Photosynthesis Research

, Volume 126, Issue 1, pp 99–109

Bioinformatic analysis of the distribution of inorganic carbon transporters and prospective targets for bioengineering to increase Ci uptake by cyanobacteria

  • Sandeep B. Gaudana
  • Jan Zarzycki
  • Vamsi K. Moparthi
  • Cheryl A. Kerfeld
Review

Abstract

Cyanobacteria have evolved a carbon-concentrating mechanism (CCM) which has enabled them to inhabit diverse environments encompassing a range of inorganic carbon (Ci: \({\text{HCO}}_{3}^{ - }\) and CO2) concentrations. Several uptake systems facilitate inorganic carbon accumulation in the cell, which can in turn be fixed by ribulose 1,5-bisphosphate carboxylase/oxygenase. Here we survey the distribution of genes encoding known Ci uptake systems in cyanobacterial genomes and, using a pfam- and gene context-based approach, identify in the marine (alpha) cyanobacteria a heretofore unrecognized number of putative counterparts to the well-known Ci transporters of beta cyanobacteria. In addition, our analysis shows that there is a huge repertoire of transport systems in cyanobacteria of unknown function, many with homology to characterized Ci transporters. These can be viewed as prospective targets for conversion into ancillary Ci transporters through bioengineering. Increasing intracellular Ci concentration coupled with efforts to increase carbon fixation will be beneficial for the downstream conversion of fixed carbon into value-added products including biofuels. In addition to CCM transporter homologs, we also survey the occurrence of rhodopsin homologs in cyanobacteria, including bacteriorhodopsin, a class of retinal-binding, light-activated proton pumps. Because they are light driven and because of the apparent ease of altering their ion selectivity, we use this as an example of re-purposing an endogenous transporter for the augmentation of Ci uptake by cyanobacteria and potentially chloroplasts.

Keywords

pfam Rhodopsin Inorganic carbon transport Cyanobacteria Carbon fixation Carbon-concentrating mechanism Genomic context Synthetic biology Bioinformatics 

Supplementary material

11120_2014_59_MOESM1_ESM.pdf (101 kb)
Supplementary material 1 (PDF 100 kb)

References

  1. Aravind L, Koonin EV (2000) The STAS domain—a link between anion transporters and antisigma-factor antagonists. Curr Biol 10(2):R53–R55PubMedCrossRefGoogle Scholar
  2. Axen SD, Erbilgin O, Kerfeld CA (2014) A Taxonomy of bacterial microcompartment loci constructed by a novel scoring method. PLoS Comput Biol 10(10):e1003898PubMedCentralPubMedCrossRefGoogle Scholar
  3. Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54(383):609–622PubMedCrossRefGoogle Scholar
  4. Balashov SP, Imasheva ES, Boichenko VA, Anton J, Wang JM, Lanyi JK (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309(5743):2061–2064PubMedCentralPubMedCrossRefGoogle Scholar
  5. Battchikova N, Eisenhut M, Aro AM (2011) Cyanobacterial NDH-1 complexes: novel insights and remaining puzzles. Biochim Biophys Acta 18:935–944CrossRefGoogle Scholar
  6. Bogomolni RA, Spudich JL (1982) Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc Natl Acad Sci USA 79(20):6250–6254PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bonfil DJ, Ronen-Tarazi M, Sültemeyer D, Lieman-Hurwitz J, Schatz D, Kaplan A (1998) A putative HCO3 transporter in the cyanobacterium Synechococcus sp. strain PCC 7942. FEBS Lett 430(3):236–240PubMedCrossRefGoogle Scholar
  8. Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, Paulsen IT, Tandeau de Marsac N, Wincker P, Dossat C, Ferriera S, Johnson J, Post AF, Hess WR, Partensky F (2008) Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol 9(5):R90PubMedCentralPubMedCrossRefGoogle Scholar
  9. Duschl A, Lanyi JK, Zimanyi L (1990) Properties and photochemistry of a halorhodopsin from the haloalkalophile, Natronobacterium pharaonis. J Biol Chem 265(3):1261–1267PubMedGoogle Scholar
  10. Folea IM, Zhang P, Nowaczyk MM, Ogawa T, Aro E-M, Boekema EJ (2008) Single particle analysis of thylakoid proteins from Thermosynechococcus elongatus and Synechocystis 6803: localization of the CupA subunit of NDH-1. FEBS Lett 582(2):249–254PubMedCrossRefGoogle Scholar
  11. Forchhammer K, Tandeau de Marsac N (1995) Functional analysis of the phosphoprotein PII (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 177(8):2033–2040Google Scholar
  12. Fridlyand L, Kaplan A, Reinhold L (1996) Quantitative evaluation of the role of a putative CO2-scavenging entity in the cyanobacterial CO2-concentrating mechanism. BioSyst 37(3):229–238CrossRefGoogle Scholar
  13. Gaudana SB, Alagesan S, Chetty M, Wangikar PP (2013) Diurnal rhythm of a unicellular diazotrophic cyanobacterium under mixotrophic conditions and elevated carbon dioxide. Photosynth Res 118(1–2):51–57PubMedCrossRefGoogle Scholar
  14. Hashimoto K, Choi AR, Furutani Y, Jung KH, Kandori H (2010) Low-temperature FTIR study of Gloeobacter rhodopsin: presence of strongly hydrogen-bonded water and long-range structural protein perturbation upon retinal photoisomerization. Biochemistry 49(15):3343–3350PubMedCrossRefGoogle Scholar
  15. Hess W, Rocap G, Ting C, Larimer F, Stilwagen S, Lamerdin J, Chisholm S (2001) The photosynthetic apparatus of Prochlorococcus: insights through comparative genomics. Photosynth Res 70(1):53–71PubMedCrossRefGoogle Scholar
  16. Imasheva ES, Balashov SP, Choi AR, Jung KH, Lanyi JK (2009) Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna. Biochemistry 48(46):10948–10955PubMedCentralPubMedCrossRefGoogle Scholar
  17. Jung KH, Trivedi VD, Spudich JL (2003) Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol 47(6):1513–1522PubMedCrossRefGoogle Scholar
  18. Kawanabe A, Furutani Y, Jung K-H, Kandori H (2011) An inward proton transport using Anabaena sensory rhodopsin. J Microbiol 49(1):1–6PubMedCrossRefGoogle Scholar
  19. Kim SY, Yoon SR, Han S, Yun Y, Jung KH (2014) A role of Anabaena sensory rhodopsin transducer (ASRT) in photosensory transduction. Mol Microbiol 93(3):403–414PubMedCrossRefGoogle Scholar
  20. Kinney JN, Salmeen A, Cai F, Kerfeld CA (2012) Elucidating essential role of conserved carboxysomal protein CcmN reveals common feature of bacterial microcompartment assembly. J Biol Chem 287(21):17729–17736PubMedCentralPubMedCrossRefGoogle Scholar
  21. Klughammer B, Sultemeyer D, Badger MR, Price GD (1999) The involvement of NAD(P)H dehydrogenase subunits, NdhD3 and NdhF3, in high-affinity CO2 uptake in Synechococcus sp. PCC7002 gives evidence for multiple NDH-1 complexes with specific roles in cyanobacteria. Mol Microbiol 32(6):1305–1315PubMedCrossRefGoogle Scholar
  22. Koropatkin NM, Koppenaal DW, Pakrasi HB, Smith TJ (2007) The structure of a cyanobacterial bicarbonate transport protein, CmpA. J Biol Chem 282(4):2606–2614PubMedCrossRefGoogle Scholar
  23. Lieman-Hurwitz J, Rachmilevitch S, Mittler R, Marcus Y, Kaplan A (2003) Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3 accumulation in cyanobacteria. Plant Biotech J 1(1):43–50CrossRefGoogle Scholar
  24. Ludwig M, Bryant DA (2012) Synechococcus sp. strain PCC 7002 transcriptome: acclimation to temperature, salinity, oxidative stress, and mixotrophic growth conditions. Front Microbiol 3:354PubMedCentralPubMedGoogle Scholar
  25. Maeda S, Omata T (1997) Substrate-binding lipoprotein of the cyanobacterium Synechococcus sp. strain PCC 7942 involved in the transport of nitrate and nitrite. J Biol Chem 272(5):3036–3041PubMedCrossRefGoogle Scholar
  26. Maeda S, Price GD, Badger MR, Enomoto C, Omata T (2000) Bicarbonate binding activity of the CmpA protein of the cyanobacterium Synechococcus sp. strain PCC 7942 involved in active transport of bicarbonate. J Biol Chem 275(27):20551–20555PubMedCrossRefGoogle Scholar
  27. Maeda S, Badger MR, Price GD (2002) Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechococcus sp. PCC7942. Mol Microbiol 43(2):425–435PubMedCrossRefGoogle Scholar
  28. Miranda MR, Choi AR, Shi L, Bezerra AG Jr, Jung KH, Brown LS (2009) The photocycle and proton translocation pathway in a cyanobacterial ion-pumping rhodopsin. Biophys J 96(4):1471–1481PubMedCentralPubMedCrossRefGoogle Scholar
  29. Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233(39):149–152PubMedCrossRefGoogle Scholar
  30. Ogawa T (1991) A gene homologous to the subunit-2 gene of Nadh dehydrogenase is essential to inorganic carbon transport of Synechocystis Pcc 6803. Proc Natl Acad Sci USA 88(10):4275–4279PubMedCentralPubMedCrossRefGoogle Scholar
  31. Ogawa T, Kaplan A (2003) Inorganic carbon acquisition systems in cyanobacteria. Photosynth Res 77(2–3):105–115PubMedCrossRefGoogle Scholar
  32. Ogawa T, Mi H (2007) Cyanobacterial NADPH dehydrogenase complexes. Photosynth Res 93(1–3):69–77PubMedCrossRefGoogle Scholar
  33. Ohkawa H, Price GD, Badger MR, Ogawa T (2000) Mutation of ndh genes leads to inhibition of CO2 uptake rather than HCO3 uptake in Synechocystis sp. strain PCC 6803. J Bacteriol 182(9):2591–2596PubMedCentralPubMedCrossRefGoogle Scholar
  34. Omata T, Price GD, Badger, Okamura M, Gohta S, Ogawa T (1999) Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942. Proc Natl Acad Sci USA 96(23):13571–13576PubMedCentralPubMedCrossRefGoogle Scholar
  35. Omata T, Gohta S, Takahashi Y, Harano Y, Maeda S (2001) Involvement of a CbbR homolog in low CO2-induced activation of the bicarbonate transporter operon in cyanobacteria. J Bacteriol 183(6):1891–1898PubMedCentralPubMedCrossRefGoogle Scholar
  36. Omata T, Takahashi Y, Yamaguchi O, Nishimura T (2002) Structure, function and regulation of the cyanobacterial high-affinity bicarbonate transporter, BCT1. Funct Plant Biol 29(3):151–159CrossRefGoogle Scholar
  37. Osanai T, Tanaka K (2007) Keeping in touch with PII: PII-interacting proteins in unicellular cyanobacteria. Plant Cell Physiol 48(7):908–914PubMedCrossRefGoogle Scholar
  38. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612PubMedCrossRefGoogle Scholar
  39. Price GD (2011) Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. Photosynth Res 109(1–3):47–57PubMedCrossRefGoogle Scholar
  40. Price GD, Howitt SM (2010) The cyanobacterial bicarbonate transporter BicA: its physiological role and the implications of structural similarities with human SLC26 transporters. Biochem Cell Biol 89(2):178–188CrossRefGoogle Scholar
  41. Price GD, Sültemeyer D, Klughammer B, Ludwig M, Badger MR (1998) The functioning of the CO2 concentrating mechanism in several cyanobacterial strains: a review of general physiological characteristics, genes, proteins, and recent advances. Can J Bot 76(6):973–1002Google Scholar
  42. Price GD, Maeda S-I, Omata T, Badger (2002) Modes of active inorganic carbon uptake in the cyanobacterium, Synechococcus sp. PCC7942. Funct Plant Biol 29(3):131–149CrossRefGoogle Scholar
  43. Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L (2004) Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci USA 101(52):18228–18233PubMedCentralPubMedCrossRefGoogle Scholar
  44. Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59(7):1441–1461PubMedCrossRefGoogle Scholar
  45. Price GD, Badger MR, von Caemmerer S (2011a) The prospect of using cyanobacterial bicarbonate transporters to improve leaf photosynthesis in C3 crop plants. Plant Physiol 155(1):20–26PubMedCentralPubMedCrossRefGoogle Scholar
  46. Price GD, Shelden MC, Howitt SM (2011b) Membrane topology of the cyanobacterial bicarbonate transporter, SbtA, and identification of potential regulatory loops. Mol Membr Biol 28(5):265–275PubMedCrossRefGoogle Scholar
  47. Rae BD, Forster B, Badger MR, Price GD (2011) The CO2-concentrating mechanism of Synechococcus WH5701 is composed of native and horizontally-acquired components. Photosynth Res 109(1–3):59–72PubMedCrossRefGoogle Scholar
  48. Rae BD, Long BM, Badger MR, Price GD (2013) Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol Mol Biol Rev 77(3):357–379PubMedCentralPubMedCrossRefGoogle Scholar
  49. Roberts EW, Cai F, Kerfeld CA, Cannon GC, Heinhorst S (2012) Isolation and characterization of the Prochlorococcus carboxysome reveal the presence of the novel shell protein CsoS1D. J Bacteriol 194(4):787–795PubMedCentralPubMedCrossRefGoogle Scholar
  50. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  51. Sasaki J, Brown L, Chon Y, Kandori H, Maeda A, Needleman R, Lanyi J (1995) Conversion of bacteriorhodopsin into a chloride ion pump. Science 269(5220):73–75PubMedCrossRefGoogle Scholar
  52. Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73(2):249–299PubMedCentralPubMedCrossRefGoogle Scholar
  53. Schobert B, Lanyi JK (1982) Halorhodopsin is a light-driven chloride pump. J Biol Chem 257(17):10306–10313PubMedGoogle Scholar
  54. Shelden MC, Howitt SM, Price GD (2010) Membrane topology of the cyanobacterial bicarbonate transporter, BicA, a member of the SulP (SLC26A) family. Mol Membr Biol 27(1):12–23PubMedCrossRefGoogle Scholar
  55. Shibata M, Ohkawa H, Kaneko T, Fukuzawa H, Tabata S, Kaplan A, Ogawa T (2001) Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. Proc Natl Acad Sci USA 98(20):11789–11794PubMedCentralPubMedCrossRefGoogle Scholar
  56. Shibata M, Katoh H, Sonoda M, Ohkawa H, Shimoyama M, Fukuzawa H, Kaplan A, Ogawa T (2002) Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis. J Biol Chem 277(21):18658–18664PubMedCrossRefGoogle Scholar
  57. Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, Tandeau de Marsac N, Rippka R, Herdman M, Sivonen K, Coursin T, Laurent T, Goodwin L, Nolan M, Davenport KW, Han CS, Rubin EM, Eisen JA, Woyke T, Gugger M, Kerfeld CA (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci USA 110(3):1053–1058PubMedCentralPubMedCrossRefGoogle Scholar
  58. Shih PM, Zarzycki J, Niyogi KK, Kerfeld CA (2014) Introduction of a synthetic CO2-fixing photorespiratory bypass into a cyanobacterium. J Biol Chem 289(14):9493–9500PubMedCentralPubMedCrossRefGoogle Scholar
  59. Shively JM, Ball F, Brown DH, Saunders RE (1973) Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science 182(4112):584–586PubMedCrossRefGoogle Scholar
  60. Spudich JL (1994) Protein-protein interaction converts a proton pump into a sensory receptor. Cell 79(5):747–750PubMedCrossRefGoogle Scholar
  61. Stöckel J, Elvitigala TR, Liberton M, Pakrasi HB (2013) Carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142. PLoS ONE 8(2):e56887PubMedCentralPubMedCrossRefGoogle Scholar
  62. Takahashi T, Mochizuki Y, Kamo N, Kobatake Y (1985) Evidence that the long-lifetime photointermediate of s-rhodopsin is a receptor for negative phototaxis in Halobacterium halobium. Biochem Biophys Res Commun 127(1):99–105PubMedCrossRefGoogle Scholar
  63. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729PubMedCentralPubMedCrossRefGoogle Scholar
  64. Tolonen AC, Aach J, Lindell D, Johnson ZI, Rector T, Steen R, Church GM, Chisholm SW (2006) Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability. Mol Syst Biol 2:53PubMedCentralPubMedCrossRefGoogle Scholar
  65. Ugalde JA, Podell S, Narasingarao P, Allen EE (2011) Xenorhodopsins, an enigmatic new class of microbial rhodopsins horizontally transferred between archaea and bacteria. Biol Direct 6:52PubMedCentralPubMedCrossRefGoogle Scholar
  66. Váró G, Brown LS, Needleman R, Lanyi JK (1996) Proton transport by halorhodopsin. Biochemistry 35(21):6604–6611PubMedCrossRefGoogle Scholar
  67. Volokita M, Zenvirth D, Kaplan A, Reinhold L (1984) Nature of the inorganic carbon species actively taken up by the cyanobacterium Anabaena variabilis. Plant Physiol 76(3):599–602PubMedCentralPubMedCrossRefGoogle Scholar
  68. Wang HL, Postier BL, Burnap RL (2004) Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279(7):5739–5751PubMedCrossRefGoogle Scholar
  69. Wheatley NM, Sundberg CD, Gidaniyan SD, Cascio D, Yeates TO (2014) Structure and identification of a pterin dehydratase-like protein as a RuBisCO assembly factor in the alpha-carboxysome. J Biol Chem 289:7973–7981PubMedCentralPubMedCrossRefGoogle Scholar
  70. Xu M, Bernat G, Singh A, Mi H, Rogner M, Pakrasi HB, Ogawa T (2008a) Properties of mutants of Synechocystis sp. strain PCC 6803 lacking inorganic carbon sequestration systems. Plant Cell Physiol 49(11):1672–1677PubMedCrossRefGoogle Scholar
  71. Xu M, Ogawa T, Pakrasi HB, Mi H (2008b) Identification and localization of the CupB protein involved in constitutive CO2 uptake in the cyanobacterium, Synechocystis sp. strain PCC 6803. Plant Cell Physiol 49(6):994–997PubMedCrossRefGoogle Scholar
  72. Zarzycki J, Axen SD, Kinney JN, Kerfeld CA (2013) Cyanobacterial-based approaches to improving photosynthesis in plants. J Exp Bot 64(3):787–798PubMedCrossRefGoogle Scholar
  73. Zhang P, Battchikova N, Jansen T, Appel J, Ogawa T, Aro EM (2004) Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp. PCC 6803. Plant Cell 16(12):3326–3340PubMedCentralPubMedCrossRefGoogle Scholar
  74. Zhang P, Battchikova N, Paakkarinen V, Katoh H, Iwai M, Ikeuchi M, Pakrasi HB, Ogawa T, Aro EM (2005) Isolation, subunit composition and interaction of the NDH-1 complexes from Thermosynechococcus elongatus BP-1. Biochem J 390(Pt 2):513–520PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sandeep B. Gaudana
    • 1
  • Jan Zarzycki
    • 1
    • 2
  • Vamsi K. Moparthi
    • 3
  • Cheryl A. Kerfeld
    • 1
    • 2
    • 4
  1. 1.DOE Plant Research Laboratories, Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUSA
  2. 2.Physical Biosciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Department of Energy Joint Genome InstituteWalnut CreekUSA
  4. 4.Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations