Photosynthesis Research

, Volume 123, Issue 3, pp 285–295 | Cite as

Engineering cyanobacteria as photosynthetic feedstock factories

Review

Abstract

Carbohydrate feedstocks are at the root of bioindustrial production and are needed in greater quantities than ever due to increased prioritization of renewable fuels with reduced carbon footprints. Cyanobacteria possess a number of features that make them well suited as an alternative feedstock crop in comparison to traditional terrestrial plant species. Recent advances in genetic engineering, as well as promising preliminary investigations of cyanobacteria in a number of distinct production regimes have illustrated the potential of these aquatic phototrophs as biosynthetic chassis. Further improvements in strain productivities and design, along with enhanced understanding of photosynthetic metabolism in cyanobacteria may pave the way to translate cyanobacterial theoretical potential into realized application.

Keywords

Cyanobacteria Biofuels Carbohydrates Feedstocks 

References

  1. Abbott PC, Hurt C, Tyner WE (2009) What’s driving food prices? March 2009 update. Farm Foundation, Oak BrookGoogle Scholar
  2. Aikens J, Turner RJ (2012) Transgenic photosynthetic microorganisms and photobioreactor. U.S. Patent No. 20,120,301,563Google Scholar
  3. Ananyev G, Carrieri D, Dismukes GC (2008) Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium “Arthrospira (Spirulina) maxima”. Appl Environ Microbiol 74(19):6102–6113. doi:10.1128/aem.01078-08 CrossRefPubMedCentralPubMedGoogle Scholar
  4. Anfelt J, Hallström B, Nielsen JB, Uhlén M, Hudson EP (2013) Using transcriptomics to improve butanol tolerance in Synechocystis sp. PCC 6803. Appl Environ Microbiol 79(23):7419–7427. doi:10.1128/aem.02694-13 CrossRefPubMedCentralPubMedGoogle Scholar
  5. Angermayr SA, Hellingwerf KJ, Lindblad P, de Mattos MJ (2009) Energy biotechnology with cyanobacteria. Curr Opin Biotechnol 20(3):257–263. doi:10.1016/j.copbio.2009.05.011 CrossRefPubMedGoogle Scholar
  6. Aoyama K, Uemura I, Miyake J, Asada Y (1997) Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis. J Ferment Bioeng 83(1):17–20CrossRefGoogle Scholar
  7. Baffes J, Dennis A (2013) Long-term drivers of food prices. World Bank, Washington, DCCrossRefGoogle Scholar
  8. Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, CambridgeGoogle Scholar
  9. Berla BM, Saha R, Immethun CM, Maranas CD, Moon TS, Pakrasi HB (2013) Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol 4:246. doi:10.3389/fmicb.2013.00246 CrossRefPubMedCentralPubMedGoogle Scholar
  10. Bogorad IW, Lin T-S, Liao JC (2013) Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502 (7473):693–697Google Scholar
  11. Bohutskyi P, Bouwer E (2013) Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, pp 873–975CrossRefGoogle Scholar
  12. Carrieri D, Momot D, Brasg IA, Ananyev G, Lenz O, Bryant DA, Dismukes GC (2010) Boosting autofermentation rates and product yields with sodium stress cycling: application to production of renewable fuels by cyanobacteria. Appl Environ Microbiol 76(19):6455–6462CrossRefPubMedCentralPubMedGoogle Scholar
  13. Carrieri D, Paddock T, Maness P-C, Seibert M, Yu J (2012) Photo-catalytic conversion of carbon dioxide to organic acids by a recombinant cyanobacterium incapable of glycogen storage. Energy Environ Sci 5(11):9457–9461CrossRefGoogle Scholar
  14. Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182. doi:10.1146/annurev.arplant.043008.092125 CrossRefPubMedGoogle Scholar
  15. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131CrossRefPubMedGoogle Scholar
  16. Courchesne NM, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141(1–2):31–41. doi:10.1016/j.jbiotec.2009.02.018 CrossRefPubMedGoogle Scholar
  17. Dana GV, Kuiken T, Rejeski D, Snow AA (2012) Synthetic biology: four steps to avoid a synthetic-biology disaster. Nature 483(7387):29CrossRefPubMedGoogle Scholar
  18. Desplats P, Folco E, Salerno GL (2005) Sucrose may play an additional role to that of an osmolyte in Synechocystis sp. PCC 6803 salt-shocked cells. Plant Physiol Biochem 43(2):133–138Google Scholar
  19. Do Nascimento M, MdlA Dublan, Ortiz-Marquez JCF, Curatti L (2013) High lipid productivity of an Ankistrodesmus Rhizobium artificial consortium. Bioresour Technol 146:400–407CrossRefPubMedGoogle Scholar
  20. Du W, Liang F, Duan Y, Tan X, Lu X (2013) Exploring the photosynthetic production capacity of sucrose by cyanobacteria. Metab Eng 19:17–25. doi:10.1016/j.ymben.2013.05.001 CrossRefPubMedGoogle Scholar
  21. Ducat DC, Avelar-Rivas JA, Way JC, Silver PA (2012) Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microbiol 78(8):2660–2668. doi:10.1128/aem.07901-11 CrossRefPubMedCentralPubMedGoogle Scholar
  22. Ellstrand NC (2012) Over a decade of crop transgenes out-of-place. In: Wozniak CA, McHughen A (eds) Regulation of agricultural biotechnology: the United States and Canada. Springer, Dordrecht, pp 123–135CrossRefGoogle Scholar
  23. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238CrossRefPubMedGoogle Scholar
  24. Fisher ML, Allen R, Luo Y, Curtiss R (2013) Export of extracellular polysaccharides modulates adherence of the cyanobacterium Synechocystis. PLoS One 8(9):e74514. doi:10.1371/journal.pone.0074514 CrossRefPubMedCentralPubMedGoogle Scholar
  25. Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N, Zaks D (2008) Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ Res Lett 3(3):034001CrossRefGoogle Scholar
  26. Gressel J, van der Vlugt CJ, Bergmans HE (2013) Environmental risks of large scale cultivation of microalgae: mitigation of spills. Algal Res 2(3):286–298Google Scholar
  27. Gründel M, Scheunemann R, Lockau W, Zilliges Y (2012) Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 158(Pt 12):3032–3043CrossRefPubMedGoogle Scholar
  28. Guerra LT, Xu Y, Bennette N, McNeely K, Bryant DA, Dismukes GC (2013) Natural osmolytes are much less effective substrates than glycogen for catabolic energy production in the marine cyanobacterium Synechococcus sp. strain PCC 7002. J Biotechnol 166:65–75CrossRefPubMedGoogle Scholar
  29. Hickman JW, Kotovic KM, Miller C, Warrener P, Kaiser B, Jurista T, Budde M, Cross F, Roberts JM, Carleton M (2013) Glycogen synthesis is a required component of the nitrogen stress response in Synechococcus elongatus PCC 7942. Algal Res 2(2):98–106CrossRefGoogle Scholar
  30. Huang HH, Lindblad P (2013) Wide-dynamic-range promoters engineered for cyanobacteria. J Biol Eng 7(1):10. doi:10.1186/1754-1611-7-10 CrossRefPubMedCentralPubMedGoogle Scholar
  31. Huang HH, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38(8):2577–2593. doi:10.1093/nar/gkq164 CrossRefPubMedCentralPubMedGoogle Scholar
  32. Jittawuttipoka T, Planchon M, Spalla O, Benzerara K, Guyot F, Cassier-Chauvat C, Chauvat F (2013) Multidisciplinary evidences that Synechocystis PCC6803 exopolysaccharides operate in cell sedimentation and protection against salt and metal stresses. PLoS One 8(2):e55564. doi:10.1371/journal.pone.0055564 CrossRefPubMedCentralPubMedGoogle Scholar
  33. Kanesaki Y, Suzuki I, Allakhverdiev SI, Mikami K, Murata N (2002) Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 290(1):339–348. doi:10.1006/bbrc 2001.6201CrossRefPubMedGoogle Scholar
  34. Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367–379CrossRefPubMedCentralPubMedGoogle Scholar
  35. Klähn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 13(3):551–562. doi:10.1111/j.1462-2920.2010.02366.x CrossRefPubMedGoogle Scholar
  36. Klein‐Marcuschamer D, Blanch HW (2013) Survival of the fittest: an economic perspective on the production of novel biofuels. AIChE Journal 59(12):4454–4460Google Scholar
  37. Klein‐Marcuschamer D, Chisti Y, Benemann JR, Lewis D (2013) A matter of detail: assessing the true potential of microalgal biofuels. Biotechnol Bioeng 110(9):2317–2322Google Scholar
  38. Knoop H, Zilliges Y, Lockau W, Steuer R (2010) The metabolic network of Synechocystis sp. PCC 6803: systemic properties of autotrophic growth. Plant Physiol 154(1):410–422. doi:10.1104/pp.110.157198 CrossRefPubMedCentralPubMedGoogle Scholar
  39. Kusakabe T, Tatsuke T, Tsuruno K, Hirokawa Y, Atsumi S, Liao JC, Hanai T (2013) Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab Eng 20C:101–108. doi:10.1016/j.ymben.2013.09.007 CrossRefGoogle Scholar
  40. Levina N, Tötemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18(7):1730–1737CrossRefPubMedCentralPubMedGoogle Scholar
  41. Machado IM, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162(1):50–56. doi:10.1016/j.jbiotec.2012.03.005 CrossRefPubMedGoogle Scholar
  42. Marin K, Kanesaki Y, Los DA, Murata N, Suzuki I, Hagemann M (2004) Gene expression profiling reflects physiological processes in salt acclimation of Synechocystis sp. strain PCC 6803. Plant Physiol 136(2):3290–3300. doi:10.1104/pp.104.045047 CrossRefPubMedCentralPubMedGoogle Scholar
  43. Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv. doi:10.1016/j.biotechadv.2013.07.011 PubMedGoogle Scholar
  44. McEwen JT, Machado IM, Connor MR, Atsumi S (2013) Engineering Synechococcus elongatus PCC 7942 for continuous growth under diurnal conditions. Appl Environ Microbiol 79(5):1668–1675CrossRefPubMedCentralPubMedGoogle Scholar
  45. McNeely K, Xu Y, Bennette N, Bryant DA, Dismukes GC (2010) Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl Environ Microbiol 76(15):5032–5038CrossRefPubMedCentralPubMedGoogle Scholar
  46. Miao X, Wu Q, Wu G, Zhao N (2003) Sucrose accumulation in salt-stressed cells of agp gene deletion-mutant in cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 218(1):71–77CrossRefPubMedGoogle Scholar
  47. Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515CrossRefPubMedGoogle Scholar
  48. Montagud A, Navarro E, Fernández de Córdoba P, Urchueguía JF, Patil KR (2010) Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium. BMC Syst Biol 4:156. doi:10.1186/1752-0509-4-156 CrossRefPubMedCentralPubMedGoogle Scholar
  49. Nakahira Y, Ogawa A, Asano H, Oyama T, Tozawa Y (2013) Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in cyanobacterium Synechococcus elongatus PCC 7942. Plant Cell Physiol 54(10):1724–1735CrossRefPubMedGoogle Scholar
  50. Niederholtmeyer H, Wolfstädter BT, Savage DF, Silver PA, Way JC (2010) Engineering cyanobacteria to synthesize and export hydrophilic products. Appl Environ Microbiol 76(11):3462–3466. doi:10.1128/aem.00202-10 CrossRefPubMedCentralPubMedGoogle Scholar
  51. Nitschmann WH, Packer L (1992) NMR studies on Na+ transport in Synechococcus PCC 6311. Arch Biochem Biophys 294(2):347–352CrossRefPubMedGoogle Scholar
  52. Olguín EJ (2012) Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv 30(5):1031–1046. doi:10.1016/j.biotechadv.2012.05.001 CrossRefPubMedGoogle Scholar
  53. Oliver JW, Machado IM, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci USA 110(4):1249–1254. doi:10.1073/pnas.1213024110 CrossRefPubMedCentralPubMedGoogle Scholar
  54. Ortiz-Marquez JCF, Do Nascimento M, de los Angeles Dublan M, Curatti L (2012) Association with an ammonium-excreting bacterium allows diazotrophic culture of oil-rich eukaryotic microalgae. Appl Environ Microbiol 78(7):2345–2352CrossRefPubMedCentralPubMedGoogle Scholar
  55. Oye KA, Wellhausen R (2010) The intellectual commons and property in synthetic biology. In: de Vrient H, Schmidt M, Kelle A, Ganguli-Mitra (eds) Synthetic biology. Springer, Berlin, pp 121–140Google Scholar
  56. Paithoonrangsarid K, Shoumskaya MA, Kanesaki Y, Satoh S, Tabata S, Los DA, Zinchenko VV, Hayashi H, Tanticharoen M, Suzuki I (2004) Five histidine kinases perceive osmotic stress and regulate distinct sets of genes in Synechocystis. J Biol Chem 279(51):53078–53086Google Scholar
  57. Patzek TW (2006) A statistical analysis of the theoretical yield of ethanol from corn starch. Nat Resour Res 15(3):205–212Google Scholar
  58. Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58(4):755–805PubMedCentralPubMedGoogle Scholar
  59. Preiss J (1984) Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol 38:419–458. doi:10.1146/annurev.mi.38.100184.002223 CrossRefPubMedGoogle Scholar
  60. Rajeshwari KR, Rajashekhar M (2011) Biochemical composition of seven species of cyanobacteria isolated from different aquatic habits of Western Ghats, southern India. Braz Arch Biol Technol 54(5):849–857CrossRefGoogle Scholar
  61. Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88(10):3411–3424CrossRefGoogle Scholar
  62. Reed RH, Warr SR, Kerby NW, Stewart WD (1986) Osmotic shock-induced release of low molecular weight metabolites from free-living and immobilized cyanobacteria. Enzym. Microb. Technol. 8(2):101–104CrossRefGoogle Scholar
  63. Robertson DE, Jacobson SA, Morgan F, Berry D, Church GM, Afeyan NB (2011) A new dawn for industrial photosynthesis. Photosynth Res 107(3):269–277. doi:10.1007/s11120-011-9631-7 CrossRefPubMedCentralPubMedGoogle Scholar
  64. Ruffing AM (2013) RNA-Seq analysis and targeted mutagenesis for improved free fatty acid production in an engineered cyanobacterium. Biotechnol Biofuels 6(1):113. doi:10.1186/1754-6834-6-113 CrossRefPubMedCentralPubMedGoogle Scholar
  65. Schoor A, Hagemann M, Erdmann N (1999) Glucosylglycerol-phosphate synthase: target for ion-mediated regulation of osmolyte synthesis in the cyanobacterium Synechocystis sp. strain PCC 6803. Arch Microbiol 171(2):101–106CrossRefPubMedGoogle Scholar
  66. Schwarz R, Forchhammer K (2005) Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. Microbiology 151(Pt 8):2503–2514. doi:10.1099/mic.0.27883-0 CrossRefPubMedGoogle Scholar
  67. Shapouri H, Duffield JA, Wang MQ (2002) The energy balance of corn ethanol: an update. United States Department of Agriculture, Economic Research ServiceGoogle Scholar
  68. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s Aquatic Species Program: biodiesel from algae, vol. 328. National Renewable Energy Laboratory, GoldenCrossRefGoogle Scholar
  69. Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, Tandeau de Marsac N, Rippka R, Herdman M, Sivonen K, Coursin T, Laurent T, Goodwin L, Nolan M, Davenport KW, Han CS, Rubin EM, Eisen JA, Woyke T, Gugger M, Kerfeld CA (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci USA 110(3):1053–1058. doi:10.1073/pnas.1217107110 CrossRefPubMedCentralPubMedGoogle Scholar
  70. Shoumskaya MA, Paithoonrangsarid K, Kanesaki Y, Los DA, Zinchenko VV, Tanticharoen M, Suzuki I, Murata N (2005) Identical Hik-Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in Synechocystis. J Biol Chem 280(22):21531–21538Google Scholar
  71. Simkovsky R, Daniels EF, Tang K, Huynh SC, Golden SS, Brahamsha B (2012) Impairment of O-antigen production confers resistance to grazing in a model amoeba–cyanobacterium predator–prey system. Proc Natl Acad Sci USA 109(41):16678–16683CrossRefPubMedCentralPubMedGoogle Scholar
  72. Steuer R, Knoop H, Machné R (2012) Modelling cyanobacteria: from metabolism to integrative models of phototrophic growth. J Exp Bot 63(6):2259–2274. doi:10.1093/jxb/ers018 CrossRefPubMedGoogle Scholar
  73. Suzuki E, Ohkawa H, Moriya K, Matsubara T, Nagaike Y, Iwasaki I, Fujiwara S, Tsuzuki M, Nakamura Y (2010) Carbohydrate metabolism in mutants of the cyanobacterium Synechococcus elongatus PCC 7942 defective in glycogen synthesis. Appl Environ Microbiol 76(10):3153–3159CrossRefPubMedCentralPubMedGoogle Scholar
  74. Taton A, Lis E, Adin DM, Dong G, Cookson S, Kay SA, Golden SS, Golden JW (2012) Gene transfer in Leptolyngbya sp. strain BL0902, a cyanobacterium suitable for production of biomass and bioproducts. PLoS One 7(1):e30901CrossRefPubMedCentralPubMedGoogle Scholar
  75. Ungerer J, Tao L, Davis M, Ghirardi M, Maness P-C, Yu J (2012) Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803. Energy Environ Sci 5(10):8998–9006CrossRefGoogle Scholar
  76. Wallington TJ, Anderson JE, Mueller SA, Kolinski Morris E, Winkler SL, Ginder JM, Nielsen OJ (2012) Corn ethanol production, food exports, and indirect land use change. Environ Sci Technol 46(11):6379–6384. doi:10.1021/es300233m CrossRefPubMedGoogle Scholar
  77. Wang J, Chen L, Huang S, Liu J, Ren X, Tian X, Qiao J, Zhang W (2012) RNA-seq based identification and mutant validation of gene targets related to ethanol resistance in cyanobacterial Synechocystis sp. PCC 6803. Biotechnol Biofuels 5(1):89. doi:10.1186/1754-6834-5-89 CrossRefPubMedCentralPubMedGoogle Scholar
  78. Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CN, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335(6066):308–313. doi:10.1126/science.1214547 CrossRefPubMedGoogle Scholar
  79. Warr S, Reed R, Chudek J, Foster R, Stewart W (1985) Osmotic adjustment in Spirulina platensis. Planta 163(3):424–429CrossRefPubMedGoogle Scholar
  80. Weise SE, van Wijk KJ, Sharkey TD (2011) The role of transitory starch in C3, CAM, and C4 metabolism and opportunities for engineering leaf starch accumulation. J Exp Bot 62(9):3109–3118CrossRefPubMedGoogle Scholar
  81. Wicke B, Sikkema R, Dornburg V, Faaij A (2011) Exploring land use changes and the role of palm oil production in Indonesia and Malaysia. Land Use Policy 28(1):193–206CrossRefGoogle Scholar
  82. Wijffels RH, Barbosa MJ, Eppink MH (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Biorefin 4(3):287–295CrossRefGoogle Scholar
  83. Wilkie AC, Evans JM (2010) Aquatic plants: an opportunity feedstock in the age of bioenergy. Biofuels 1(2):311–321CrossRefGoogle Scholar
  84. Williams PR, Inman D, Aden A, Heath GA (2009) Environmental and sustainability factors associated with next-generation biofuels in the U.S.: what do we really know? Environ Sci Technol 43(13):4763–4775CrossRefPubMedGoogle Scholar
  85. Wood JM (2011) Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annu Rev Microbiol 65:215–238CrossRefPubMedGoogle Scholar
  86. Xu Y, Tiago Guerra L, Li Z, Ludwig M, Charles Dismukes G, Bryant DA (2012) Altered carbohydrate metabolism in glycogen synthase mutants of Synechococcus sp. strain PCC 7002: Cell factories for soluble sugars. Metabolic engineering 16:56–67CrossRefPubMedGoogle Scholar
  87. Xuan YH, Hu YB, Chen L-Q, Sosso D, Ducat DC, Hou B-H, Frommer WB (2013) Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proc Natl Acad Sci USA 110(39):E3685–E3694CrossRefPubMedCentralPubMedGoogle Scholar
  88. Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102(2):1149–1158. doi:10.1016/j.biortech.2010.09.017 CrossRefPubMedGoogle Scholar
  89. Zhang S, Bryant DA (2011) The tricarboxylic acid cycle in cyanobacteria. Science 334(6062):1551–1553CrossRefPubMedGoogle Scholar
  90. Zhu H, Ren X, Wang J, Song Z, Shi M, Qiao J, Tian X, Liu J, Chen L, Zhang W (2013) Integrated OMICS guided engineering of biofuel butanol-tolerance in photosynthetic Synechocystis sp. PCC 6803. Biotechnol Biofuels 6(1):106. doi:10.1186/1754-6834-6-106 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Systems BiologyHarvard Medical SchoolBostonUSA
  2. 2.Plant Research Laboratories and Department of Biochemistry and Molecular BiologyMichigan State UniversityLansingUSA

Personalised recommendations