Advertisement

Photosynthesis Research

, Volume 116, Issue 2–3, pp 367–388 | Cite as

Structure-based modeling of energy transfer in photosynthesis

  • Thomas RengerEmail author
  • Mohamed El-Amine Madjet
  • Marcel Schmidt am Busch
  • Julian Adolphs
  • Frank Müh
Review

Abstract

We provide a minimal model for a structure-based simulation of excitation energy transfer in pigment–protein complexes (PPCs). In our treatment, the PPC is assembled from its building blocks. The latter are defined such that electron exchange occurs only within, but not between these units. The variational principle is applied to investigate how the Coulomb interaction between building blocks changes the character of the electronic states of the PPC. In this way, the standard exciton Hamiltonian is obtained from first principles and a hierarchy of calculation schemes for the parameters of this Hamiltonian arises. Possible extensions of this approach are discussed concerning (i) the inclusion of dispersive site energy shifts and (ii) the inclusion of electron exchange between pigments. First results on electron exchange within the special pair of photosystem II of cyanobacteria and higher plants are presented and compared with earlier results on purple bacteria. In the last part of this mini-review, the coupling of electronic and nuclear degrees of freedom is considered. First, the standard exciton–vibrational Hamiltonian is parameterized with the help of a normal mode analysis of the PPC. Second, dynamical theories are discussed that exploit this Hamiltonian in the study of dissipative exciton motion.

Keywords

Pigment–protein complex Light-harvesting Förster theory Redfield theory Modified Redfield theory Generalized Förster theory Site energies Excitonic coupling Spectral density 

Abbreviations

BChl

Bacteriochlorophyll

Chl

Chlorophyll

CDC

Charge density coupling

ESP

Electrostatic potential

FMO

Fenna–Matthews–Olson

LH1

Core light-harvesting complex of purple bacteria

LH2

Peripheral light-harvesting complex of purple bacteria

LHCII

Light-harvesting complex of photosystem II

NMA

Normal mode analysis

PES

Potential energy surface

PPC

Pigment-protein complex

PSI

Photosystem I

PSII

Photosystem II

QC

Quantum chemical

RC

Reaction center

bRC

Reaction center of purple bacteria

TDC

Transition density cube

TDDFT

Time-dependent density functional theory

TrEsp

Transition charge from electrostatic potentials

Notes

Acknowledgments

Financial support by the Austrian Science Fund (FWF): P 24774-N27 is gratefully acknowledged.

References

  1. Adolphs J, Renger T (2006) How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys J 91:2778–2797CrossRefPubMedGoogle Scholar
  2. Adolphs J, Müh F, Madjet ME, Renger T (2008) Calculation of pigment transition energies in the FMO protein: from simplicity to complexity and back. Photosynth Res 95:197–209CrossRefPubMedGoogle Scholar
  3. Adolphs J, Müh F, Madjet ME, Schmidt am Busch M, Renger T (2010) Structure-based calculations of optical spectra of photosystem I suggest an asymmetric light-harvesting process. J Am Chem Soc 132:3331–3343CrossRefPubMedGoogle Scholar
  4. Bergström H, van Grondelle R, Sundström V (1989) Characterization of excitation energy trapping in photosynthetic purple bacteria at 77 K. FEBS Lett 250:503–508CrossRefGoogle Scholar
  5. Böttcher CJF (1973) Theory of electric polarization. Elsevier, AmsterdamGoogle Scholar
  6. Caycedo-Soler F, Chin AW, Almeida J, Huelga SF, Plenio M (2012) The nature of the low energy band of the Fenna–Matthews–Olson complex: vibronic signatures. J Chem Phys 136:155,102CrossRefGoogle Scholar
  7. Chin AW, Rivas A, Huelga SF, Plenio MB (2010) Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials. J Math Phys 51:092,109CrossRefGoogle Scholar
  8. Christensson N, Kauffmann HF, Pullerits T, Mancal T (2012) Origin of long-lived coherences in light-harvesting complexes. J Phys Chem B 116:7449–7454CrossRefPubMedGoogle Scholar
  9. Creemers TMH, De Caro CA, Visschers RW, van Grondelle R, Völker S (1999) Spectral hole burning and fluorescence line narrowing in subunits of the light-harvesting complex LH1 of purple bacteria. J Phys Chem B 103:9770–9776CrossRefGoogle Scholar
  10. Curutchet C, Scholes GD, Mennucci B, Cammi R (2007) How solvent controls electronic energy transfer and light harvesting: toward a quantum-mechanical description of reaction field and screening effects. J Phys Chem B 111:13253–13265CrossRefPubMedGoogle Scholar
  11. Curutchet C, Kongsted J, Munoz-Losa A, Hossein-Nejad H, Scholes GD, Mennucci B (2011) Photosynthetic light-harvesting is tuned by the heterogeneous polarizable environment of the protein. J Am Chem Soc 133:3078–3084CrossRefPubMedGoogle Scholar
  12. Damjanovic A, Kosztin I, Kleinekathöfer U, Schulten K (2002) Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry, and polaron model study. Phys Rev E 65(1–24):031,919Google Scholar
  13. Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T, Cheng YC, Blankenship RE, Fleming GR (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–786CrossRefPubMedGoogle Scholar
  14. Fenna RE, Matthews BW (1975) Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature 258:573–577CrossRefGoogle Scholar
  15. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys Leipzig 2:55–75CrossRefGoogle Scholar
  16. Fujimoto KJ (2010) Transition-density–fragment interaction approach for exciton-coupled circular dichroism spectra. J Chem Phys 133:124101CrossRefPubMedGoogle Scholar
  17. Fujimoto KJ (2012) Transition-density–fragment interaction combined with transfer integral approach for excitation-energy transfer via charge transfer states. J Chem Phys 137:034101CrossRefPubMedGoogle Scholar
  18. Fujimoto KJ, Hayashi S (2009) Electronic coulombic coupling of excitation-energy transfer in xanthorhodopsin. J Am Chem Soc 131:14,152CrossRefGoogle Scholar
  19. Fujimoto KJ, Yang W (2008) Density–fragment interaction approach for quantum-mechanical/molecular-mechanical calculations with application to the excited states of a Mg2+-sensitive dye. J Chem Phys 129:054,102CrossRefGoogle Scholar
  20. Georgakopoulou S, Frese R, Johnson E, Koolhaas C, Cogdell RJ, van Grondelle R, van der Zwan G (2002) Absorption and CD spectroscopy and modeling of various LH2 complexes from purple bacteria. Biophys J 82:2184–2197CrossRefPubMedGoogle Scholar
  21. Heinz H, Suter UW, Leontidis E (2001) Simple and accurate computation of solvatochromic shifts in π → π* transitions of aromatic chromophores. J Am Chem Soc 123:11229–11236CrossRefPubMedGoogle Scholar
  22. Hsu C, Head-Gordon M, Head-Gordon T, Fleming GR (2001) Excitation energy transfer in condensed media. J Chem Phys 114:3065–3072CrossRefGoogle Scholar
  23. Hughes JL, Smith P, Pace R, Krausz E (2006) Charge separation in photosystem II core complexes induced by 690–730 nm excitation at 1.7 K. Biochim Biophys Acta 4:841–851Google Scholar
  24. Ikabata Y, Nakai H (2012) Extension of local response dispersion method to excited-state calculation based on time-dependent density functional theory. J Chem Phys 137:124,106CrossRefGoogle Scholar
  25. Ishizaki A, Fleming GR (2009) Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. J Chem Phys 130:234,111Google Scholar
  26. Jang S, Newton MD, Silbey RJ (2004) Multichromophoric Förster resonance energy transfer. Phys Rev Lett 92:218,301Google Scholar
  27. Jing Y, Zheng R, Li HX, Shi Q (2011) Theoretical study of the electronic-vibrational coupling in the Qy states of the photosynthetic reaction center in purple bacteria. J Phys Chem B 116:1164–1171CrossRefGoogle Scholar
  28. Katiliene Z, Kautilius E, Woodbury NW (2003) Energy trapping and detrapping in reaction center mutants from Rhodobacter sphaeroides. Biophys J 84:3240–3251CrossRefPubMedGoogle Scholar
  29. Kell A, Feng X, Reppert M, Jankowiak R (2013) On the shape of the phonon spectral density in photosynthetic complexes. J Phys Chem B 117:7317–7323CrossRefPubMedGoogle Scholar
  30. Kleima FJ, Hofmann E, Gobets B, van Stokkum IHM, van Grondelle R, Diederichs K, van Amerongen H (2000) Förster excitation energy transfer in peridinin–chlorophyll-a–protein. Biophys J 78:344–353CrossRefPubMedGoogle Scholar
  31. Knox RS, Spring BQ (2003) Dipole strengths in the chlorophylls. Photochem Photobiol 77(5):497–501CrossRefPubMedGoogle Scholar
  32. König C, Neugebauer J (2012) Quantum chemical description of absorption properties and excited-state processes in photosynthtetic systems. ChemPhysChem 13:386–425CrossRefPubMedGoogle Scholar
  33. Krausz E, Hughes JL, Smith P, Pace R, Årsköld SP (2005) Oxygen-evolving photosystem II core complexes: a new paradigm based on the spectral identification of the charge separating state, the primary acceptor and assignment of low-temperature fluorescence. Photochem Photobiol Sci 4:744–753CrossRefPubMedGoogle Scholar
  34. Kreisbeck C, Kramer T (2012) Long-lived electronic coherence in dissipative exciton dynamics of light-harvesting complexes. J Phys Chem Lett 3:2828–2833CrossRefGoogle Scholar
  35. Krueger BP, Scholes GD, Fleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem B 102:5378–5386CrossRefGoogle Scholar
  36. Kühn O, Renger T, May V (1996) Theory of exciton–vibrational dynamics in molecular dimers. Chem Phys 204:99–114CrossRefGoogle Scholar
  37. Law CJ, Cogdell RJ (2008) The light-harvesting system of purple anoxygenic photosynthetic bacteria. In: Renger G (eds) Primary processes of photosynthesis. RSC Publishing, Cambridge, pp 205–259Google Scholar
  38. Limantara L, Sakamoto Y, Koyama Y, Nagae H (1997) Effects of nonpolar and polar solvents on the Qx and Qy energies of bacteriochlorophyll a and bacteriopheophytin a. Photochem Photobiol 65:330–337CrossRefGoogle Scholar
  39. Linke M, Lauer A, von Heimberger T, Zacarias A, Heyne K (2008) Three-dimensional orientation of the Qy transition dipole moment within the chlorophyll a molecule determined by femtosecond polarization resolved VIS pump-IR probe spectroscopy. J Am Chem Soc 130:14,904–14,905CrossRefGoogle Scholar
  40. Louwe RJW, Vrieze J, Hoff AJ, Aartsma TJ (1997) Toward an integral interpretation of the optical steady-state spectra of the FMO-complex of Prosthecochloris aestuarii. 2. Exciton simulations. J Phys Chem B 101:11280–11287CrossRefGoogle Scholar
  41. MacColl R (1998) Cyanobacterial phycobilisomes. J Struc Biol 124:311–334CrossRefGoogle Scholar
  42. Madjet ME, Abdurahman A, Renger T (2006) Intermolecular coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers. J Phys Chem B 110:17,268–17,281CrossRefGoogle Scholar
  43. Madjet ME, Müh F, Renger T (2009) Deciphering the influence of short-range electronic couplings on optical properties of molecular dimers: application to special pairs in photosynthesis. J Phys Chem B 113:12,603–12,614CrossRefGoogle Scholar
  44. Müh F, Renger T (2012) Refined structure-based simulation of plant light-harvesting complex II: linear optical spectra of trimers and aggregates. Biochim Biophys Acta 1817:1446–1460CrossRefPubMedGoogle Scholar
  45. Müh F, Renger T (2013) Structure-based calculation of pigment-protein and excitonic pigment–pigment coupling in photosynthetic light-harvesting complexes. In: van der Est A, Golber J (eds) The biophysics of photosynthesis. Springer (in press)Google Scholar
  46. Müh F, Zouni A (2005) Extinction coefficients and critical solubilisation concentrations of photosystems I and II from Thermosynechococcus elongatus. Biochim Biophys Acta 1708:219–228CrossRefPubMedGoogle Scholar
  47. Müh F, Madjet ME, Adolphs J, Abdurahman A, Rabenstein B, Ishikita H, Knapp EW, Renger T (2007) α-Helices direct excitation energy flow in the Fenna–Matthews–Olson protein. Proc Natl Acad Sci USA 104:16862–16867CrossRefPubMedGoogle Scholar
  48. Müh F, Madjet ME, Renger T (2010) Structure-based identification of energy sinks in plant light-harvesting complex II. J Phys Chem B 114:13517–13535CrossRefPubMedGoogle Scholar
  49. Müh F, Madjet ME, Renger T (2012) Structure-based simulation of linear optical spectra of the CP43 core antenna of photosystem II. Photosynth Res 111:87–101CrossRefPubMedGoogle Scholar
  50. Mukai K, Abe S, Sumi H (1999) Theory of rapid excitation energy transfer from B800 to optically forbidden exciton states of B850 in the antenna system LH2 of photosynthetic purple bacteria. J Phys Chem B 103:6096–6102CrossRefGoogle Scholar
  51. Nalbach P, Braun D, Thorwart M (2011) Exciton transfer dynamics and quantumness of energy transfer in the Fenna–Matthews–Olson complex. Phys Rev E 84:041926CrossRefGoogle Scholar
  52. Neugebauer J (2009) Subsystem-based theoretical spectroscopy of biomolecules and biomolecular assemblies. ChemPhysChem 10:3148–3173CrossRefPubMedGoogle Scholar
  53. Novoderezhkin V, Yakovlev AG, van Grondelle R, Shuvalov VA (2004) Coherent nuclear and electronic dynamics in primary charge separation in photosynthetic reaction centers: a Redfield theory approach. J Phys Chem B 108:7445–7457Google Scholar
  54. Novoderezhkin VI, van Grondelle R (2010) Physical origins and models of energy transfer in photosynthetic light-harvesting. Phys Chem Chem Phys 12:7352–7365CrossRefPubMedGoogle Scholar
  55. Novoderezhkin VI, Dekker JP, van Grondelle R (2007) Mixing of exciton and charge-transfer states in photosystem II reaction centers: modeling of stark spectra with modified redfield theory. Biophys J 93:1293–1311CrossRefPubMedGoogle Scholar
  56. Olbrich C, Strümpfer J, Schulten K, Kleinekathöfer U (2011) Quest for spatially correlated fluctuations in the FMO light-harvesting complex. J Phys Chem B 115:758–764CrossRefPubMedGoogle Scholar
  57. Olbrich C, Strümpfer J, Schulten K, Kleinekathöfer U (2011) Theory and simulation of the environmental effects on FMO electronic transitions. J Phys Chem Lett 2:1771–1776CrossRefGoogle Scholar
  58. Pawlowicz NP, Groot ML, van Stokkum IHM, van Grondelle R (2007) Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy. Biophys J 93:2732–2742CrossRefPubMedGoogle Scholar
  59. Raszewski G, Renger T (2008) Light harvesting in photosystem II core complexes is limited by the transfer to the trap: Can the core complex turn into a photoprotective mode? J Am Chem Soc 130:4431–4446CrossRefPubMedGoogle Scholar
  60. Raszewski G, Saenger W, Renger T (2005) Theory of optical spectra of photosystem II reaction centers: location of the triplet state and the identity of the primary electron donor. J Phys Chem B 88:986–998Google Scholar
  61. Redfield AG (1957) On the theory of relaxation processes. IBM Journal Res Dev 1:19–31CrossRefGoogle Scholar
  62. Renge I, Mauring K (2013) Spectral shift mechanism of chlorophylls in liquids and proteins. J Biol Chem 102:301–313Google Scholar
  63. Renger G (2008) Overview of primary processes of photosynthesis. In: Renger G (eds) Primary processes of photosynthesis. RSC Publishing, Cambridge, pp 5–38Google Scholar
  64. Renger T (2012) Photophysics of photosynthetic reaction centers. In: Wydrzynski TJ, Hillier W (eds) Molecular solar fuels. RSC Publishing, Cambridge, pp 143–159Google Scholar
  65. Renger T, Marcus RA (2002) On the relation of protein dynamics and exciton relaxation in pigment–protein complexes: an estimation of the spectral density and a theory for the calculation of optical spectra. J Chem Phys 116:9997–10,019CrossRefGoogle Scholar
  66. Renger T, Marcus RA (2003) Variable-range hopping electron transfer through disordered bridge states: application to DNA. J Chem Phys 107:8404–8419CrossRefGoogle Scholar
  67. Renger T, May V (1998) Ultrafast exciton motion in photosynthetic antenna systems: the FMO-complex. J Phys Chem A 102:4381–4391CrossRefGoogle Scholar
  68. Renger T, Müh F (2012) Theory of excitonic couplings in dielectric media. Photosynth Res 111:47–52CrossRefPubMedGoogle Scholar
  69. Renger T, Müh F (2013) Understanding photosynthetic light-harvesting: a bottom up theoretical approach. Phys Chem Chem Phys 15:3348–3371CrossRefPubMedGoogle Scholar
  70. Renger T, Schlodder E (2010) Primary photophysical processes in photosystem II: bridging the gap between crystal structure and optical spectra. ChemPhysChem 11:1141–1153CrossRefPubMedGoogle Scholar
  71. Renger T, Grundkötter B, Madjet ME, Müh F (2008) Theory of solvatochromic shifts in nonpolar solvents reveals a new spectroscopic rule. Proc Natl Acad Sci USA 105(36):13,235–13,240CrossRefGoogle Scholar
  72. Renger T, Madjet ME, Müh F, Trostmann I, Schmitt FJ, Theiss C, Paulsen H, Eichler HJ, Knorr A, Renger G (2009) Thermally activated superradiance and intersystem crossing in the water-soluble chlorophyll binding protein. J Phys Chem B 113:9948–9957CrossRefPubMedGoogle Scholar
  73. Renger T, Klinger A, Steinecker F, Schmidt am Busch M, Numata J, Müh F (2012) Normal mode analysis of the spectral density of the Fenna–Matthews–Olson light-harvesting protein: how the protein dissipates the excess energy of excitons. J Phys Chem B 116:14565–14580CrossRefPubMedGoogle Scholar
  74. Rivera E, Montemayor D, Masia M, Coker D (2013) Influence of site-dependent pigment–protein interaction on excitation energy transfer in photosynthetic light-harvesting. J Phys Chem B 117:5510–5521CrossRefPubMedGoogle Scholar
  75. Roszak W, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW, Cogdell RJ (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302:1969–1972CrossRefPubMedGoogle Scholar
  76. Savhikin S, Buck D, Struve WS (1997) Oscillating anisotropies in a bacteriochlorophyll protein: evidence for quantum beating between exciton levels. Chem Phys 223:303–312CrossRefGoogle Scholar
  77. Schmidt am Busch M, Knapp EW (2005) One-electron reduction potential for oxygen- and sulfur-centered organic radicals in protic and aprotic solvents. J Am Chem Soc 127:15,730–15,737CrossRefGoogle Scholar
  78. Schmidt am Busch M, Müh F, Madjet ME, Renger T (2011) The eighth bacteriochlorophyll completes the excitation energy funnel in the FMO protein. J Phys Chem Lett 2:93–98CrossRefGoogle Scholar
  79. Scholes GD, Gould IR, Cogdell RJ, Fleming GR (1999) Ab initio molecular orbital calculations of electronic couplings in the LH2 bacterial light-harvesting complex of Rps. acidophila. J Phys Chem B 103:2543–2553CrossRefGoogle Scholar
  80. Senn HM, Thiel W (2007) QM/MM methods for biological systems. Top Curr Chem 268:173–290CrossRefGoogle Scholar
  81. Shelnutt JA, Song XZ, Ma JG, Jia SL, Jentzen W, Medforth CJ (1998) Nonplanar pophyrins and their significance in proteins. Chem Soc Rev 27:31–41CrossRefGoogle Scholar
  82. Shim S, Rebentrost P, Valleau S, Aspuru-Guzik AA (2012) Atomistic study of the long-lived quantum coherences in the Fenna–Matthews–Olson complex. Biophys J 102:649–660CrossRefPubMedGoogle Scholar
  83. Simonson T, Perahia D (1995) Microscopic dielectric properties of cytochrome c from molecular dynamics simulations in aqueous solution. J Am Chem Soc 117:7987–8000CrossRefGoogle Scholar
  84. Stein T, Kronik L, Baer R (2009) Reliable prediction of charge transfer excitations in molecular complexes using time-dependent density functional theory. J Am Chem Soc 131:2818–2820CrossRefPubMedGoogle Scholar
  85. Stowell M, McPhillips TM, Rees D, Soltis S, Abresch E, Feher G (1997) Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron–proton transfer. Science 276:812–816CrossRefPubMedGoogle Scholar
  86. Sundström V, van Grondelle R, Bergström H, Akesson E, Gillbro T (1986) Excitation energy transport in bacteriochlorophyll antenna systems of Rhodospirillum rubrum and Rhodobacter sphaeroides studied by low-intensity picosecond absorption spectroscopy. Biochim Biophys Acta 851:431–446CrossRefGoogle Scholar
  87. Sundström V, Pullerits T, van Grondelle R (1999) Photosynthetic light-harvesting: reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B 103:2327–2346CrossRefGoogle Scholar
  88. Tronrud DE, Wen J, Gay L, Blankenship RE (2009) The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria. Photosynth Res 100:79–87CrossRefPubMedGoogle Scholar
  89. Ullmann GM, Knapp EW (1999) Electrostatic models for computing protonation and redox equilibria in proteins. Eur Biophys J 28:533–550CrossRefPubMedGoogle Scholar
  90. Umena Y, Kawakami K, Shen J, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60CrossRefPubMedGoogle Scholar
  91. van Grondelle R, Novoderezhkin VI (2006) Energy transfer in photosynthesis: experimental insights and quantitative models. Phys Chem Chem Phys 8:793–807CrossRefPubMedGoogle Scholar
  92. van Grondelle R, Dekker JP, Gillbro T, Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187:1–65CrossRefGoogle Scholar
  93. Visscher KJ, Bergström H, Sundström V, Hunter CN, van Grondelle R (1989) Temperature dependence of energy transfer from the long wavelength antenna BChl-896 to the reaction center in Rhodospririllum rubrum, Rhodobacter sphaeroides (WT and M21 mutant) from 77 K to 177 K, studied by picosecond absorption spectroscopy. Photosynth Res 22:211–217CrossRefGoogle Scholar
  94. Warshel A, Parson WW (1987) Spectroscopic properties of photosynthetic reaction centers. I. Theory. J Am Chem Soc 109:6143–6152CrossRefGoogle Scholar
  95. Wen J, Zhang H, Gross ML, Blankenship RE (2009) Membrane orientation of the FMO antenna protein from Chlorobaculum tepidum as determined by mass spectrometry-based footprinting. Proc Natl Acad Sci USA 106:6134–6139CrossRefPubMedGoogle Scholar
  96. Wendling M, Pullerits T, Przyjalgowski M, Vulto S, Aartsma T, van Grondelle R, van Amerongen H (2000) Electron-vibrational coupling in the Fenna–Matthews–Olson complex of Prosthecochloris aestuarii determined by temperature-dependent absorption and fluorescence line-narrowing measurements. J Phys Chem B 104:5825–5831CrossRefGoogle Scholar
  97. Wendling M, Przyjalgowski MA, Gülen D, Vulto SIE, Aartsma TJ, van Grondelle R, van Amerongen H (2002) The quantitative relationship between structure and polarized spectroscopy in the FMO complex of Prosthechochloris aestuarii: refining experiments and simulations. Photosynth Res 71:99–123CrossRefPubMedGoogle Scholar
  98. Yang M, Fleming GR (2002) Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Förster, and modified Redfield equations. Chem Phys 275:355–372CrossRefGoogle Scholar
  99. Zhang WM, Meier T, Chernyak V, Mukamel S (1998) Exciton-migration and three–pulse femtosecond optical spectroscopies of photosynthetic antenna complexes. J Chem Phys 108:7763–7774CrossRefGoogle Scholar
  100. Zucchelli G, Santabarbara S, Jennings RC (2012) The Qy absorption spectrum of the light-harvesting complex II as determined by structure-based analysis of chlorophyll macrocycle deformations. Biochemistry 51:2717–2736CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Thomas Renger
    • 1
    Email author
  • Mohamed El-Amine Madjet
    • 2
  • Marcel Schmidt am Busch
    • 1
  • Julian Adolphs
    • 1
  • Frank Müh
    • 1
  1. 1.Institut für Theoretische PhysikJohannes Kepler Universität LinzLinzAustria
  2. 2.Center for Free-Electron Laser Science, DESYHamburgGermany

Personalised recommendations