Photosynthesis Research

, Volume 119, Issue 3, pp 257–272

State-transitions facilitate robust quantum yields and cause an over-estimation of electron transport in Dunaliella tertiolecta cells held at the CO2 compensation point and re-supplied with DIC

  • Sven Ihnken
  • Jacco C. Kromkamp
  • John Beardall
  • Greg M. Silsbe
Regular Paper

Abstract

Photosynthetic energy consumption and non-photosynthetic energy quenching processes are inherently linked. Both processes must be controlled by the cell to allow cell maintenance and growth, but also to avoid photodamage. We used the chlorophyte algae Dunaliella tertiolecta to investigate how the interactive regulation of photosynthetic and non-photosynthetic pathways varies along dissolved inorganic carbon (DIC) and photon flux gradients. Specifically, cells were transferred to DIC-deplete media to reach a CO2 compensation before being re-supplied with DIC at various concentrations and different photon flux levels. Throughout these experiments we monitored and characterized the photophysiological responses using pulse amplitude modulated fluorescence, oxygen evolution, 77 K fluorescence emission spectra, and fast-repetition rate fluorometry. O2 uptake was not significantly stimulated at DIC depletion, which suggests that O2 production rates correspond to assimilatory photosynthesis. Fluorescence-based measures of relative electron transport rates (rETRs) over-estimated oxygen-based photosynthetic measures due to a strong state-transitional response that facilitated high effective quantum yields. Adoption of an alternative fluorescence-based rETR calculation that accounts for state-transitions resulted in improved linear oxygen versus rETR correlation. This study shows the extraordinary capacity of D. tertiolecta to maintain stable effective quantum yields by flexible regulation of state-transitions. Uncertainties about the control mechanisms of state-transitions are presented.

Keywords

Dunaliella tertiolecta DIC depletion Photoacclimation Non-photochemical quenching State-transitions Photoprotection 

References

  1. Amoroso G, Weber C, Sültemeyer D, Fock H (1996) Intracellular carbonic anhydrase activities in Dunaliella tertiolecta (Butcher) and Chlamydomonas reinhardtii (Dangeard) in relation to inorganic carbon concentration during growth: further evidence for the existence of two distinct carbonic anhydrases associated with the chloroplasts. Planta 199:177–184CrossRefGoogle Scholar
  2. Amoroso G, Sültemeyer D, Thyssen C, Fock H (1998) Uptake of HCO3 and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta. Plant Physiol 116:193–201PubMedCentralCrossRefGoogle Scholar
  3. Asada K (2000) The water–water cycle as alternative photon and electron sinks. Philos Trans R Soc Lond B 355:1419–1430CrossRefGoogle Scholar
  4. Badger MR, Schreiber U (1993) Effects of inorganic carbon accumulation on photosynthetic oxygen reduction and cyclic electron flow in the Cyanobacterium Synechococcus PCC7942. Photosynth Res 37:177–191PubMedCrossRefGoogle Scholar
  5. Bailey S, Grossman A (2008) Photoprotection in Cyanobacteria: regulation of light harvesting. Photochem Photobiol 84:1410–1420. doi:10.1111/j.1751-1097.2008.00453.x PubMedCrossRefGoogle Scholar
  6. Beardall J, Giordano M (2009) Acquisition and metabolism of inorganic nutrients by Dunaliella. In: Ben-Amotz A, Polle JEW, Subba Rao DV (eds) The Alga Dunaliella. Biodiversity, physiology, genomics and biotechnology. Science Publishers, New Hampshire, pp 173–187Google Scholar
  7. Bukhov N, Carpentier R (2004) Alternative photosystem I-driven electron transport routes: mechanisms and functions. Photosynth Res 82:17–33PubMedCrossRefGoogle Scholar
  8. Campbell DA, Öquist G (1996) Predicting light acclimation in Cyanobacteria from non-photochemical quenching of photosystem II fluorescence, which reflects state transitions in these organisms. Plant Physiol 111:1293–1298PubMedCentralPubMedGoogle Scholar
  9. Campbell DA, Hurry V, Clarke A, Gustafsson P, Öquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62:667–683PubMedCentralPubMedGoogle Scholar
  10. Carr H, Björk M (2003) A methodological comparison of photosynthetic oxygen evolution and estimated electron transport rate in tropical Ulva (Chlorophyceae) species under different light and inorganic carbon conditions. J Phycol 39:1125–1131CrossRefGoogle Scholar
  11. Casper-Lindley C, Björkman O (1996) Nigericin insensitive post-illumination reduction in fluorescence yield in Dunaliella tertiolecta (chlorophyte). Photosynth Res 50:209–222PubMedCrossRefGoogle Scholar
  12. Casper-Lindley C, Björkman O (1998) Fluorescence quenching in four unicellular algae with different light-harvesting and xanthophyll-cycle pigments. Photosynth Res 56:277–289CrossRefGoogle Scholar
  13. Claquin P, Kromkamp J, Veronique Martin-Jezequel (2004) Relationship between photosynthetic metabolism and cell cycle in a synchronized culture of the marine alga Cylindrotheca fusiformis (Bacillariophyceae). Eur J Phycol 39:33–41. doi:10.1080/0967026032000157165 CrossRefGoogle Scholar
  14. Cournac L, Latouche G, Cerovic Z, Redding K, Ravenel J, Peltier G (2002) In vivo interactions between photosynthesis, mitorespiration, and chlororespiration in Chlamydomonas reinhardtii. Plant Physiol 129:1921–1928PubMedCentralPubMedCrossRefGoogle Scholar
  15. Delosme R, Olive J, Wollman F-A (1996) Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochimica et Biophysica Acta 1273:150–158. doi:10.1016/0005-2728(95)00143-3 CrossRefGoogle Scholar
  16. Demming-Adams B (1990) Carotenoids and photoprotection in plants: a role for the Xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24CrossRefGoogle Scholar
  17. Dietz KJ, Schreiber U, Heber U (1985) The relationship between the redox state of Q A and photosynthesis in leaves at various carbon-dioxide, oxygen and light regimes. Planta 166:219–226. doi:10.1007/BF00397352 PubMedCrossRefGoogle Scholar
  18. Dietzel L, Braeutigam K, Pfannschmidt T (2008) Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry—functional relationships between short-term and long-term light quality acclimation in plants. FEBS J 275:1080–1088. doi:10.1111/j.1742-4658.2008.06264.x PubMedCrossRefGoogle Scholar
  19. Finazzi G, Forti G (2004) Metabolic flexibility of the green alga Chlamydomonas reinhardtii as revealed by the link between state transitions and cyclic electron flow. Photosynth Res 82:327–338PubMedCrossRefGoogle Scholar
  20. Finazzi G, Rappaport F, Furia A, Fleischmann M, Rochaix J-D, Zito F, Forti G (2002) Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep 3:280–285PubMedCentralPubMedCrossRefGoogle Scholar
  21. Franklin L, Badger MR (2001) A comparison of photosynthetic electron transport rates in macroalgae measured by pulse amplitude modulated chlorophyll fluorometry and mass spectrometry. J Phycol 37:756–767CrossRefGoogle Scholar
  22. Giordano M, Beardall J, Raven J (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131PubMedCrossRefGoogle Scholar
  23. Hanson D, Franklin L, Samuelsson G, Badger MR (2003) The Chlamydomonas reinhardtii cia3 mutant lacking a thylakoid lumen-localized carbonic anhydrase is limited by CO2 supply to rubisco and not photosystem II function in vivo. Plant Physiol 132:2267–2275. doi:10.1104/pp.103.023481 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Heber U (1969) Conformational changes of chloroplasts induced by illumination of leaves in vivo. Biochim Biophys Acta 180(2):302–319PubMedCrossRefGoogle Scholar
  25. Heber U (2002) Irrungen, Wirrungen? The mehler reaction in relation to cyclic electron transport in C3 plants. Photosynth Res 73:223–231PubMedCrossRefGoogle Scholar
  26. Hendrickson L, Furbank RT, Chow WS (2004) A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynth Res 82:73–81. doi:10.1023/B:PRES.0000040446.87305.f4 PubMedCrossRefGoogle Scholar
  27. Ihnken S, Kromkamp JC, Beardall J (2011) Photoacclimation in Dunaliella tertiolecta reveals a unique NPQ pattern upon exposure to irradiance. Photosynth Res 110:123–137. doi:10.1007/s11120-011-9709-2 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Ilioaia C, Johnson MP, Duffy CDP, Pascal AA, van Grondelle R, Robert B, Ruban AV (2011) Origin of absorption changes associated with photoprotective energy dissipation in the absence of zeaxanthin. J Biol Chem 286:91–98. doi:10.1074/jbc.M110.184887 PubMedCrossRefGoogle Scholar
  29. Iwai M, Kato N, Minagawa J (2007) Distinct physiological responses to a high light and low CO2 environment revealed by fluorescence quenching in photoautotrophically grown Chlamydomonas reinhardtii. Photosynth Res 94:307–314. doi:10.1007/s11120-007-9220-y PubMedCrossRefGoogle Scholar
  30. Jeffrey S, Humphrey G (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural populations. Biochem Physiol Pflanzen 167:191–194Google Scholar
  31. Joët T, Genty B, Josse EM, Kuntz M, Cournac L, Peltier G (2002) Involvement of a plastid terminal oxidase in plastoquinone oxidation as evidenced by expression of the Arabidopsis thaliana enzyme in tobacco. J Biol Chem 277:31623–31630. doi:10.1074/jbc.M203538200 PubMedCrossRefGoogle Scholar
  32. Johnson MP, Ruban AV (2011) Restoration of rapidly reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced pH. J Biol Chem 286:19973–19981. doi:10.1074/jbc.M111.237255 PubMedCrossRefGoogle Scholar
  33. Johnson MP, Pérez-Bueno ML, Zia A, Horton P, Ruban AV (2009) The zeaxanthin-independent and zeaxanthin-dependent qE components of non-photochemical quenching involve common conformational changes within the photosystem II antenna in Arabidopsis. Plant Physiol 149:1061–1075. doi:10.1104/pp.108.129957 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Johnson MP, Zia A, Ruban AV (2011) Elevated ΔpH restores rapidly reversible photoprotective energy dissipation in Arabidopsis chloroplasts deficient in lutein and xanthophyll cycle activity. Planta 235:193–204. doi:10.1007/s00425-011-1502-0 PubMedCrossRefGoogle Scholar
  35. Kana T, Darkangelo C, Hunt MD et al (1994) Membrane inlet mass-spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal Chem 66:4166–4170CrossRefGoogle Scholar
  36. Kaplan A, Berry JA (1981) Glycolate excretion and the oxygen to carbon dioxide net exchange ratio during photosynthesis in Chlamydomonas reinhardtii. Plant Physiol 67:229–232PubMedCentralPubMedCrossRefGoogle Scholar
  37. Kirilovsky D, Kerfeld CA (2012) The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. Biochim Biophys Acta 1817:158–166PubMedCrossRefGoogle Scholar
  38. Kramer D, Sacksteder C, Cruz J (1999) How acidic is the lumen? Photosynth Res 60:151–163CrossRefGoogle Scholar
  39. Lavaud J (2007) Fast regulation of photosynthesis in diatoms: mechanisms, evolution and ecophysiology. In: Global Science Books—Functional plant science and biotechnology, pp 267–287Google Scholar
  40. Lemeille S, Rochaix J-D (2010) State transitions at the crossroad of thylakoid signaling pathways. Photosynth Res 106:33–46. doi:10.1007/s11120-010-9538-8 PubMedCrossRefGoogle Scholar
  41. Li X, Phippard A, Pasari J, Niyogi KK (2002) Structure-function analysis of photosystem II subunit S (PsbS) in vivo. Funct Plant Biol 29:1131–1139CrossRefGoogle Scholar
  42. Li X, Gilmore A, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi KK (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279:22866–22874PubMedCrossRefGoogle Scholar
  43. Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260PubMedCrossRefGoogle Scholar
  44. Miller A, Espie G, Canvin DT (1991) The effects of inorganic carbon and oxygen on fluorescence in the cyanobacterium Synechococcus Utex 625. Can J Bot 69:1151–1160Google Scholar
  45. Miller A, Espie G, Bruce D (1996) Characterization of the non-photochemical quenching of chlorophyll fluorescence that occurs during the active accumulation of inorganic carbon in the Cyanobacterium Synechococcus PCC 7942. Photosynth Res 49:251–262PubMedGoogle Scholar
  46. Minagawa J (2011) State transitions—the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochim Biophys Acta 1807:897–905. doi:10.1016/j.bbabio.2010.11.005 PubMedGoogle Scholar
  47. Miyake C, Okamura M (2003) Cyclic electron flow within PSII protects PSII from its photoinhibition in thylakoid membranes from spinach chloroplasts. Plant Cell Physiol 44:457–462PubMedGoogle Scholar
  48. Moya I, Silvestri M, Vallon O, Cinque G, Bassi R (2001) Time-resolved fluorescence analysis of the photosystem II antenna proteins in detergent micelles and liposomes. Biochemistry 40:12552–12561PubMedGoogle Scholar
  49. Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566PubMedCentralPubMedGoogle Scholar
  50. Nilkens M, Kress E, Lambrev P, Miloslavina Y, Müller M, Holzwarth AR, Jahns P (2010) Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim Biophys Acta 1797:466–475. doi:10.1016/j.bbabio.2010.01.001 PubMedGoogle Scholar
  51. Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359. doi:10.1146/annurev.arplant.50.1.333 PubMedGoogle Scholar
  52. Niyogi KK, Björkman O, Grossman A (1997) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9:1369–1380PubMedCentralPubMedGoogle Scholar
  53. Niyogi KK, Shih C, Soon Chow W, Pogson B, DellaPenna D, Björkman O (2001) Photoprotection in a zeaxanthin-and lutein-deficient double mutant of Arabidopsis. Photosynth Res 67:139–145PubMedGoogle Scholar
  54. Oxborough K, Moore CM, Suggett DJ, Lawson T, Chan HG, Geider RJ (2012) Direct estimation of functional PSII reaction center concentration and PSII electron flux on a volume basis: a new approach to the analysis of Fast Repetition Rate fluorometry (FRRf) data. Limnol Oceanogr-Meth 10:142–154. doi:10.4319/lom.2012.10.142 Google Scholar
  55. Palmqvist K, Sundblad LG, Wingsle G, Samuelsson G (1990) Acclimation of photosynthtetic light reactions during induction of inorganic carbon accumulation in the green-alga Chlamydomonas reinhardtii. Plant Physiol 94:357–366PubMedCentralPubMedGoogle Scholar
  56. Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53:523–550PubMedGoogle Scholar
  57. Peltier G, Thibault P (1985) O2 uptake in the light in Chlamydomonas: evidence for persistent mitochondrial respiration. Plant Physiol 79:225–230PubMedCentralPubMedGoogle Scholar
  58. Pérez-Bueno M, Johnston M, Zia A, Ruban A, Horton P (2008) The Lhcb protein and xanthophyll composition of the light harvesting antenna controls the ∆pH-dependency of non-photochemical quenching in Arabidopsis thaliana. FEBS Lett 582:1477–1482PubMedGoogle Scholar
  59. Peterhansel C, Maurino VG (2011) Photorespiration redesigned. Plant Physiol 155:49–55. doi:10.1104/pp.110.165019 PubMedCentralPubMedGoogle Scholar
  60. Prášil O, Kolber Z, Berry J, Falkowski P (1996) Cyclic electron flow around photosystem II in vivo. Photosynth Res 48:395–410PubMedGoogle Scholar
  61. Raven JA, Giordano M, Beardall J, Maberly SC (2011) Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynth Res 109:281–296. doi:10.1007/s11120-011-9632-6 PubMedGoogle Scholar
  62. Rochaix J-D (2011) Regulation of photosynthetic electron transport. BBA-Bioenergetics 1807:375–383. doi:10.1016/j.bbabio.2010.11.010 PubMedGoogle Scholar
  63. Rochaix J-D, Lemeille S, Shapiguzov A, Samol I, Fucile G, Willig A, Goldschmidt-Clermont M (2012) Protein kinases and phosphatases involved in the acclimation of the photosynthetic apparatus to a changing light environment. Philos Trans R Soc Lond B 367:3466–3474. doi:10.1098/rstb 2012.0064Google Scholar
  64. Ruban AV, Young AJ, Horton P (1993) Induction of non-photochemical energy dissipation and absorbance changes in leaves. Plant Physiol 102:741–750PubMedCentralPubMedGoogle Scholar
  65. Ruban A, Berera R, Ilioaia C, van Stokkum I, Kennis J, Pascal A, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–579PubMedGoogle Scholar
  66. Sivak MN, Walker D (1983) Some effects of CO2 concentration and decreased O2 concentration on induction fluorescence in leaves. Philos Trans R Soc Lond B 323:377–392Google Scholar
  67. Sivak M, Walker D (1985) Chlorophyll a fluorescence: can it shed light on fundamental questions in photosynthetic carbon dioxide fixation? Plant 8:439–448Google Scholar
  68. Sukenik A, Tchernov D, Kaplan A, Huertas IE, Lubián LM, Livne A (1997) Uptake, efflux, and photosynthetic utilization of inorganic carbon by the marine eustigmatophyte Nannochloropsis sp. J Phycol 33:969–974Google Scholar
  69. Sültemeyer D, Klug K, Fock H (1987) Effect of dissolved inorganic carbon on oxygen evolution and uptake by Chlamydomonas reinhardtii suspensions adapted to ambient and CO2-enriched air. Photosynth Res 12:25–33PubMedGoogle Scholar
  70. Sültemeyer DF, Miller AG, Espie GS, Fock HP, Canvin DT (1989) Active CO2 transport by the green alga Chlamydomonas reinhardtii. Plant Physiol 89:1213–1219PubMedCentralPubMedGoogle Scholar
  71. Wollman FA (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J 20:3623–3630. doi:10.1093/emboj/20.14.3623 PubMedGoogle Scholar
  72. Young E, Beardall J, Giordano M (2001) Inorganic carbon acquisition by Dunaliella tertiolecta (Chlorophyta) involves external carbonic anhydrase and direct HCO3 utilization insensitive to the anion exchange inhibitor DIDS. Eur J Phycol 36:81–88Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sven Ihnken
    • 1
  • Jacco C. Kromkamp
    • 1
  • John Beardall
    • 2
  • Greg M. Silsbe
    • 1
  1. 1.Netherlands Institute for Sea ResearchNIOZYersekeThe Netherlands
  2. 2.School of Biological ScienceMonash UniversityClaytonAustralia

Personalised recommendations