas reinhardtii under fluctuating carbon availability. Photosynth Res 117:449–459PubMedCrossRefGoogle Scholar
  13. Mariscal V, Moulin P, Orsel M, Miller AJ, Fernández E, Galván A (2006) Differential regulation of the Chlamydomonas Nar1 gene family by carbon and nitrogen. Protist 157:421–433PubMedCrossRefGoogle Scholar
  14. Miura K, Yamano T, Yoshioka S, Kohinata T, Inoue Y, Taniguchi F, Asamizu E, Nakamura Y, Tabata S, Yamato KT, Ohyama K, Fukuzawa H (2004) Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas. Plant Physiol 135:1595–1607PubMedCentralPubMedCrossRefGoogle Scholar
  15. Moroney JV, Ynalvez R (2007) Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryot Cell 6:1251–1259PubMedCentralPubMedCrossRefGoogle Scholar
  16. Nakazawa Y, Hiraki M, Kamiya R, Hirono M (2007) SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole. Curr Biol 17:2169–2174PubMedCrossRefGoogle Scholar
  17. Nishimura Y, Shikanai T, Nakamura S, Kawai-Yamada M, Uchimiya H (2012) Gsp1 triggers the sexual developmental program including inheritance of chloroplast DNA and mitochondrial DNA in Chlamydomonas reinhardtii. Plant Cell 24:2401–2414PubMedCentralPubMedCrossRefGoogle Scholar
  18. Ohnishi N, Mukherjee B, Tsujikawa T, Yanase M, Nakano H, Moroney JV, Fukuzawa H (2010) Expression of a low CO2-inducible protein, LCI1, increases inorganic carbon uptake in the green alga Chlamydomonas reinhardtii. Plant Cell 22:3105–3117PubMedCentralPubMedCrossRefGoogle Scholar
  19. Petroutsos D, Busch A, Janssen I, Trompelt K, Bergner SV, Weinl S, Holtkamp M, Karst U, Kudla J, Hippler M (2011) The chloroplast calcium sensor CAS is required for photoacclimation in Chlamydomonas reinhardtii. Plant Cell 23:2950–2963PubMedCentralPubMedCrossRefGoogle Scholar
  20. Prieto R, Pardo JM, Niu X, Bressan RA, Hasegawa PM (1996) Salt-sensitive mutants of Chlamydomonas reinhardtii isolated after insertional tagging. Plant Physiol 112:99–104PubMedCentralPubMedGoogle Scholar
  21. Spalding M (2008) Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters. J Exp Bot 59:1463–1473PubMedCrossRefGoogle Scholar
  22. Terashima M, Petroutsos D, Hüdig M, Tolstygina I, Trompelt K, Gäbelein P, Fufezan C, Kudla J, Weinl S, Finazzi G, Hippler M (2012) Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex. Proc Natl Acad Sci USA 109:17717–17722PubMedCentralPubMedCrossRefGoogle Scholar
  23. von Gromoff ED, Alawady A, Meinecke L, Grimm B, Beck CF (2008) Heme, a plastid-derived regulator of nuclear gene expression in Chlamydomonas. Plant Cell 20:552–567CrossRefGoogle Scholar
  24. Wang Y, Duanmu D, Spalding MH (2011) Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture. Photosynth Res 109:115–122PubMedCrossRefGoogle Scholar
  25. Xiang Y, Zhang J, Weeks DP (2001) The Cia5 gene controls formation of the carbon concentrating mechanism in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 98:5341–5346PubMedCentralPubMedCrossRefGoogle Scholar
  26. Yamano T, Miura K, Fukuzawa H (2008) Expression analysis of genes associated with the induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 147:340–354PubMedCentralPubMedCrossRefGoogle Scholar
  27. Yamano T, Iguchi H, Fukuzawa H (2013) Rapid transformation of Chlamydomonas reinhardtii without cell-wall removal. J Biosci Bioeng 115:691–694PubMedCrossRefGoogle Scholar
  28. Yoshioka S, Taniguchi F, Miura K, Inoue T, Yamano T, Fukuzawa H (2004) The novel Myb transcription factor LCR1 regulates the CO2-responsive gene Cah1, encoding a periplasmic carbonic anhydrase in Chlamydomonas reinhardtii. Plant Cell 16:1466–1477PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Lianyong Wang
    • 1
  • Takashi Yamano
    • 1
  • Masataka Kajikawa
    • 1
  • Masafumi Hirono
    • 2
  • Hideya Fukuzawa
    • 1
    Email author
  1. 1.Graduate School of BiostudiesKyoto UniversityKyotoJapan
  2. 2.Graduate School of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations