Photosynthesis Research

, Volume 120, Issue 3, pp 273–289 | Cite as

Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria

  • Takatoshi Fujita
  • Joonsuk Huh
  • Semion K. Saikin
  • Jennifer C. Brookes
  • Alán Aspuru-Guzik
Regular Paper


We present a theoretical study of excitation dynamics in the chlorosome antenna complex of green photosynthetic bacteria based on a recently proposed model for the molecular assembly. Our model for the excitation energy transfer (EET) throughout the antenna combines a stochastic time propagation of the excitonic wave function with molecular dynamics simulations of the supramolecular structure and electronic structure calculations of the excited states. We characterized the optical properties of the chlorosome with absorption, circular dichroism and fluorescence polarization anisotropy decay spectra. The simulation results for the excitation dynamics reveal a detailed picture of the EET in the chlorosome. Coherent energy transfer is significant only for the first 50 fs after the initial excitation, and the wavelike motion of the exciton is completely damped at 100 fs. Characteristic time constants of incoherent energy transfer, subsequently, vary from 1 ps to several tens of ps. We assign the time scales of the EET to specific physical processes by comparing our results with the data obtained from time-resolved spectroscopy experiments.


Excitation energy transfer Chlorosome Exciton diffusion Exciton–vibration coupling Light-harvesting antenna system Green sulfur bacteria 


  1. Aghtar M, Liebers J, Strümpfer J, Schulten K, Kleinekathöfer U (2012) Juxtaposing density matrix and classical path-based wave packet dynamics. J Chem Phys 136(21):214101PubMedCentralPubMedCrossRefGoogle Scholar
  2. Anderson PW (1954) A mathematical model for the narrowing of spectral lines by exchange or motion. J Phys Soc Jpn 9:316–339CrossRefGoogle Scholar
  3. Balaban TS (2005) Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems. Acc Chem Res 38(8):612–623PubMedCrossRefGoogle Scholar
  4. Becke AD (1993) Density-functional thermochemistry. iii. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  5. Berkelbach TC, Markland TE, Reichman DR (2012) Reduced density matrix hybrid approach: application to electronic energy transfer. J Chem Phys 136(8):084104PubMedCrossRefGoogle Scholar
  6. Blankenship RE, Olson JM, Miller M (2004) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan M, Bauer CE (eds) Anoxygenic photosynthetic bacteria, Springer, Netherlands, pp 399–435CrossRefGoogle Scholar
  7. Borrego C, Gerola P, Miller M, Cox R (1999) Light intensity effects on pigment composition and organisation in the green sulfur bacterium Chlorobium tepidum. Photosynt Res 59:159–166CrossRefGoogle Scholar
  8. Bradforth SE, Jimenez R, van Mourik F, van Grondelle R, Fleming GR (1995) Excitation transfer in the core light-harvesting complex (lh-1) of rhodobacter sphaeroides: an ultrafast fluorescence depolarization and annihilation study. J Phys Chem 99:16179–16191CrossRefGoogle Scholar
  9. Breuer HP, Petruccione F (2002) The theory of open quantum systems. Oxford University Press, New YorkGoogle Scholar
  10. Causgrove T, Brune D, Wang J, Wittmershaus B, Blankenship R (1990) Energy transfer kinetics in whole cells and isolated chlorosomes of green photosynthetic bacteria. Photosynth Res 26:39–48PubMedGoogle Scholar
  11. Chai JD, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084,106CrossRefGoogle Scholar
  12. Chen X, Silbey RJ (2011) Excitation energy transfer in a non-markovian dynamical disordered environment: localization, narrowing, and transfer efficiency. J Phys Chem B 115(18):5499–5509. doi:10.1021/jp111068w PubMedCrossRefGoogle Scholar
  13. Collini E, Scholes GD (2009) Electronic and vibrational coherences in resonance energy transfer along meh-ppv chains at room temperature. J Phys Chem A 113:4223–4241PubMedCrossRefGoogle Scholar
  14. Damjanovíc A, Kosztin I, Kleinekathöfer U, Schulten K (2002) Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry and polaron model study. Phys Rev E 65:031,919CrossRefGoogle Scholar
  15. Donehue JD, Varnavski OP, Cemborski R, Iyoda M, Goodson T (2011) Probing coherence in synthetic cyclic light-harvesting pigments. J Am Chem Soc 133:4819–4828PubMedCrossRefGoogle Scholar
  16. Dostál J, Mančal T, Augulis Rn, Vácha F, Pšenčík J, Zigmantas D (2012) Two-dimensional electronic spectroscopy reveals ultrafast energy diffusion in chlorosomes. J Am Chem Soc 134(28):11611–11617PubMedCrossRefGoogle Scholar
  17. Eisele DM, Cone CW, Bloemsma EA, Vlaming SM, van der Kwaak CGF, Silbey RJ, Bawendi MG, Knoester J, Rabe JP, Bout DAV (2012) Utilizing redox-chemistry to elucidate the nature of exciton transitions in supramolecular dye nanotubes. Nat Chem 4:655–662PubMedCrossRefGoogle Scholar
  18. Ern V, Suna A, Tomkiewicz Y, Avakian P, Groff RP (1972) Temperature dependence of triplet-exciton dynamics in anthracene crystals. Phys Rev B 5:3222–3234CrossRefGoogle Scholar
  19. Fetisova ZG, Mauring K, Taisova AS (1994) Strongly exciton-coupled bchl e chromophore system in the chlorosomal antenna of intact cells of the green bacterium Chlorobium phaeovibrioides: a spectral hole burning study. Photosyn Res 41:205–210PubMedCrossRefGoogle Scholar
  20. Freiberg A, Rätsep M, Timpmann K, Trinkunas G (2009) Excitonic polarons in quasi-one-dimensional lh1 and lh2 bacteriochlorophyll a antenna aggregates from photosynthetic bacteria: a wavelength-dependent selective spectroscopy study. Chem Phys 357:102–112CrossRefGoogle Scholar
  21. Fujita T, Brookes JC, Saikin SK, Aspuru-Guzik A (2012) Memory-assisted exciton diffusion in the chlorosome light-harvesting antenna of green sulfur bacteria. J Phys Chem Lett 3:2357–2361CrossRefGoogle Scholar
  22. Furumaki S, Vacha F, Habuchi S, Tsukatani Y, Bryant DA, Vacha M (2011) Absorption linear dichroism measured directly on a single light-harvesting system: the role of disorder in chlorosomes of green photosynthetic bacteria. J Am Chem Soc 133(17):6703–6710PubMedCrossRefGoogle Scholar
  23. Furumaki S, Yabiku Y, Habuchi S, Tsukatani Y, Bryant DA, Vacha M (2012) Circular dichroism measured on single chlorosomal light-harvesting complexes of green photosynthetic bacteria. J Phys Chem Lett 3(23):3545–3549CrossRefGoogle Scholar
  24. Ganapathy S, Oostergetel GT, Wawrzyniak PK, Reus M, Gomez Maqueo Chew A, Buda F, Boekema EJ, Bryant DA, Holzwarth AR, de Groot HJM (2009) Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes. Proc Natl Acad Sci USA 106:8525–8530PubMedCentralPubMedCrossRefGoogle Scholar
  25. Ganapathy S, Oostergetel GT, Reus M, Tsukatani Y, Gomez Maqueo Chew A, Buda F, Bryant DA, Holzwarth AR, de Groot HJM (2012) Structural variability in wild-type and bchq bchr mutant chlorosomes of the green sulfur bacterium chlorobaculum tepidum. Biochemistry 51(22):4488–4498PubMedCrossRefGoogle Scholar
  26. Gomez Maqueo Chew A, Frigaard NU, Bryant DA (2007) Bacteriochlorophyllide c c-82 and c-121 methyltransferases are essential for adaptation to low light in chlorobaculum tepidum. J Bacteriol 189:6176–6184PubMedCrossRefGoogle Scholar
  27. Goodson T (2005) Optical excitations in organic dendrimers investigated by time-resolved and nonlinear optical spectroscopy. Acc Chem Res 38:99–107PubMedCrossRefGoogle Scholar
  28. Haken H, Reineker P (1973) The coupled coherent and incoherent motion of excitons and its influence on the line shape of optical absorption. Z Phys 249:253–268CrossRefGoogle Scholar
  29. Haken H, Strobl G (1973) Exactly solvable model for coherent and incoherent exciton motion. Z Phys 262:135–148CrossRefGoogle Scholar
  30. Hasegawa J, Ozeki Y, Ohkawa K, Hada M, Nakatsuji H (1998) Theoretical study of the excited states of chlorin, bacteriochlorin, pheophytin a, and chlorophyll a by the sac/sac-ci method. J Phys Chem B 102(7):1320–1326CrossRefGoogle Scholar
  31. Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548PubMedCrossRefGoogle Scholar
  32. Hohmann-Marriott M, Blankenship R, Roberson R (2005) The ultrastructure of chlorobium tepidum chlorosomes revealed by electron microscopy. Photosynth Res 86:145–154PubMedCrossRefGoogle Scholar
  33. Huster MS, Smith KM (1990) Biosynthetic studies of substituent homologation in bacteriochlorophylls c and d. Biochemistry 29(18):4348–4355PubMedCrossRefGoogle Scholar
  34. Ishizaki A, Fleming GR (2011) On the interpretation of quantum coherent beats observed in two-dimensional electronic spectra of photosynthetic light harvesting complexes. J Phys Chem B 115:6227–6233PubMedCrossRefGoogle Scholar
  35. Ishizaki A, Calhoun TR, Schau-Cohen GS, Fleming GR (2010) Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys Chem Chem Phys 12:7319–7337PubMedCrossRefGoogle Scholar
  36. Kolli A, Nazir A, Olaya-Castro A (2011) Electronic excitation dynamics in multichromophoric systems described via a polaron-representation master equation. J Chem Phys 135(15):154112PubMedCrossRefGoogle Scholar
  37. Krueger BP, Scholes GD, Fleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of lh2 by the ab initio transition density cube method. J Phys Chem B 102(27):5378–5386CrossRefGoogle Scholar
  38. Kubo R (1954) Note on the stochastic theory of resonance absorption. J Phys Soc Jpn 9:935–944CrossRefGoogle Scholar
  39. Lee CT, Yang WT, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  40. Linnanto J, Korppi-Tommola J (2006) Quantum chemical simulation of excited states of chlorophylls, bacteriochlorophylls and their complexes. Phys Chem Chem Phys 8:663–687PubMedCrossRefGoogle Scholar
  41. Linnanto J, Korppi-Tommola J (2008) Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates. Photosynt Res 96:227–245CrossRefGoogle Scholar
  42. Linnanto JM, Korppi-Tommola JEI (2013) Exciton description of chlorosome to baseplate excitation energy transfer in filamentous anoxygenic phototrophs and green sulfur bacteria. J Phys Chem B 117(38):11144–11161. doi:10.1021/jp4011394 PubMedCrossRefGoogle Scholar
  43. Madjet ME, Abdurahman A, Renger T (2006) Intermolecular coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers. J Phys Chem B 110(34):17268–17281PubMedCrossRefGoogle Scholar
  44. Martiskainen J, Linnanto J, Kananavičius R, Lehtovuori V, Korppi-Tommola J (2009) Excitation energy transfer in isolated chlorosomes from chloroflexus aurantiacus. Chem Phys Lett 477:216–220CrossRefGoogle Scholar
  45. Martiskainen J, Linnanto J, Aumanen V, Myllyperkiö P, Korppi-Tommola J (2012) Excitation energy transfer in isolated chlorosomes from chlorobaculum tepidum and prosthecochloris aestuarii. Photochem Photobiol 88:675–683PubMedCrossRefGoogle Scholar
  46. May V, Kühn O (2011) Charge and energy transfer dynamics in molecular systems, 3rd edn. Wiley, BerlinCrossRefGoogle Scholar
  47. Meier T, Zhao Y, Chernyak V, Mukamel S (1997) Polarons, localization, and excitonic coherence in superradiance of biological antenna complexes. J Chem Phys 107:3876–3893CrossRefGoogle Scholar
  48. Miyatake T, Tamiaki H (2010) Self-aggregates of natural chlorophylls and their synthetic analogues in aqueous media for making light-harvesting systems. Coord Chem Rev 254:2593–2602CrossRefGoogle Scholar
  49. Mochizuki Y, Koikegami S, Amari S, Segawa K, Kitaura K, Nakano T (2005) Configuration interaction singles method with multilayer fragment molecular orbital scheme. Chem Phys Lett 406:283–288CrossRefGoogle Scholar
  50. Nakano T, Kaminuma T, Sato T, Akiyama Y, Uebayasi M, Kitaura K (2002) Fragment molecular orbital method: use of approximate electrostatic potential. Chem Phys Lett 351:475–480CrossRefGoogle Scholar
  51. Niedzwiedzki D, Blankenship R (2010) Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls. Photosynth Res 106:227–238PubMedCrossRefGoogle Scholar
  52. Okiyama Y, Watanabe H, Fukuzawa K, Nakano T, Mochizuki Y, Ishikawa T, Ebina K, Tanaka S (2009) Application of the fragment molecular orbital method for determination of atomic charges on polypeptides. ii. towards an improvement of force fields used for classical molecular dynamics simulations. Chem Phys Lett 467:417–423CrossRefGoogle Scholar
  53. Olbrich C, Kleinekathöfer U (2010) Time-dependent atomistic view on the electronic relaxation in light-harvesting system ii. J Phys Chem B 114(38):12,427–12,437CrossRefGoogle Scholar
  54. Olbrich C, Jansen THC, Liebers J, Aghtar M, Strümpfer J, Schulten K, Knoester J, Kleinekathöfer U (2011a) J Phys Chem B 115:8609–8621PubMedCentralPubMedCrossRefGoogle Scholar
  55. Olbrich C, Strümpfer J, Schulten K, Kleinekathöfer U (2011b) Theory and simulation of the environmental effects on fmo electronic transitions. J Phys Chem Lett 2(14):1771–1776CrossRefGoogle Scholar
  56. Olson JM (1998) Chlorophyll organization and function in green photosynthetic bacteria. Photochem Photobiol 67:61–75CrossRefGoogle Scholar
  57. Olson J (2004) The fmo protein. Photosynth Res 80:181–187PubMedCrossRefGoogle Scholar
  58. Oostergetel GT, Reus M, Chew AGM, Bryant DA, Boekema EJ, Holzwarth AR (2007) Long-range organization of bacteriochlorophyll in chlorosomes of chlorobium tepidum investigated by cryo-electron microscopy. FEBS Lett 581:5435–5439PubMedCrossRefGoogle Scholar
  59. Oostergetel GT, van Amerongen H, Boekema EJ (2010) The chlorosome: a prototype for efficient light harvesting in photosynthesis. Photosynth Res 104:245–255PubMedCentralPubMedCrossRefGoogle Scholar
  60. Orf GS, Blankenship RE (2013) Chlorosome antenna complexes from green photosynthetic bacteria. Photosynth Res 116:315–331. doi:10.1007/s11120-013-9869-3 PubMedCrossRefGoogle Scholar
  61. Overmann J, Garcia-Pichel F (2006) The phototrophic way of life. In: Rosenberg E, Stackebrandt E, Thompson F, Lory S, DeLong EF (eds) Prokaryotes, vol 2, 3rd edn., Springer, New York, pp 32–85CrossRefGoogle Scholar
  62. Parkhill JA, Tempel DG, Aspuru-Guzik A (2012) Exciton coherence lifetimes from electronic structure. J Chem Phys 136:104,510CrossRefGoogle Scholar
  63. Parusel ABJ, Grimme S (2000) A theoretical study of the excited states of chlorophyll a and pheophytin a. J Phys Chem B 104(22):5395–5398CrossRefGoogle Scholar
  64. Pedersen MO, Linnanto J, Frigaard NU, Nielsen NC, Miller M (2010) A model of the protein-pigment baseplate complex in chlorosomes of photosynthetic green bacteria. Photosynth Res 104:233–243PubMedCrossRefGoogle Scholar
  65. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with namd. J Comp Chem 26:1781–1802CrossRefGoogle Scholar
  66. Prokhorenko VI, DB Steensgaard DB, Holzwarth AR (2000) Exciton dynamics in the chlorosomal antennae of the green bacteria chloroflexus aurantiacus and Chlorobium tepidum. Biophys J 79:2105–2120PubMedCentralPubMedCrossRefGoogle Scholar
  67. Prokhorenko VI, Holzwarth AR, Müller MG, Schaffner K, Miyatake T, Tamiaki H (2002) Energy transfer in supramolecular artificial antennae units of synthetic zinc chlorins and co-aggregated energy traps. A time-resolved fluorescence study. J Phys Chem B 106(22):5761–5768CrossRefGoogle Scholar
  68. Pšenčík J, Polívka T, Němec P, Dian J, Kudrna J, Malý P, Hála J (1998) Fast energy transfer and exciton dynamics in chlorosomes of the green sulfur bacterium chlorobium tepidum. J Phys Chem A 102(23):4392–4398CrossRefGoogle Scholar
  69. Pšenčík J, Ma YZ, Arellano J, Garcia-Gil J, Holzwarth A, Gillbro T (2002) Excitation energy transfer in chlorosomes of chlorobium phaeobacteroides strain cl1401: the role of carotenoids. Photosynth Res 71:5–18PubMedCrossRefGoogle Scholar
  70. Pšenčík J, Ma YZ, Arellano JB, Halá J, Gillbro T (2003) Excitation energy transfer dynamics and excited-state structure in chlorosomes of chlorobium phaeobacteroides. Biophys J 84:1161–1179PubMedCentralPubMedCrossRefGoogle Scholar
  71. Pšenčík J, Ikonen TP, Laurinmäki P, Merckel MC, Butcher SJ, Serimaa RE, Tuma R (2004) Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Biophys J 87(2):1165–1172PubMedCentralPubMedCrossRefGoogle Scholar
  72. Rätsep M, Freiberg A (2007) Electron-phonon and vibronic couplings in the fmo bacteriochlorophyll a antenna complex studied by difference fluorescence line narrowing. J Lumin 127:251–259CrossRefGoogle Scholar
  73. Röger C, Miloslavina Y, Brunner D, Holzwarth AR, Würthner F (2008) Self-assembled zinc chlorin rod antennae powered by peripheral light-harvesting chromophores. J Am Chem Soc 130(18):5929–5939PubMedCrossRefGoogle Scholar
  74. Saga Y, Wazawa T, Mizoguchi T, Ishii Y, Yanagida T, Tamiaki H (2002) Spectral heterogeneity in single light-harvesting chlorosomes from green sulfur photosynthetic bacterium Chlorobium tepidum. Photochem Photobiol 75:433–436PubMedCrossRefGoogle Scholar
  75. Saga Y, Harada J, Hattori H, Kaihara K, Hirai Y, Oh-oka H, Tamiaki H (2008) Spectroscopic properties and bacteriochlorophyll c isomer composition of extramembranous light-harvesting complexes in the green sulfur photosynthetic bacterium chlorobium tepidum and its ct0388-deleted mutant under vitamin b12-limited conditions. Photochem Photobiol Sci 7:1210–1215PubMedCrossRefGoogle Scholar
  76. Sarovar M, Ishizaki A, Fleming GR, Whaley KB (2010) Quantum entanglement in photosynthetic light-harvesting complexes. Nat Phys 6:462–467CrossRefGoogle Scholar
  77. Savikhin S, Zhu Y, Lin S, Blankenship RE, Struve WS (1994) Femtosecond spectroscopy of chlorosome antennas from the green photosynthetic bacterium chloroflexus aurantiacus. J Phys Chem 98(40):10,322–10,334CrossRefGoogle Scholar
  78. Savikhin S, van Noort PI, Zhu Y, Lin S, Blankenship RE, Struve WS (1995) Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum. Chem Phy 194:245–258CrossRefGoogle Scholar
  79. Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert AT, Slipchenko LV, Levchenko SV, O’Neill DP, DiStasio RA Jr, Lochan RC, Wang T, Beran GJ, Besley NA, Herbert JM, Yeh Lin C, Van Voorhis T, Hung Chien S, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen RJ, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu CP, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang W, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA, Min Rhee Y, Ritchie J, Rosta E, David Sherrill C, Simmonett AC, Subotnik JE, LeeWoodcock H III, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF III, Kong J, Krylov AI, Gill PMW, Head-Gordon M (2006) Advances in methods and algorithms in a modern quantum chemistry program package. Phys Chem Chem Phys 8:3172–3191PubMedCrossRefGoogle Scholar
  80. Shibata Y, Saga Y, Tamiaki H, Itoh S (2006) Low-temperature fluorescence from single chlorosomes, photosynthetic antenna complexes of green filamentous and sulfur bacteria. Biophys J 91:3787–3796PubMedCentralPubMedCrossRefGoogle Scholar
  81. Shim S, Rebentrost P, Valleau S, Aspuru-Guzik A (2012) Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex. Biophys J 102:649–660PubMedCentralPubMedCrossRefGoogle Scholar
  82. Song J, Gao F, Liang W (2011) How does the nonlocal hf exchange influence the electron excitation of bacteriochlorophyll and its assembly. Comput Theor Chem 965(1):53–59CrossRefGoogle Scholar
  83. Staehelin LA, Golecki JR, Fuller RC, Drews G (1978) Visualization of the supramolecular architecture of chlorosomes (chlorobium type vesicles) in freeze-fractured cells of chloroflexus aurantiacus. Arch Microbiol 119:269–277CrossRefGoogle Scholar
  84. Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K (2007) Accelerating molecular modeling applications with graphics processors. J Comp Chem 28:2618–2640CrossRefGoogle Scholar
  85. Tang JKH, Saikin SK, Pingali SV, Enriquez MM, Huh J, Frank HA, Urban VS, Aspuru-Guzik A (2013) Temperature and carbon assimilation regulate the chlorosome biogenesis in green sulfur bacteria. Biophys J 105(6):1346–1356PubMedCrossRefGoogle Scholar
  86. Tian Y, Camacho R, Thomsson D, Reus M, Holzwarth AR, Scheblykin IG (2011) Organization of bacteriochlorophylls in individual chlorosomes from chlorobaculum tepidum studied by 2-dimensional polarization fluorescence microscopy. J Am Chem Soc 133(43):17192–17199PubMedCrossRefGoogle Scholar
  87. Timpmann K, Rätsep M, Hunter CN, Freiberg A (2004) Emitting excitonic polaron states in core lh1 and peripheral lh2 bacterial light-harvesting complexes. J Phys Chem B 108(29):10581–10588CrossRefGoogle Scholar
  88. Valleau S, Eisfeld A, Aspuru-Guzik A (2012) On the alternatives for bath correlators and spectral densities from mixed quantum-classical simulations. J Chem Phys 137(22):224103PubMedCrossRefGoogle Scholar
  89. Van Kampen NG (2007) Stochastic processes in physics and chemistry. Elsevier, North-Holland personal libraryGoogle Scholar
  90. Wang J, Wolf RM, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174PubMedCrossRefGoogle Scholar
  91. Yamazaki I, Akimoto S, Yamazaki T, S Sato YS (2002) Oscillatory excitation transfer in dithiaanthracenophane: quantum beat in a coherent photochemical process in solution. J Phys Chem A 106:2122–2128CrossRefGoogle Scholar
  92. Zare R (1988) Angular momentum. Wiley-Interscience, New YorkGoogle Scholar
  93. Zhu F, Galli C, Hochstrasser RM (1993) The real-time intramolecular electronic excitation transfer dynamics of 9’,9-bifluorene and 2’,2-binaphthyl in solution. J Chem Phys 98Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Takatoshi Fujita
    • 1
  • Joonsuk Huh
    • 1
  • Semion K. Saikin
    • 1
  • Jennifer C. Brookes
    • 2
  • Alán Aspuru-Guzik
    • 1
  1. 1.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUSA
  2. 2.Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations