Advertisement

Photosynthesis Research

, Volume 119, Issue 1–2, pp 31–47 | Cite as

Influence and predictive capacity of climate anomalies on daily to decadal extremes in canopy photosynthesis

  • Ankur R. Desai
Regular Paper

Abstract

Significant advances have been made over the past decades in capabilities to simulate diurnal and seasonal variation of leaf-level and canopy-scale photosynthesis in temperate and boreal forests. However, long-term prediction of future forest productivity in a changing climate may be more dependent on how climate and biological anomalies influence extremes in interannual to decadal variability of canopy ecosystem carbon exchanges. These exchanges can differ markedly from leaf level responses, especially owing to the prevalence of long lags in nutrient and water cycling. Until recently, multiple long-term (10+ year) high temporal frequency (daily) observations of canopy exchange were not available to reliably assess this claim. An analysis of one of the longest running North American eddy covariance flux towers reveals that single climate variables do not adequately explain carbon exchange anomalies beyond the seasonal timescale. Daily to weekly lagged anomalies of photosynthesis positively autocorrelate with daily photosynthesis. This effect suggests a negative feedback in photosynthetic response to climate extremes, such as anomalies in evapotranspiration and maximum temperature. Moisture stress in the prior season did inhibit photosynthesis, but mechanisms are difficult to assess. A complex interplay of integrated and lagged productivity and moisture-limiting factors indicate a critical role of seasonal thresholds that limit growing season length and peak productivity. These results lead toward a new conceptual framework for improving earth system models with long-term flux tower observations.

Keywords

Eddy covariance Canopy photosynthesis Spectral analysis Carbon cycle 

Notes

Acknowledgments

This manuscript would not have been possible with the numerous person-hours of support that going into the making of observations at WLEF including J. Thom at UW-Madison, A. Andrews and J. Kofler at NOAA-ESRL, R. Strand and J. Ayers at State of Wisconsin Educational Communications Board, K. Davis and current/former lab members at The Pennsylvania State University, P. Bolstad at University of Minnesota, and B. Cook at NASA GSFC. I also would like to thank A. Leakey for organizing this special issue. Observations and research were supported through NSF Biology Directorate grants #DEB-0845166 and #DBI-1062204.

References

  1. Amiro B, Barr AG, Barr JG et al (2010) Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J Geophys Res 115:G00K02. doi: 10.1029/2010JG001390 Google Scholar
  2. Baldocchi DD (2008) Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26CrossRefGoogle Scholar
  3. Baldocchi DD, Hutchison BA, Matt DR, McMillen RT (1985) Canopy radiative transfer models for spherical and known leaf inclination distribution angles: a test in an Oak-Hickory forest. J Appl Ecol 22:539–555CrossRefGoogle Scholar
  4. Baldocchi DD, Falge E, Wilson K (2001) A spectral analysis of biosphere-atmosphere trace gas flux densities and meteorological variables across hour to year time scales. Agric For Meteorol 107:1–27CrossRefGoogle Scholar
  5. Barnhart BL, Eichinger WE, Preuger JH (2012) Introducing an Ogive method for discontinuous data. Agric For Meteorol 162:58–62CrossRefGoogle Scholar
  6. Beer C et al (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838. doi: 10.1126/science.1184984 PubMedCrossRefGoogle Scholar
  7. Berger BW, Zhao CL, Davis KJ, Yi C, Bakwin PS (2001) Long-term carbon dioxide fluxes from a very tall tower in a northern forest: flux measurement methodology. J Atmos Ocean Technol 18:529–542CrossRefGoogle Scholar
  8. Booth BB et al (2012) High sensitivity of future global warming to land carbon cycle processes. Environ Res Lett 7:024002. doi: 10.1088/1748-9326/7/2/024002 CrossRefGoogle Scholar
  9. Bretherton CS, Widman M, Dymnikov VP, Wallace JM, Blade I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Climate 12:1990–2009Google Scholar
  10. Carbone MS, Czimczik CI, McDuffee KE, Trumbore SE (2007) Allocation and residence time of photosynthetic products in a boreal forest using a low-level 14C pulse-chase labeling technique. Glob Change Biol 13:466–477CrossRefGoogle Scholar
  11. Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136CrossRefGoogle Scholar
  12. Davis KJ, Bakwin PS, Yi C, Berger BW, Zhao C, Teclaw RM, Isebrands JG (2003) The annual cycles of CO2 and H2O exchange over northern mixed forest as observed from a very tall tower. Glob Change Biol 9:1278–1293CrossRefGoogle Scholar
  13. De Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ 20:537–557CrossRefGoogle Scholar
  14. Desai AR (2010) Climatic and phenological controls on coherent regional interannual variability of carbon dioxide flux in a heterogeneous landscape. J Geophys Res 115:G00J02. doi: 10.1029/2010JG001423 Google Scholar
  15. Desai AR, Moorcroft PR, Bolstad PV, Davis KJ (2007) Regional carbon fluxes from a biometrically constrained dynamic ecosystem model: impact of disturbance, CO2 fertilization and heterogeneous land cover. J Geophys Res 112:G01017. doi: 10.1029/2006JG000264 Google Scholar
  16. Desai AR, Richardson AD, Moffat AM, Kattge J, Hollinger DY, Barr A, Falge E, Noormets A, Papale D, Reichstein M, Stauch VJ (2008) Cross site evaluation of eddy covariance GPP and RE decomposition techniques. Agric For Meteorol 148:821–838. doi: 10.1016/j.agrformet.2007.11.012 CrossRefGoogle Scholar
  17. Desai AR, Helliker BR, Moorcroft PR, Andrews AE, Berry JA (2010) Interannual variability in regional carbon fluxes from top-down and bottom-up perspectives. J Geophys Res 115:G02011. doi: 10.1029/2009JG001122 Google Scholar
  18. Detto M, Molini A, Katul G, Stoy P, Palmroth S, Baldocchi DD (2012) Causality and persistence in ecological systems: a nonparametric spectral granger causality approach. Am Nat 179:524–535PubMedCrossRefGoogle Scholar
  19. Dietze MC et al (2011) Identifying the time scales that dominate model error: a North American synthesis of the spectral properties of ecosystem models. J Geophys Res 116:G04029. doi: 10.1029/2011JG001661 Google Scholar
  20. Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345CrossRefGoogle Scholar
  21. Foken T, Aubinet M, Leuning R (2012) The eddy-covariance method. In: Aubinet M et al (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 1–19CrossRefGoogle Scholar
  22. Friedlingstein P, Cox P, Betts R et al (2006) Climate—carbon cycle feedback analysis, results from the C4MIP model intercomparison. J Clim 19:3337–3353CrossRefGoogle Scholar
  23. Gellesch E, Hein R, Jaeschke A, Beierkuhnlein C, Jentsch A (2013) Biotic interactions in the face of climate change. Prog Bot 74:321–349. doi: 10.1007/978-3-642-30967-0_12 CrossRefGoogle Scholar
  24. Heinsch FA, Zhao M, Running SW et al (2006) Evaluation of remote sensing based terrestrial productivity from MODIS using Ameriflux tower eddy flux network observations. IEEE Trans Geosci Remote 44:1908–1925. doi: 10.1109/TGRS.2005.853936 CrossRefGoogle Scholar
  25. Huang NE, Wu Z (2008) A review on Hilbert–Huang transform: method and its applications to geophysical studies. Rev Geophys 46:RG2006. doi: 10.1029/2007RG000228 Google Scholar
  26. Keenan TF et al (2012a) Evaluation of terrestrial biosphere model performance for land-atmosphere CO2 exchange on inter-annual time scales: results from the North American Carbon Program interim site synthesis. Glob Change Biol. doi: 10.1111/j.1365-2486.2012.02678.x Google Scholar
  27. Keenan TF, Davidson E, Moffat A, Munger W, Richardson AD (2012b) Using model-data fusion to interpret past trends, and quantify uncertainties in future projections, of forest ecosystem carbon cycling. Glob Change Biol 18:2555–2569CrossRefGoogle Scholar
  28. Kumar M, Monteith JL (1981) Remote sensing of crop growth. In: Smith H (ed) Plants and the daylight spectrum. Academic Press, London, pp 133–144Google Scholar
  29. Le Quéré C, Raupach MR, Canadell JG et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci. doi: 10.1038/ngeo689 Google Scholar
  30. LeBauer DS, Wang D, Richter KT, Davidson CC, Dietze MC (2013) Facilitating feedbacks between field measurements and ecosystem models. Ecol Monogr 83:133–154. doi: 10.1890/12-0137.1 Google Scholar
  31. Mahecha MD, Reichstein M, Lange H, Carvalhais N, Bernhofer C, Grünwald T, Papale D, Seufert G (2007) Characterizing ecosystem-atmosphere interactions from short to interannual time scales. Biogeosciences 4:743–758CrossRefGoogle Scholar
  32. Mahecha MD, Reichstein M, Jung M, Seneviratne SI, Zaehle S, Beer C, Braakhekke MC, Carvalhais N, Lange H, Le Maire G, Moors E (2010) Comparing observations and process-based simulations of biosphere-atmosphere exchanges on multiple time scales. J Geophys Res 115:G02003. doi: 10.1029/2009JG001016 Google Scholar
  33. Medvigy D, Wofsy SC, Munger JW, Hollinger DY, Moorcroft PR (2009) Mechanistic scaling of ecosystem function and dynamics in space and time: the Ecosystem Demography model version 2. J Geophys Res 114:G01002. doi: 10.1029/2008JG000812 Google Scholar
  34. Medvigy D, Wofsy SC, Munger JW, Moorcroft PR (2010) Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability. Proc Natl Acad Sci USA 107:8275–8280PubMedCrossRefGoogle Scholar
  35. Moffat AM, Papale D, Reichstein M et al (2007) Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agric For Meteorol 147:209–232. doi: 10.1016/j.agrformet.2007.08.011 CrossRefGoogle Scholar
  36. Moorcroft PR (2006) How close are we to a predictive science of the biosphere? Trends Ecol Evol 21:400–407PubMedCrossRefGoogle Scholar
  37. Niu S et al (2012) Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytol 194:775–783. doi: 10.1111/j.1469-8137.2012.04095.x PubMedCrossRefGoogle Scholar
  38. Norby RJ, Zak DR (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu Rev Ecol Evol Syst 42:181–203CrossRefGoogle Scholar
  39. Raupach MR, Rayner PJ, Barrett DJ, DeFries RS, Heimann M, Ojima DS, Quegan S, Schmullius CC (2005) Model-data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications. Glob Change Biol 11:378–397CrossRefGoogle Scholar
  40. Ricciuto DM, Butler MP, Davis KJ, Cook BD, Bakwin P, Andrews A, Teclaw RM (2008) Causes of interannual variability in ecosystem-atmosphere CO2 exchange in a northern Wisconsin forest using a Bayesian model calibration. Agric For Meteorol 148:309–327CrossRefGoogle Scholar
  41. Richardson AR et al (2012) Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob Change Biol 18:566–584. doi: 10.1111/j.1365-2486.2011.02562.x CrossRefGoogle Scholar
  42. Schaefer K et al (2012) A model-data comparison of gross primary productivity: results from the North American Carbon Program Site Synthesis. J Geophys Res 117:G03010. doi: 10.1029/2012JG001960 Google Scholar
  43. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596Google Scholar
  44. Sellers PJ (1985) Canopy reflectance, photosynthesis and transpiration. Int J Remote Sens 6:1335–1372. doi: 10.1080/01431168508948283 CrossRefGoogle Scholar
  45. Sprintsin M, Chen JM, Desai AR, Gough CM (2012) Evaluation of leaf-to-canopy upscaling methodologies against carbon flux data in North America. J Geophys Res 117:G01023. doi: 10.1029/2010JG001407 Google Scholar
  46. Stoy PC, Richardson AD, Baldocchi DD, Katul GG, Stanovick J, Mahecha MD, Reichstein M, Detto M, Law BE, Wohlfahrt G, Arriga N, Campos J, McCaughey JH, Montagnani L, Paw UKT, Sevanto S, Williams M (2009) Biosphere-atmosphere exchange of CO2 in relation to climate: a cross-biome analysis across multiple time scales. Biogeosciences 6:2297–2312CrossRefGoogle Scholar
  47. Van Gorsel E, Delpierre N, Leuning R et al (2009) Estimating nocturnal ecosystem respiration from the vertical turbulence flux and change in storage of CO2. Agric For Meteorol 149:1919–1930. doi: 10.1016/j.agrformet.2009.06.020 CrossRefGoogle Scholar
  48. Walter J, Beierkuhnlein C, Jentsch A, Kreyling J (2013) Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Environ Exp Bot. doi: 10.1016/j.envexpbot.2012.02.009 Google Scholar
  49. Williams M, Richardson AD, Reichstein M, Stoy PC, Peylin P, Verbeeck H, Carvalhais N, Jung M, Hollinger DY, Kattge J, Leuning R, Luo Y, Tomelleri E, Trudinger C, Wang Y-P (2009) Improving land surface models with FLUXNET data. Biogeosciences 6:1341–1359CrossRefGoogle Scholar
  50. Wu C, Chen JM, Black TA et al (2013) Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Glob Ecol Biogeogr. doi: 10.1111/geb.12044 Google Scholar
  51. Yi C, Davis KJ, Bakwin PS, Berger BW, Marr L (2000) The influence of advection on measurements of the net ecosystem-atmosphere exchange of CO2 from a very tall tower. J Geophys Res 105:9991–9999CrossRefGoogle Scholar
  52. Yi C, Ricciuto DM, Li R et al (2010) Climate control of terrestrial carbon exchange across biomes and continents. Environ Res Lett 5:034007. doi: 10.1088/1748-9326/5/3/034007 CrossRefGoogle Scholar
  53. Zobitz J, Desai AR, Moore DJP, Chadwick MA (2011) A primer for data assimilation with ecological models using Markov Chain Monte Carlo (MCMC). Oecologia 167:599–611. doi: 10.1007/s00442-011-2107-9 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Atmospheric and Oceanic SciencesUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations