Photosynthesis Research

, Volume 117, Issue 1–3, pp 423–429 | Cite as

Gold or silver deposited on layered manganese oxide: a functional model for the water-oxidizing complex in photosystem II

  • Mohammad Mahdi Najafpour
  • Fahimeh Rahimi
  • Davood Jafarian Sedigh
  • Robert Carpentier
  • Julian J. Eaton-Rye
  • Jian-Ren Shen
  • Suleyman I. Allakhverdiev
Regular Paper


In this report, gold or silver deposited on layered manganese oxide has been synthesized by a simple method and characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction spectrometry, atomic absorption spectroscopy, and energy-dispersive X-ray mapping. The gold deposited on layered manganese oxide showed efficient catalytic activity toward water oxidation in the presence of cerium(IV) ammonium nitrate. The properties associated with this compound suggest it is a functional model for the water-oxidizing complex in photosystem II.


Gold Nano-sized manganese oxide Oxygen Silver Water oxidation 



The authors are grateful to the Institute for Advanced Studies in Basic Sciences and the National Elite Foundation for financial support. This study was also supported by grants from the Russian Foundation for Basic Research, Molecular and Cell Biology Programs of the Russian Academy of Sciences to SIA.

Supplementary material

11120_2013_9899_MOESM1_ESM.doc (4 mb)
Supplementary material 1 (DOC 4132 kb)


  1. Amini M, Najafpour MM, Nayeri S, Pashaei B, Bagherzadeh M (2012) Nano-layered manganese oxides as low-cost, easily synthesized, environmentally friendly and efficient catalysts for epoxidation of olefins. RSC Adv 2:3654–3657CrossRefGoogle Scholar
  2. Balzani V, Credi A, Venturi M (2008) Photochemical conversion of solar energy. ChemSusChem 1:26–58PubMedCrossRefGoogle Scholar
  3. Bockris OM (1977) Energy-the solar hydrogen alternative. Wiley, New YorkGoogle Scholar
  4. Cady CW, Crabtree RH, Brudvig GW (2008) Functional models for the oxygen-evolving complex of photosystem II. Coord Chem Rev 252:444–455PubMedCrossRefGoogle Scholar
  5. Cahiez G, Alami M, Taylor RJK, Reid M, Foot JS (2004) Manganese dioxide. In: Paquette LA (ed) Encyclopedia of reagents for organic synthesis. Wiley, New YorkGoogle Scholar
  6. Faunce T, Styring S, Wasielewski MR, Brudvig GW, Rutherford AW, Messinger J, Lee AF, Hill CL, de Groot H, Fontecave M, MacFarlane DR, Hankamer B, Nocera GG, Tiede DM, Dau H, Hillier W, Wang L (2013) Artificial photosynthesis as a frontier technology for energy sustainability. Energy Environ Sci 6:1074–1076CrossRefGoogle Scholar
  7. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen evolving centre. Science 303:1831–1838PubMedCrossRefGoogle Scholar
  8. Glikman TS, Shcheglova IS (1968) Water oxidation by Mn oxide. Kinetika i Kataliz 9:461–480Google Scholar
  9. Gust D, Moore TA, Moore AL (2012) Realizing artificial photosynthesis. Faraday Discuss 155:9–26PubMedCrossRefGoogle Scholar
  10. Harriman A, Pickering IJ, Thomas JM, Christensen PA (1988) Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J Chem Soc Faraday Trans I 84:2795–2806CrossRefGoogle Scholar
  11. Hocking RK, Brimblecomble R, Chang SLY, Singh A, Cheah MH, Glover C, Casey WH, Spiccia WL (2011) Water oxidation catalysis by manganese in a geochemical-like cycle. Nat Chem 3:461–466PubMedGoogle Scholar
  12. Hou HJ (2010) Structural and mechanistic aspects of manganese-oxo compounds in water oxidation catalysis and potential. App J Integr Plant Biol 5:704–711CrossRefGoogle Scholar
  13. Kanan WMW, Nocera DG (2008) In situ formation of an oxygen evolving catalyst in neutral water containing phosphate and Co2+. Science 32:1072–1075CrossRefGoogle Scholar
  14. Karlsson EA, Lee B, Åkermark T, Johnston TEV, Kärkäs MD, Sun J, Hansson Ö, Bäckvall J, Åkermark B (2011) Photosensitized water oxidation by use of a bioinspired manganese catalyst. Angew Chem Int Ed 123:11122–11919Google Scholar
  15. Liu X, Wang F (2012) Transition metal complexes that catalyze oxygen formation from water: 1979–2010. Coord Chem Rev 256:1115–1136CrossRefGoogle Scholar
  16. Longo A, Liotta LF, Di Carlo G, Giannici F, Venezia AM, Martorana A (2010) The structure and the metal support interaction of the Au/manganese oxide catalysts. Chem Mater 22:3952–3960CrossRefGoogle Scholar
  17. Morita M, Iwakura C, Tamura H (1977) The anodic characteristics of manganese dioxide electrodes prepared by thermal decomposition of manganese nitrate. Electrochim Acta 22:325–328CrossRefGoogle Scholar
  18. Najafpour MM (2011) Self-assembled layered hybrid [Ru(bpy)3]+2/manganese(III, IV) oxide: a new and efficient strategy for water oxidation. Chem Commun 47:11724–11726CrossRefGoogle Scholar
  19. Najafpour MM (2013) An approach for catalyst design in artificial photosynthetic systems: focus on nano-sized inorganic cores within proteins. Photosynth Res. doi: 10.1007/s11120-012-9792-z Google Scholar
  20. Najafpour MM, Allakhverdiev SI (2012) Manganese compounds as water oxidizing catalysts for hydrogen production via water splitting: from manganese complexes to nano-sized manganese oxides. Int J Hydrogen Energy 37:8753–8764CrossRefGoogle Scholar
  21. Najafpour MM, Moghaddam AN (2012) Nano-sized manganese oxide: a proposed catalyst for water oxidation in the reaction of some manganese complexes and cerium(IV) ammonium nitrate. Dalton Trans 41:10292–10297PubMedCrossRefGoogle Scholar
  22. Najafpour MM, Ehrenberg T, Wiechen M, Kurz P (2010) Calcium manganese(III) oxides (CaMn2O4·xH2O) as biomimetic oxygen-evolving catalysts. Angew Chem Int Edit 49:2233–2237CrossRefGoogle Scholar
  23. Najafpour MM, Nayeri S, Pashaei B (2011) Nano-size amorphous calcium–manganese oxide as an efficient and biomimetic water oxidizing catalyst for artificial photosynthesis: back to manganese. Dalton Trans 40:9374–9378PubMedCrossRefGoogle Scholar
  24. Najafpour MM, Nemati Moghaddam A, Yang YN, Aro EM, Carpentier R, Eaton-Rye JJ, Lee CH, Allakhverdiev SI (2012a) Biological water-oxidizing complex: a nano-sized manganese–calcium oxide in a protein environment. Photosynth Res 114:1–13PubMedCrossRefGoogle Scholar
  25. Najafpour MM, Rahimi F, Aro EM, Lee CH, Allakhverdiev SI (2012b) Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review. J Roy Soc Interface 9:2383–2395CrossRefGoogle Scholar
  26. Najafpour MM, Pashaei B, Nayeri S (2012c) Nano-sized layered aluminium or zinc–manganese oxides as efficient water oxidizing catalysts. Dalton Trans 41:7134–7140PubMedCrossRefGoogle Scholar
  27. Najafpour MM, Rahimi F, Amini M, Nayeri S, Bagherzadeh M (2012d) Avery simple method to synthesize nano-sized manganese oxide: an efficient catalyst for water oxidation and epoxidation of olefins. Dalton Trans 41:11026–11031PubMedCrossRefGoogle Scholar
  28. Najafpour MM, Jafarian Sedigh D, Pashaei B, Nayeri S (2013) Water oxidation by nano-layered manganese oxides in the presence of cerium(IV) ammonium nitrate: important factors and a proposed self-repair mechanism. New J Chem. doi: 10.1039/C3NJ00372H Google Scholar
  29. Nakamoto K (2009) In infrared and Raman spectra of inorganic and coordination compounds. Wiley-Interscience, New YorkGoogle Scholar
  30. Oyama ST (2008) Mechanisms in homogeneous and heterogeneous epoxidation catalysis. Elsevier, AmsterdamGoogle Scholar
  31. Ruttinger W, Dismukes GC (1997) Synthetic water oxidation catalysts for artificial photosynthetic water oxidation. Chem Rev 97:1–24PubMedCrossRefGoogle Scholar
  32. Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60PubMedCrossRefGoogle Scholar
  33. Wang L, Liu Q, Huang X, Liu Y, Cao Y, Fan K (2009) Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation. Appl Catal B: Environ 88:204–212CrossRefGoogle Scholar
  34. Wiechen M, Berends HM, Kurz P (2012) Water oxidation catalysed by manganese compounds: from complexes to ‘biomimetic rocks’. Dalton Trans 41:21–31PubMedCrossRefGoogle Scholar
  35. Yamashita T, Vannice A (1997) Temperature-programmed desorption of NO adsorbed on Mn2O3 and Mn3O4. Appl Catal B Environ 13:141–155CrossRefGoogle Scholar
  36. Yeo BS, Bell AT (2011) Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J Am Chem Soc 133:5587–5593PubMedCrossRefGoogle Scholar
  37. Yeo BS, Bell AT (2012) In situ Raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J Phys Chem C 116:8394–8400CrossRefGoogle Scholar
  38. Young KJ, Gao Y, Brudvig GW (2011) Photocatalytic water oxidation using manganese compounds immobilized in nafion polymer membranes. Australian J Chem 64:1219–1226Google Scholar
  39. Zaharieva I, Najafpour MM, Wiechen M, Haumann M, Kurz P, Dau H (2011) Synthetic manganese–calcium oxides mimic the water-oxidizing complex of photosynthesis functionally and structurally. Energy Environ Sci 4:2400–2408CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mohammad Mahdi Najafpour
    • 1
    • 2
  • Fahimeh Rahimi
    • 1
  • Davood Jafarian Sedigh
    • 1
  • Robert Carpentier
    • 3
  • Julian J. Eaton-Rye
    • 4
  • Jian-Ren Shen
    • 5
  • Suleyman I. Allakhverdiev
    • 6
    • 7
  1. 1.Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS)ZanjanIran
  2. 2.Center of Climate Change and Global WarmingInstitute for Advanced Studies in Basic Sciences (IASBS)ZanjanIran
  3. 3.Groupe de Recherche en Biologie VégétaleUniversité du Québec à Trois-RivièresTrois-RivièresCanada
  4. 4.Department of BiochemistryUniversity of OtagoDunedinNew Zealand
  5. 5.Graduate School of Natural Science and Technology/Faculty of ScienceOkayama UniversityOkayamaJapan
  6. 6.Controlled Photobiosynthesis LaboratoryInstitute of Plant Physiology, Russian Academy of SciencesMoscowRussia
  7. 7.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, MoscowRussia

Personalised recommendations