Photosynthesis Research

, Volume 122, Issue 3, pp 275–292 | Cite as

Constrained geometric dynamics of the Fenna–Matthews–Olson complex: the role of correlated motion in reducing uncertainty in excitation energy transfer

  • Alexander S. FokasEmail author
  • Daniel J. Cole
  • Alex W. Chin
Regular Paper


The trimeric Fenna–Mathews–Olson (FMO) complex of green sulphur bacteria is a well-studied example of a photosynthetic pigment–protein complex, in which the electronic properties of the pigments are modified by the protein environment to promote efficient excitonic energy transfer from antenna complexes to the reaction centres. By a range of simulation methods, many of the electronic properties of the FMO complex can be extracted from knowledge of the static crystal structure. However, the recent observation and analysis of long-lasting quantum dynamics in the FMO complex point to protein dynamics as a key factor in protecting and generating quantum coherence under laboratory conditions. While fast inter- and intra-molecular vibrations have been investigated extensively, the slow, conformational dynamics which effectively determine the optical inhomogeneous broadening of experimental ensembles has received less attention. The following study employs constrained geometric dynamics to study the flexibility in the protein network by efficiently generating the accessible conformational states from the published crystal structure. Statistical and principle component analyses reveal highly correlated low frequency motions between functionally relevant elements, including strong correlations between pigments that are excitonically coupled. Our analysis reveals a hierarchy of structural interactions which enforce these correlated motions, from the level of monomer-monomer interfaces right down to the α-helices, β-sheets and pigments. In addition to inducing strong spatial correlations across the conformational ensemble, we find that the overall rigidity of the FMO complex is exceptionally high. We suggest that these observations support the idea of highly correlated inhomogeneous disorder of the electronic excited states, which is further supported by the remarkably low variance (typically <5 %) of the excitonic couplings of the conformational ensemble.


Trickle down structural organisation Clam shell EET Correlated motion FRODA 



We are grateful to Nicholas Hine (University of Cambridge) and Stephen Wells (University of Bath) for helpful discussions. A.S.F. is supported by a Doctoral Research Award from Microsoft Research. D.J.C. is supported by a Marie Curie International Outgoing Fellowship within the Seventh European Community Framework Programme. A.W.C. is supported by the Winton Programme for the Sustainability of Physics.


  1. Adolphs J, Renger T (2006) How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys J 91(8):2778–97PubMedCentralPubMedCrossRefGoogle Scholar
  2. Adolphs J, Müh F, Madjet A, Renger T (2008) Calculation of pigment transition energies in the FMO protein: from simplicity to complexity and back. Photosynth Res 95(2–3):197–209PubMedCrossRefGoogle Scholar
  3. Anna JM, Scholes GD, van Grondelle R (2014) A little coherence in photosynthetic light harvesting. J BioSci 64(1):14–25CrossRefGoogle Scholar
  4. Barzega A, Moosavi-Movahedi A, Pedersen J, Miroliaei M (2009) Comparative thermostability of mesophilic and thermophilic alcohol dehydrogenases: stability-determining roles of proline residues and loop conformations. Enzym Microb Technol 45(2):73–79CrossRefGoogle Scholar
  5. Belfield WJ, Cole DJ, Martin IL, Payne MC, Chau PL (2014) Constrained geometric simulation of the nicotinic acetylcholine receptor. J Mol Gr Model 52:1–10CrossRefGoogle Scholar
  6. Blankenship RE (2002) Molecular mechanisms of photosynthesis. Wiley, LondonCrossRefGoogle Scholar
  7. Brixner T, Stenger J, Vaswani HM, Cho M, Blankenship RE, Fleming GR (2005) Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434(7033):625–628PubMedCrossRefGoogle Scholar
  8. Caruso F, Chin AW, Datta A, Huelga SF, Plenio MB (2009) Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport. J Chem Phys 131(10):105–106CrossRefGoogle Scholar
  9. Caruso F, Chin AW, Datta A, Huelga SF, Plenio MB (2010) Entanglement and entangling power of the dynamics in light-harvesting complexes. Phys Rev A 81(6):062,346CrossRefGoogle Scholar
  10. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke R, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher R, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2009) AMBER 11. University of California, San FranciscoGoogle Scholar
  11. Ceccarelli M, Procacci P, Marchi M (2003) An ab initio force field for the cofactors of bacterial photosynthesis. J Comput Chem 24(2):129–142PubMedCrossRefGoogle Scholar
  12. Chin AW, Datta A, Caruso F, Huelga SF, Plenio MB (2010) Noise-assisted energy transfer in quantum networks and light-harvesting complexes. New J Phys 12(6):065,002CrossRefGoogle Scholar
  13. Chin A, Prior J, Rosenbach R, Caycedo-Soler F, Huelga S, Plenio M (2013) The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nat Phys 9(2):113–118CrossRefGoogle Scholar
  14. Christensson N, Kauffmann HF, Pullerits T, Mancal T (2012) Origin of long-lived coherences in light-harvesting complexes. J Phys Chem B 116(25):7449–7454PubMedCentralPubMedCrossRefGoogle Scholar
  15. Cole DJ, Chin AW, Hine NDM, Haynes PD, Payne MC (2013) Toward ab initio optical spectroscopy of the Fenna–Matthews–Olson complex. J Phys Chem Lett 4(24):4206–4212CrossRefGoogle Scholar
  16. Collini E, Wong CY, Wilk KE, Curmi PM, Brumer P, Scholes GD (2010) Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463(7281):644–647PubMedCrossRefGoogle Scholar
  17. David C, Jacobs D (2011) Characterizing protein motions from structure. J Mol Gr Model 31:41–56CrossRefGoogle Scholar
  18. Dimitrov SD, Durrant JR (2013) Materials design considerations for charge generation in organic solar cells. Chem Mater 26(1):616–630CrossRefGoogle Scholar
  19. Engel G, Calhoun T, Read E, Ahn T, Mancal T, Cheng Y, Blankenship R, Fleming G (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446(7137):782–786PubMedCrossRefGoogle Scholar
  20. Fassioli F, Dinshaw R, Arpin PC, Scholes GD (2014) Photosynthetic light harvesting: excitons and coherence. J R Soc Interface 11(92):20130,901CrossRefGoogle Scholar
  21. Fidler AF, Harel E, Long PD, Engel GS (2011) Two-dimensional spectroscopy can distinguish between decoherence and dephasing of zero-quantum coherences. J Phys Chem A 116(1):282–289PubMedCrossRefGoogle Scholar
  22. Frank J (ed) (2012) Molecular machines in biology. Cambridge University Press, CambridgeGoogle Scholar
  23. Fulle S, Christ NA, Kestner E, Gohlke H (2010) HIV-1 TAR RNA spontaneously undergoes relevant apo-to-holo conformational transitions in molecular dynamics and constrained geometrical simulations. J Chem Info Mod 50(8):1489–1501CrossRefGoogle Scholar
  24. Gao J, Shi W, Ye J, Wang X, Hirao H, Zhao Y (2013) QM/MM modeling of environmental effects on electronic transitions of the FMO complex. J Phys Chem B 117(13):3488–3495PubMedCrossRefGoogle Scholar
  25. Gélinas S, Rao A, Kumar A, Smith SL, Chin AW, Clark J, van der Poll TS, Bazan GC, Friend RH (2014) Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343(6170):512–516PubMedCrossRefGoogle Scholar
  26. Grant BJ, Rodrigues APC, ElSawy KM, McCammon JA, Caves LSD (2006) Bio3d: an R package for the comparative analysis of protein structures. Bioinform 22(21):2695–2696CrossRefGoogle Scholar
  27. Harel E, Engel GS (2012) Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2). Proc Natl Acad Sci USA 109(3):706–711PubMedCentralPubMedCrossRefGoogle Scholar
  28. Hildner R, Brinks D, Nieder J, Cogdell R, Hulst N (2013) Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science 340(6139):1448–1451PubMedCrossRefGoogle Scholar
  29. Huelga S, Plenio M (2013) Vibrations, quanta and biology. Contemp Phys 54(4):181–207CrossRefGoogle Scholar
  30. Ishizaki A, Fleming GR (2012) Quantum coherence in photosynthetic light harvesting. Annu Rev Condens Matter Phys 3:333–61CrossRefGoogle Scholar
  31. Jing Y, Zheng R, Li H, Shi Q (2012) Theoretical study of the electronic-vibrational coupling in the Qy states of the photosynthetic reaction center in purple bacteria. J Phys Chem B 116(3):1164–1171PubMedCrossRefGoogle Scholar
  32. Jolley CC, Wells SA, Hespenheide BM, Thorpe MF, Fromme P (2006) Docking of photosystem I subunit C using a constrained geometric simulation. J Am Chem Soc 128:8803–8812PubMedCrossRefGoogle Scholar
  33. Knox RS, Spring BQ (2003) Dipole strengths in the chlorophylls. Photochem Photobiol 77(5):497–501PubMedCrossRefGoogle Scholar
  34. Kozuska JL, Paulsen IM, Belfild WJ, Martin IL, Cole DJ, Holt A, Dunn SMJ (2014) Impact of intracellular domain flexibility upon properties of activated human 5-HT3 receptors. Br J Pharmacol 171:1617–1628PubMedCrossRefGoogle Scholar
  35. Kreisbeck C, Kramer T (2012) Long-lived electronic coherence in dissipative exciton dynamics of light-harvesting complexes. J Phys Chem Lett 3(19):2828–2833CrossRefGoogle Scholar
  36. Lambert N, Chen Y, Cheng Y, Li C, Chen G, Nori F (2012) Quantum biology. Nat Phys 9(1):10–18CrossRefGoogle Scholar
  37. Lee H, Cheng YC, Fleming GR (2007) Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316(5830):1462–1465PubMedCrossRefGoogle Scholar
  38. Li H, Wells SA, Jimenez-Roldan JE, Romer RA, Zhao Y, Sadler PJ, O’Connor PB (2012) Protein flexibility is key to cisplatin crosslinking in calmodulin. Protein Sci 21:1269–1279PubMedCentralPubMedCrossRefGoogle Scholar
  39. Ma J (2005) Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13(3):373–380PubMedCrossRefGoogle Scholar
  40. Marsh JA, Teichmann SA (2014) Parallel dynamics and evolution: protein conformational fluctuations and assembly reflect evolutionary changes in sequence and structure. BioEssays 36(2):209–218PubMedCrossRefGoogle Scholar
  41. Metz A, Pfleger C, Kopitz H, Pfeiffer-Marek S, Barringhaus KH, Gohlke H (2011) Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein-protein interface. J Chem Inf Model 52:120–133PubMedCrossRefGoogle Scholar
  42. Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A (2008) Environment-assisted quantum walks in photosynthetic energy transfer. J Chem Phys 129(17):174,106CrossRefGoogle Scholar
  43. Müh F, Madjet M, Adolphs J, Abdurahman A, Rabenstein B, Ishikita H, Knapp E, Renger T (2007) α-helices direct excitation energy flow in the Fenna–Matthews–Olson protein. Proc Natl Acad Sci USA 104(43):16,862–16,867CrossRefGoogle Scholar
  44. Olaya-Castro A, Fassioli F (2011) Characterizing quantum-sharing of electronic excitation in molecular aggregates. Procedia Chem 3(1):176–184CrossRefGoogle Scholar
  45. Olbrich C, Strümpfer J, Schulten K, Kleinekathöfer U (2011a) Quest for spatially correlated fluctuations in the FMO light-harvesting complex. J Phys Chem B 115(4):758–764PubMedCentralPubMedCrossRefGoogle Scholar
  46. Olbrich C, Strümpfer J, Schulten K, Kleinekathöfer U (2011b) Theory and simulation of the environmental effects on FMO electronic transitions. J Phys Chem Lett 2(14):1771–1776CrossRefGoogle Scholar
  47. OReilly EJ, Kolli A, Scholes GD, Olaya-Castro A (2012) The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae. J Chem Phys 137(17):174,109CrossRefGoogle Scholar
  48. O’Reilly EJ, Olaya-Castro A (2014) Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature. Nat Commun 5:3012PubMedCentralPubMedGoogle Scholar
  49. Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (1997) Cath—a hierarchic classification of protein domain structures. Structure 5(8):1093–1109PubMedCrossRefGoogle Scholar
  50. Panitchayangkoon G, Hayes D, Fransted K, Caram J, Harel E, Wen J, Blankenship R, Engel G (2010) Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc Natl Acad Sci USA 107(29):12,766–12,770CrossRefGoogle Scholar
  51. Plenio MB, Huelga SF (2008) Dephasing-assisted transport: quantum networks and biomolecules. New J Phys 10(11):113,019CrossRefGoogle Scholar
  52. Rebentrost P, Mohseni M, Aspuru-Guzik A (2009) Role of quantum coherence and environmental fluctuations in chromophoric energy transport. J Phys Chem B 113(29):9942–9947PubMedCrossRefGoogle Scholar
  53. Renger G (2008) Primary processes of photosynthesis: principles and apparatus. pt. 1. RSC Publishing, PhiladelphiaGoogle Scholar
  54. Renger T, Klinger A, Steinecker F (2012) Normal mode analysis of the spectral density of the Fenna–Matthews–Olson light-harvesting protein: how the protein dissipates the excess energy of excitons. J Phys Chem B 116(50):14,565–14,580CrossRefGoogle Scholar
  55. Renger T, Müh F (2013) Understanding photosynthetic light-harvesting: a bottom up theoretical approach. Phys Chem Chem Phys 15:3348–3371PubMedCrossRefGoogle Scholar
  56. Rey M, Chin AW, Huelga SF, Plenio MB (2013) Exploiting structured environments for efficient energy transfer: the phonon antenna mechanism. J Phys Chem Lett 4(6):903–907CrossRefGoogle Scholar
  57. Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theor Comput 9(7):3084–3095CrossRefGoogle Scholar
  58. Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R (2011) Lessons from nature about solar light harvesting. Nat Chem 3(10):763–774PubMedCrossRefGoogle Scholar
  59. Shim S, Rebentrost P, Valleau S, Aspuru-Guzik A (2012) Atomistic study of the long-lived quantum coherences in the Fenna–Matthews–Olson complex. Biophys J 102(3):649–660PubMedCentralPubMedCrossRefGoogle Scholar
  60. Skochdopole N, Mazziotti DA (2011) Functional subsystems and quantum redundancy in photosynthetic light harvesting. J Phys Chem Lett 2(23):2989–2993CrossRefGoogle Scholar
  61. Sun M, Rose MB, Ananthanarayanan SK, Jacobs DJ, Yengo CM (2008) Characterization of the pre-force-generation state in the actomyosin cross-bridge cycle. Proc Natl Acad Sci USA 105:8631–8636PubMedCentralPubMedCrossRefGoogle Scholar
  62. Tiwari V, Peters WK, Jonas DM (2013) Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc Natl Acad Sci USA 110(4):1203–1208PubMedCentralPubMedCrossRefGoogle Scholar
  63. Tronrud DE, Schmid MF, Matthews BW (1986) Structure and X-ray amino acid sequence of a bacteriochlorophyll a protein from prosthecochloris aestuarii refined at 1.9 å resolution. J Mol Bio 188(3):443–454CrossRefGoogle Scholar
  64. Van Amerongen H, Valkunas L, Van Grondelle R (2000) Photosynthetic excitons. World Scientific, SingaporeCrossRefGoogle Scholar
  65. Wells S, Menor S, Hespenheide B, Thorpe M (2005) Constrained geometric simulation of diffusive motion in proteins. Phys Biol 2(4):S127–S136PubMedCrossRefGoogle Scholar
  66. Wells S, Jimenez-Rolda JE, Romer R (2009) Comparative analysis of rigidity across protein families. Phys Biol 6(4):046005PubMedCrossRefGoogle Scholar
  67. Wells SA (2013) Geometric simulation of flexible motion in proteins. In: Livesay DR (ed) Protein dynamics, vol II. Methods in molecular biology, vol 1084. Humana Press, New York, pp 173–192Google Scholar
  68. Wen J, Zhang H, Gross M, Blankenship R (2009) Membrane orientation of the FMO antenna protein from chlorobaculum tepidum as determined by mass spectrometry-based footprinting. Proc Natl Acad Sci USA 106(15):6134–9PubMedCentralPubMedCrossRefGoogle Scholar
  69. Wolynes PG (2009) Some quantum weirdness in physiology. Proc Natl Acad Sci USA 106(41):17247–17248PubMedCentralPubMedCrossRefGoogle Scholar
  70. Yuen MJ, Shipman LL, Katz JJ, Hindman JC (1980) Concentration quenching of fluorescence from chlorophyll-a, pheophytin-a, pyropheophytin-a and their covalently-linked pairs. Photochem Photobiol 32(3):281–296CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Alexander S. Fokas
    • 1
    Email author
  • Daniel J. Cole
    • 1
    • 2
  • Alex W. Chin
    • 1
  1. 1.The Theory of Condensed Matter Group GroupCavendish LaboratoryCambridgeUK
  2. 2.Department of ChemistryYale UniversityNew HavenUSA

Personalised recommendations