Photosynthesis Research

, Volume 121, Issue 2–3, pp 235–249 | Cite as

Localization of putative carbonic anhydrases in the marine diatom, Thalassiosira pseudonana

  • Mio Samukawa
  • Chen Shen
  • Brian M. Hopkinson
  • Yusuke MatsudaEmail author
Regular Paper


Thirteen putative carbonic anhydrase (CA) genes have been identified in the marine multipolar centric diatom, Thalassiosira pseudonana, and two of these CAs have been localized previously. The first, an alpha CA (TpαCA1), was localized in the chloroplast stroma; the second, a zeta-type CA (TpζCA1), was localized to the periplasmic space. In the present study, cloning and localization of the remaining CAs were carried out. TpγCA2, TpγCA3, TpγCA4, TpγCA5, TpδCA1, TpδCA2, TpδCA3, and TpζCA1 were responsive to CO2 availability at the transcriptional level, being significantly reduced in cells grown at 0.4 % CO2, whereas TpαCA1, TpαCA2, TpαCA3, TpγCA1, and TpδCA4 transcript levels were constitutive with respect to CO2 concentration. Full-length cDNAs for TpγCA1, TpγCA2, TpγCA3, TpγCA4, TpδCA1, and TpδCA2 were isolated and fused with the enhanced-green fluorescent gene at their 3′ termini. These GFP-fusion constructs were transformed into T. pseudonana, and the resulting GFP fusion products were localized using fluorescence microscopy. The δ-type TpδCA1 was localized on the periphery of the cell, strongly suggesting localization to the periplasmic space or the frustule. The δ-type TpδCA3 and the γ-type TpγCA2 were, respectively, localized in a periplastidal compartment and the cytosol. The δ-type TpδCA2, and the γ-types TpγCA1, 3, and 4 were localized in the mitochondria. The distribution of CAs in T. pseudonana contrasts notably with that of the raphid pennate diatom P. tricornutum, with likely consequences for CCM function including modes of CO2 acquisition, regions in which DIC is accumulated, and needs for minimizing CO2 leakage from the chloroplast.


Marine diatom Carbonic anhydrase CO2 concentrating mechanism CCM 



Ribulose-1,5-bisphosphate carboxylase/oxygenase


Carbonic anhydrase


Chloroplast endoplasmic reticulum


Periplastidal compartment


Blob-like structure


Chloroplast envelope


CO2 concentrating mechanism


Dissolved-inorganic carbon







We thank Ms. Nobuko Higashiuchi for her technical assistance and Ms. Miyabi Inoue for her skillful secretarial assistance. This work was supported by the Grant-in-Aid for Scientific Research B (Grant No. 24310015 to Y. M.), by the Grant-in-Aid for Challenging Exploratory Research (Grant No. 24651119 to Y. M.) from Japan Society for the Promotion of Science (JSPS), by MEXT-Supported Program for the Strategic Research Foundation for the Advancement of Environmental Protection Technology and for Development of Intelligent Self-Organized Biomaterials, and by the US National Science Foundation (EF 1041034 and MCB 1129326 to B.H.).

Supplementary material

11120_2014_9967_MOESM1_ESM.doc (48 kb)
Supplementary material 1 (DOC 48 kb)
11120_2014_9967_MOESM2_ESM.doc (34 kb)
Supplementary material 2 (DOC 34 kb)
11120_2014_9967_MOESM3_ESM.doc (42 kb)
Supplementary material 3 (DOC 42 kb)
11120_2014_9967_MOESM4_ESM.doc (40 kb)
Supplementary material 4 (DOC 40 kb)
11120_2014_9967_MOESM5_ESM.doc (42 kb)
Supplementary material 5 (DOC 42 kb)


  1. Alber BE, Ferry JG (1994) A carbonic anhydrase from archaeon Methanosarcina thermophila. Proc Natl Acad Sci USA 91:6909–6913PubMedCentralCrossRefPubMedGoogle Scholar
  2. Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459:185–192CrossRefPubMedGoogle Scholar
  3. Armbrust EV et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86CrossRefPubMedGoogle Scholar
  4. Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 45:369–392CrossRefGoogle Scholar
  5. Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54(383):609–622CrossRefPubMedGoogle Scholar
  6. Brueggeman AJ, Gangadharaiah DS, Cserhati MF, Casero D, Weeks DP, Ladunga I (2012) Activation of the carbon concentrating mechanism by CO2 deprivation coincides with massive transcriptional restructuring in Chlamydomonas reinhardtii. Plant Cell 24:1860–1875PubMedCentralCrossRefPubMedGoogle Scholar
  7. Burkhardt S, Amoroso G, Riebesell U, Sültemeyer D (2001) CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations. Limnol Oceanogr 46:1378–1391CrossRefGoogle Scholar
  8. Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182CrossRefPubMedGoogle Scholar
  9. Colman B, Rotatore C (1995) Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms. Plant Cell Environ 18:919–924CrossRefGoogle Scholar
  10. Cox EH, McLendon GL, Morel FMM, Lane TW, Prince RC, Pickering IJ, George GN (2000) The active site structure of Thalassiosira weissflogii carbonic anhydrase 1. Biochemistry 39:12128–12130Google Scholar
  11. Dudkina NV, Eubel H, Keegstra W, Boekema EJ, Braun HP (2005) Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc Natl Acad Sci USA 102:3225–3229PubMedCentralCrossRefPubMedGoogle Scholar
  12. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2:953–971CrossRefPubMedGoogle Scholar
  13. Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–207CrossRefPubMedGoogle Scholar
  14. Fang W, Si Y, Douglass S, Casero D, Merchant SS, Pellegrini M, Ladunga I, Liu P, Spalding MH (2012) Transcriptome-wide changes in Chlamydomonas reinhardtii gene expression regulated by carbon dioxide and the CO2-concentrating mechanism regulator CIA5/CCM1. Plant Cell 24:1876–1893PubMedCentralCrossRefPubMedGoogle Scholar
  15. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRefPubMedGoogle Scholar
  16. Fujiwara S, Fukuzawa H, Tachiki A, Miyachi S (1990) Structure and differential expression of two genes encoding carbonic anhydrase in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:9779–9783PubMedCentralCrossRefPubMedGoogle Scholar
  17. Fukuzawa H, Fujiwara S, Tachiki A, Miyachi S (1990) Nucleotide sequences of two genes CAH1 and CAH2 which encode carbonic anhydrase polypeptides in Chlamydomonas reinhardtii. Nucleic Acids Res 18:6441–6442PubMedCentralCrossRefPubMedGoogle Scholar
  18. Fukuzawa H, Suzuki E, Komukai Y, Miyachi S (1992) A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Proc Natl Acad Sci USA 89:4437–4441PubMedCentralCrossRefPubMedGoogle Scholar
  19. Funke RP, Kovar JL, Weeks DP (1997) Intracellular carbonic anhydrase is essential to photosynthesis in Chlamydomonas reinhardtii at atmospheric levels of CO2. Demonstration via genomic complementation of the high-CO2-requiring mutant ca-1. Plant Physiol 114:237–244PubMedCentralCrossRefPubMedGoogle Scholar
  20. Gibbs SP (1981) The chloroplast endoplasmic reticulum: structure, function and evolutionary significance. Int Rev Cytol 72:49–99CrossRefGoogle Scholar
  21. Giordano M, Norici A, Forssen M, Eriksson M, Raven JA (2003) An anaplerotic role for mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 132:2126–2134PubMedCentralCrossRefPubMedGoogle Scholar
  22. Gould SB, Sommer MS, Hadfi K, Zauner S, Kroth PG, Maier UG (2006a) Protein targeting into the complex plastid of cryptophytes. J Mol Evol 62:674–681CrossRefPubMedGoogle Scholar
  23. Gould SB, Sommer MS, Kroth PG, Gile GH, Keeling PJ, Maier UG (2006b) Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms. Mol Biol Evol 23:2413–2422CrossRefPubMedGoogle Scholar
  24. Gruber A, Vugrinec S, Hempel F, Gould SB, Maier UG, Kroth PG (2007) Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol Biol 64:519–530CrossRefPubMedGoogle Scholar
  25. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239CrossRefPubMedGoogle Scholar
  26. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum likelihood phylogenies. Assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  27. Harada H, Matsuda Y (2005) Identification and characterization of a new carbonic anhydrase in the marine diatom Phaeodactylum tricornutum. Can J Bot 83:909–916CrossRefGoogle Scholar
  28. Harrison PJ, Waters RE, Taylor FJR (1980) A broad spectrum artificial sea water medium for coastal and open ocean phytoplankton. J Phycol 16:28–35Google Scholar
  29. Hempel F, Bullmann L, Lau J, Zauner S, Maier UG (2009) ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Mol Biol Evol 26:1781–1790CrossRefPubMedGoogle Scholar
  30. Hewett-Emmett D, Tashian RE (1996) Functional diversity, conservation, and convergence in the evolution of the α-, β-, and γ-carbonic anhydrase gene families. Mol Phylogenet Evol 5:50–77CrossRefPubMedGoogle Scholar
  31. Hopkinson BM, Dupont CL, Allen AE, Morel FMM (2011) Efficiency of the CO2-concentrating mechanism of diatoms. Proc Nat Acad Sci USA 108:3830–3837PubMedCentralCrossRefPubMedGoogle Scholar
  32. Hopkinson BM, Meile C, Shen C (2013) Quantification of extracellular carbonic anhydrase in two marine diatoms and investigation of its role. Plant Physiol 162:1142–1152PubMedCentralCrossRefPubMedGoogle Scholar
  33. Johnston AM, Raven JA (1996) Inorganic carbon accumulation by the marine diatom Phaeodactylum tricornutum. Eur J Phycol 31:285–290CrossRefGoogle Scholar
  34. Karlsson J, Clarke AK, Chen ZY, Hugghins SY, Park YI, Husic HD, Moroney JV, Samuelsson G (1998) A novel α-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J 17:1208–1216PubMedCentralCrossRefPubMedGoogle Scholar
  35. Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91:1481–1493CrossRefPubMedGoogle Scholar
  36. Kikutani S, Tanaka R, Yamazaki Y, Hara S, Hisabori T, Kroth PG, Matsuda Y (2012) Redox regulation of carbonic anhydrases via thioredoxin in the chloroplast of the marine diatom Phaeodactylum tricornutum. J Biol Chem 287:20689–20700PubMedCentralCrossRefPubMedGoogle Scholar
  37. Kilian O, Kroth PG (2005) Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J 41:175–183CrossRefPubMedGoogle Scholar
  38. Kitao Y, Matsuda Y (2009) Formation of macromolecular complexes of carbonic anhydrases in the chloroplast of a marine diatom by the action of the C-terminal helix. Biochem J 419:681–688CrossRefPubMedGoogle Scholar
  39. Klodmann J, Sunderhaus S, Nimtz M, Jänsch L, Braun HP (2010) Internal architecture of mitochondrial complex I from Arabidopsis thaliana. Plant Cell 22:797–810PubMedCentralCrossRefPubMedGoogle Scholar
  40. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580CrossRefPubMedGoogle Scholar
  41. Kroth PG (2002) Protein transport into secondary plastids and the evolution of primary and secondary plastids. Int Rev Cytol 221:191–255CrossRefPubMedGoogle Scholar
  42. Kroth PG et al (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 3:e1426PubMedCentralCrossRefPubMedGoogle Scholar
  43. Lane TW, Morel FMM (2000) A biological function for cadmium in marine diatoms. Proc Natl Acad Sci USA 97:4627–4631PubMedCentralCrossRefPubMedGoogle Scholar
  44. Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FMM (2005) A cadmium enzyme from marine diatom. Nature 435:42CrossRefPubMedGoogle Scholar
  45. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  46. Lee RBY, Smith JC, Rickaby REM (2013) Cloning, expression and characterization of the δ-carbonic anhydrase of Thalassiosira weissflogii (Bacillariophyceae). J Phycol 49:170–177CrossRefGoogle Scholar
  47. Long BM, Badger MR, Whitney SM, Price GD (2007) Analysis of carboxysomes from Synechococcus PCC7942 reveals multiple Rubisco complexes with carboxysomal proteins CcmM and CcaA. J Biol Chem 282:29323–29335CrossRefPubMedGoogle Scholar
  48. Martin V, Villarreal F, Miras I, Navaza A, Haous A, González-Lebrero RM, Kaufman SB, Zabaleta E (2009) Recombinant plant gamma carbonic anhydrase homotrimers bind inorganic carbon. FEBS Lett 583:3425–3430CrossRefPubMedGoogle Scholar
  49. Matsuda Y, Hara T, Colman B (2001) Regulation of the induction of bicarbonate uptake by dissolved CO2 in the marine diatom, Phaeodactylum tricornutum. Plant Cell Environ 24:611–620CrossRefGoogle Scholar
  50. Matsuda Y, Nakajima K, Tachibana M (2011) Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration. Photosynth Res 109:191–203CrossRefPubMedGoogle Scholar
  51. McGinn PJ, Morel FMM (2008a) Expression and inhibition of the carboxylating and decarboxylating enzymes in the photosynthetic C4 pathway of marine diatoms. Plant Physiol 146:300–309PubMedCentralCrossRefPubMedGoogle Scholar
  52. McGinn PJ, Morel FMM (2008b) Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey. Physiol Plant 133:78–91CrossRefPubMedGoogle Scholar
  53. Moller S, Croning MDR, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17(7):646–653CrossRefPubMedGoogle Scholar
  54. Montsant A, Jabbari K, Maheswari U, Bowler C (2005) Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiol 137:500–513PubMedCentralCrossRefPubMedGoogle Scholar
  55. Moroney JV, Husic H, Tolbert N (1985) Effect of carbonic anhydrase inhibitors on inorganic carbon accumulation by Chlamydomonas reinhardtii. Plant Physiol 79:177–183PubMedCentralCrossRefPubMedGoogle Scholar
  56. Moroney JV, Bartlett SG, Samuelsson G (2001) Carbonic anhydrases in plants and algae. Plant Cell Environ 24:141–153CrossRefGoogle Scholar
  57. Moroney JV, Ma Y, Frey ED, Fusilier KA, Pham TT, Simms TA, DiMario RJ, Yang J, Mukherjee B (2011) The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynth Res 109:133–149CrossRefPubMedGoogle Scholar
  58. Nakajima K, Tanaka A, Matsuda Y (2013) SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. Proc Natl Acad Sci USA 110(5):1767–1772PubMedCentralCrossRefPubMedGoogle Scholar
  59. Parisi G, Perales M, Fornasari MS, Colaneri A, González-Schain N, Gómez-Casati D, Zimmermann S, Brennicke A, Araya A, Ferry JG, Echave J, Zabaleta E (2004) Gamma carbonic anhydrases in plant mitochondria. Plant Mol Biol 55:193–207CrossRefPubMedGoogle Scholar
  60. Park H, Song B, Morel FMM (2007) Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters. Environ Microbiol 9(2):403–413CrossRefPubMedGoogle Scholar
  61. Peña KL, Castel SE, de Araujo C, Espie GS, Kimber MS (2010) Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM. Proc Natl Acad Sci USA 107:2455–2460PubMedCentralCrossRefPubMedGoogle Scholar
  62. Perales M, Eubel H, Heinemeyer J, Colaneri A, Zabaleta E, Braun HP (2005) Disruption of a nuclear gene encording a mitochondrial gamma carbonic anhydrase reduces complex I and supercomplex I+III2 levels and alters mitochondrial physiology in Arabidopsis. J Mol Biol 350:263–277CrossRefPubMedGoogle Scholar
  63. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786CrossRefPubMedGoogle Scholar
  64. Poulsen N, Chesley PM, Kröger N (2006) Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol 42:1059–1065CrossRefGoogle Scholar
  65. Price GD, Badger MR (1989) Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC7942 creates a high CO2-requiring phenotype: evidence for a central role for carboxysomes in the CO2 concentrating mechanism. Plant Physiol 91:505–513PubMedCentralCrossRefPubMedGoogle Scholar
  66. Raven JA (1997a) CO2-concentrating mechanisms: A direct role for thylakoid lumen acidification? Plant Cell Environ 20:147–154CrossRefGoogle Scholar
  67. Raven JA (1997b) The role of marine biota in the evolution of terrestrial biota: gases and genes atmospheric composition and evolution of terrestrial biota. Biogeochemistry 39:139–164CrossRefGoogle Scholar
  68. Raven JA (2001) A role for mitochondrial carbonic anhydrase in limiting CO2 leakage from low CO2-grown cells of Chlamydomonas reinhardtii. Plant Cell Environ 24:261–265CrossRefGoogle Scholar
  69. Reinfelder JR (2011) Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu Rev Mar Sci 3:291–315CrossRefGoogle Scholar
  70. Reinfelder JR, Kraepiel AML, Morel FMM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407:996–999CrossRefPubMedGoogle Scholar
  71. Reinfelder JR, Milligan AJ, Morel FMM (2004) The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiol 135:2106–2111PubMedCentralCrossRefPubMedGoogle Scholar
  72. Roberts SB, Lane TW, Morel FMM (1997) Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J Phycol 33:845–850CrossRefGoogle Scholar
  73. Roberts K, Granum E, Leegood RC, Raven JA (2007) C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. Plant Physiol 145:230–235PubMedCentralCrossRefPubMedGoogle Scholar
  74. Rost B, Riebesell U, Burkhardt S, Sültemeyer D (2003) Carbon acquisition of bloom-forming marine phytoplankton. Limnol Oceanogr 48:55–67CrossRefGoogle Scholar
  75. Satoh D, Hiraoka Y, Colman B, Matsuda Y (2001) Physiological and molecular biological characterization of intracellular carbonic anhydrase from the marine diatom Phaeodactylum tricornutum. Plant Physiol 126:1459–1470PubMedCentralCrossRefPubMedGoogle Scholar
  76. Sheiner L, Demerly JL, Poulsen N, Beatty WL, Lucas O, Behnke MS, White MW, Striepen B (2011) A systematic screen to discover and analyze apicoplast proteins identifies a conserved and essential protein import factor. PLoS Pathog. doi: 10.1371/journal.ppat.1002392 PubMedCentralPubMedGoogle Scholar
  77. Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366CrossRefPubMedGoogle Scholar
  78. So AK, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC (2004) A novel evolutionary lineage of carbonic anhydrase (ε class) is a component of the carboxysome shell. J Bacteriol 186:623–630PubMedCentralCrossRefPubMedGoogle Scholar
  79. Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182PubMedGoogle Scholar
  80. Sorhannus U (2007) A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Mar Micropaleontol 65:1–12CrossRefGoogle Scholar
  81. Tachibana M, Allen AE, Kikutani S, Endo Y, Bowler C, Matsuda Y (2011) Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Photosynth Res 109:205–221CrossRefPubMedGoogle Scholar
  82. Tréguer P, Nelson DM, Bennekom AJV, DeMaster DJ, Leynaert A, Quéduiner B (1995) The silica balance in the world ocean: a reestimate. Science 268:375–379CrossRefPubMedGoogle Scholar
  83. Tripp BC, Smith K, Ferry JG (2001) Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem 276:48615–48618CrossRefPubMedGoogle Scholar
  84. Van K, Spalding MH (1999) Periplasmic carbonic anhydrase structural gene (Cah1) mutant in Chlamydomonas reinhardtii. Plant Physiol 120:757–764PubMedCentralCrossRefPubMedGoogle Scholar
  85. Wang Y, Duanmu D, Spalding MH (2011) Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture. Photosynth Res 109:115–122CrossRefPubMedGoogle Scholar
  86. Werner D (1977) Introduction with a note on taxonomy. In: Werner D (ed) The Diatoms. Blackwell Scientific Publications, Oxford, pp 1–17Google Scholar
  87. Xu Y, Feng L, Jeffrey PD, Morel FMM (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–61CrossRefPubMedGoogle Scholar
  88. Yamano T, Tsujikawa T, Hatano K, Ozawa S, Takahashi Y, Fukuzawa H (2010) Light and low-CO2-dependent LCIB–LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol 51:1453–1468CrossRefPubMedGoogle Scholar
  89. Ynalvez RA, Xiao Y, Ward AS, Cunnusamy K, Moroney JV (2008) Identification and characterization of two closely related beta carbonic anhydrases from Chlamydomonas reinhardtii. Physiol Plant 133:15–26 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Mio Samukawa
    • 1
  • Chen Shen
    • 2
  • Brian M. Hopkinson
    • 2
  • Yusuke Matsuda
    • 1
    Email author
  1. 1.Department of Bioscience, School of Science and TechnologyKwansei Gakuin UniversitySandaJapan
  2. 2.Department of Marine SciencesUniversity of GeorgiaAthensUSA

Personalised recommendations