Photosynthesis Research

, Volume 116, Issue 2–3, pp 315–331 | Cite as

Chlorosome antenna complexes from green photosynthetic bacteria

  • Gregory S. Orf
  • Robert E. Blankenship


Chlorosomes are the distinguishing light-harvesting antenna complexes that are found in green photosynthetic bacteria. They contain bacteriochlorophyll (BChl) c, d, e in natural organisms, and recently through mutation, BChl f, as their principal light-harvesting pigments. In chlorosomes, these pigments self-assemble into large supramolecular structures that are enclosed inside a lipid monolayer to form an ellipsoid. The pigment assembly is dictated mostly by pigment–pigment interactions as opposed to protein–pigment interactions. On the bottom face of the chlorosome, the CsmA protein aggregates into a paracrystalline baseplate with BChl a, and serves as the interface to the next energy acceptor in the system. The exceptional light-harvesting ability at very low light conditions of chlorosomes has made them an attractive subject of study for both basic and applied science. This review, incorporating recent advancements, considers several important aspects of chlorosomes: pigment biosynthesis, organization of pigments and proteins, spectroscopic properties, and applications to bio-hybrid and bio-inspired devices.


Chlorosome Green bacteria Bacteriochlorophyll Light-harvesting complex Bio-hybrid solar cells 



The authors thank the following for helpful discussions: Dr. Dariusz M. Niedzweidzki (Washington University in St. Louis), Dr. Jakub Pšenčík (Charles University), Dr. Donald A. Bryant (The Pennsylvania State University), Dr. Sándor Á. Kovács (Washington University in St. Louis), Dr. Cynthia Lo (Washington University in St. Louis), and Mr. Vivek Shah (Washington University in St. Louis). This work has been supported by the Photosynthetic Antenna Research Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award DE-SC0001035. Research described on the FMO protein has been supported by DOE grant DE-FG02-10ER15902 to R.E.B.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


  1. Akutsu H, Egawa A, Fujiwara T (2010) Atomic structure of the bacteriochlorophyll c assembly in intact chlorosomes from Chlorobium limicola determined by solid-state NMR. Photosynth Res 104:221–231. doi: 10.1007/s11120-009-9523-2 PubMedGoogle Scholar
  2. Allmaier G, Laschober C, Szymanski WW (2008) Nano ES GEMMA and PDMA, new tools for the analysis of nanobioparticles-protein complexes, lipoparticles, and viruses. J Am Soc Mass Spectrom 19:1062–1068. doi: 10.1016/j.jasms.2008.05.017 PubMedGoogle Scholar
  3. Alster J, Polívka T, Arellano JB et al (2010) β-Carotene to bacteriochlorophyll c energy transfer in self-assembled aggregates mimicking chlorosomes. Chem Phys 373:90–97. doi: 10.1016/j.chemphys.2010.02.006 Google Scholar
  4. Alster J, Polívka T, Arellano JB et al (2012) Self-assembly and energy transfer in artificial light-harvesting complexes of bacteriochlorophyll c with astaxanthin. Photosynth Res 111:193–204. doi: 10.1007/s11120-011-9670-0 PubMedGoogle Scholar
  5. Arellano JB, Bernt Melø T, Borrego CM et al (2007) Nanosecond laser photolysis studies of chlorosomes and artificial aggregates containing bacteriochlorophyll e: evidence for the proximity of carotenoids and bacteriochlorophyll a in chlorosomes from Chlorobium phaeobacteroides strain CL1401. Photochem Photobiol 72:669–675. doi: 10.1562/0031-8655(2000)0720669NLPSOC2.0.CO2 Google Scholar
  6. Badura A, Esper B, Ataka K et al (2006) Light-driven water splitting for (bio-)hydrogen production: photosystem 2 as the central part of a bioelectrochemical device. Photochem Photobiol 82:1385–1390. doi: 10.1562/2006-07-14-RC-969 PubMedGoogle Scholar
  7. Balaban TS (2005) Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems. Acc Chem Res 38:612–623. doi: 10.1021/ar040211z PubMedGoogle Scholar
  8. Balaban TS, Holzwarth AR, Schaffner K et al (1995) CP-MAS 13C-NMR dipolar correlation spectroscopy of 13C-enriched chlorosomes and isolated bacteriochlorophyll c aggregates of Chlorobium tepidum: the self-organization of pigments is the main structural feature of chlorosomes. Biochemistry 34:15259–15266. doi: 10.1021/bi00046a034 PubMedGoogle Scholar
  9. Beatty JT, Overmann J, Lince MT et al (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Natl Acad Sci USA 102:9306–9310. doi: 10.1073/pnas.0503674102 PubMedGoogle Scholar
  10. Betti JA, Blankenship RE, Natarajan LV et al (1982) Antenna organization and evidence for the function of a new antenna pigment species in the green photosynthetic bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 680:194–201. doi: 10.1016/0005-2728(82)90011-1 Google Scholar
  11. Blankenship RE (2002) Molecular Mechanisms of Photosynthesis, 1st edn. Wiley, New York, pp 1–321Google Scholar
  12. Blankenship RE, Matsuura K (2003) Antenna Complexes from Green Photosynthetic Bacteria. In: Green BR, Parson WW (eds) Advances in Photosynthesis and Respiration, vol 13. Kluwer, Light Harvesting Antennas in Photosynthesis, pp 195–217Google Scholar
  13. Blankenship RE, Olson JM, Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynethetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 399–435Google Scholar
  14. Bobe FW, Pfennig N, Swanson KL, Smith KM (1990) Red shift of absorption maxima in chlorobiineae through enzymic methylation of their antenna bacteriochlorophylls. Biochemistry 29:4340–4348PubMedGoogle Scholar
  15. Boschloo G, Lindström H, Magnusson E et al (2002) Optimization of dye-sensitized solar cells prepared by compression method. J Photochem Photobiol, A 148:11–15. doi: 10.1016/S1010-6030(02)00072-2 Google Scholar
  16. Broch-due M, Ormerod JG (1978) Isolation of a BChl c mutant from Chlorobium with BChl d by cultivation at low light intensity. FEMS Microbiol Lett 3:305–308Google Scholar
  17. Brune DC, King GH, Infosino A et al (1987a) Antenna organization in green photosynthetic bacteria. 2. Excitation transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus. Biochemistry 26:8652–8658PubMedGoogle Scholar
  18. Brune DC, Nozawa T, Blankenship RE (1987b) Antenna organization in green photosynthetic bacteria. 1. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes. Biochemistry 26:8644–8652PubMedGoogle Scholar
  19. Bryant DA, Vassilieva EV, Frigaard N-U, Li H (2002) Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a. Biochemistry 41:14403–14411PubMedGoogle Scholar
  20. Bryant DA, Garcia Costas AM, Maresca JA et al (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic Acidobacterium. Science 317:523–526. doi: 10.1126/science.1143236 PubMedGoogle Scholar
  21. Bryant DA, Liu Z, Li T et al (2012) Comparative and functional genomics of anoxygenic green bacteria from the Taxa Chlorobi, Chloroflexi, and Acidobacteria. In: Burnap R, Vermaas W (eds) Functional Genomics and Evolution of Photosynthetic Systems. Springer Netherlands, Dordrecht, pp 47–102Google Scholar
  22. Bystrova MI, Mal’gosheva IN, Krasnovsky AA (1979) Molecular mechanism of self-assembly of aggregated bacteriochlorophyll c. Mol Biol 13:582–594Google Scholar
  23. Causgrove TP, Brune DC, Blankenship RE (1992) Förster energy transfer in chlorosomes of green photosynthetic bacteria. J Photochem Photobiol, B 15:171–179Google Scholar
  24. Chappaz-Gillot C, Marek PL, Blaive BJ et al (2012) Anisotropic organization and microscopic manipulation of self-assembling synthetic porphyrin microrods that mimic chlorosomes: bacterial light-harvesting systems. J Am Chem Soc 134:944–954. doi: 10.1021/ja203838p PubMedGoogle Scholar
  25. Chen M, Scheer H (2013) Extending the limits of natural photosynthesis and implications for technical light harvesting. J Porphyrins Phthalocyanines 17:1–15. doi: 10.1142/S1088424612300108 Google Scholar
  26. Chung S, Frank G, Zuber H, Bryant DA (1994) Genes encoding two chlorosome components from the green sulfur bacteria Chlorobium vibrioforme strain 8327D and Chlorobium tepidum. Photosynth Res 41:261–275Google Scholar
  27. Cohen-Bazire G, Pfennig N, Kunisawa R (1964) The fine structure of green bacteria. J Cell Biol 22:207–225PubMedGoogle Scholar
  28. Dostál J, Mančal T, Augulis R et al (2012) Two-dimensional electronic spectroscopy reveals ultrafast energy diffusion in chlorosomes. J Am Chem Soc 134:11611–11617. doi: 10.1021/ja3025627 PubMedGoogle Scholar
  29. Egawa A, Fujiwara T, Mizoguchi T et al (2007) Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR. Proc Natl Acad Sci USA 104:790–795. doi: 10.1073/pnas.0605911104 PubMedGoogle Scholar
  30. Ellerby LM, Nishida CR, Nishida F et al (1992) Encapsulation of proteins in transparent porous silicate glasses prepared by the sol–gel method. Science 255:1113–1115PubMedGoogle Scholar
  31. Escalante M, Maury P (2007) Directed assembly of functional light harvesting antenna complexes onto chemically patterned surfaces. Nanotechnology 19:025101. doi: 10.1088/0957-4484/19/02/025101 PubMedGoogle Scholar
  32. Feick RG, Fuller RC (1984) Topography of the photosynthetic apparatus of Chloroflexus aurantiacus. Biochemistry 23:3693–3700. doi: 10.1021/bi00311a019 Google Scholar
  33. Frese R, Oberheide U, Van Stokkum I et al (1997) The organization of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus and the structural role of carotenoids and protein—An absorption, linear dichroism, circular dichroism and Stark spectroscopy study. Photosynth Res 54:115–126Google Scholar
  34. Frigaard N-U, Bryant DA (2006) Chlorosomes: antenna organelles in photosynthetic green bacteria. Microbiol Monogr 2:80–114. doi: 10.1007/7171 Google Scholar
  35. Frigaard N-U, Takaichi S, Hirota M et al (1997) Quinones in chlorosomes of green sulfur bacteria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll c aggregates. Arch Microbiol 167:343–349. doi: 10.1007/s002030050453 Google Scholar
  36. Frigaard N-U, Li H, Milks KJ, Bryant DA (2004) Nine mutants of Chlorobium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomes. J Bacteriol 186:646–653. doi: 10.1128/JB.186.3.646 PubMedGoogle Scholar
  37. Frigaard N-U, Li H, Martinsson P et al (2005) Isolation and characterization of carotenosomes from a bacteriochlorophyll c-less mutant of Chlorobium tepidum. Photosynth Res 86:101–111. doi: 10.1007/s11120-005-1331-8 PubMedGoogle Scholar
  38. Frolov L, Wilner O, Carmeli C, Carmeli I (2008) Fabrication of oriented multilayers of photosystem I proteins on solid surfaces by auto-metallization. Adv Mater 20:263–266. doi: 10.1002/adma.200701474 Google Scholar
  39. Fujita T, Brookes JC, Saikin SK, Aspuru-Guzik A (2012) Memory-assisted exciton diffusion in the chlorosome light-harvesting antenna of green sulfur bacteria. J Phys Chem Lett 3:2357–2361. doi: 10.1021/jz3008326 Google Scholar
  40. Ganapathy S, Oostergetel GT, Wawrzyniak PK et al (2009) Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes. Proc Natl Acad Sci USA 106:8525–8530. doi: 10.1073/pnas.0903534106 PubMedGoogle Scholar
  41. Ganapathy S, Oostergetel GT, Reus M et al (2012) Structural variability in wild-type and bchQ bchR mutant chlorosomes of the green sulfur bacterium Chlorobaculum tepidum. Biochemistry 51:4488–4498. doi: 10.1021/bi201817x PubMedGoogle Scholar
  42. Garab G, Van Amerongen H (2009) Linear dichroism and circular dichroism in photosynthesis research. Photosynth Res 101:135–146. doi: 10.1007/s11120-009-9424-4 PubMedGoogle Scholar
  43. Garcia Costas AM, Tsukatani Y, Romberger SP et al (2011) Ultrastructural analysis and identification of envelope proteins of “Candidatus Chloracidobacterium thermophilum” chlorosomes. J Bacteriol 193:6701–6711. doi: 10.1128/JB.06124-11 PubMedGoogle Scholar
  44. Garcia Costas AM, Tsukatani Y, Rijpstra WIC et al (2012) Identification of the bacteriochlorophylls, carotenoids, quinones, lipids, and hopanoids of “Candidatus Chloracidobacterium thermophilum”. J Bacteriol 194:1158–1168. doi: 10.1128/JB.06421-11 PubMedGoogle Scholar
  45. Gerola PD, Olson JM (1986) A new bacteriochlorophyll a-protein complex associated with chlorosomes of green sulfur bacteria. Biochim Biophys Acta 848:69–76PubMedGoogle Scholar
  46. Gloe A, Pfennig N, Brockmann H Jr, Trowitzsch W (1975) A new bacteriochlorophyll from brown-colored chlorobiaceae. Arch Microbiol 102:103–109PubMedGoogle Scholar
  47. Gomez Maqueo Chew A, Frigaard N-U, Bryant DA (2007) Bacteriochlorophyllide c C-8(2) and C-12(1) methyltransferases are essential for adaptation to low light in Chlorobaculum tepidum. J Bacteriol 189:6176–6184. doi: 10.1128/JB.00519-07 PubMedGoogle Scholar
  48. Harada J, Mizoguchi T, Tsukatani Y et al (2012) A seventh bacterial chlorophyll driving a large light-harvesting antenna. Sci Rep 2:671. doi: 10.1038/srep00671 PubMedGoogle Scholar
  49. Harada J, Mizoguchi T, Satoh S et al (2013) Specific gene bciD for C7-methyl oxidation in bacteriochlorophyll e biosynthesis of brown-colored green sulfur bacteria. PLoS ONE 8:e60026. doi: 10.1371/journal.pone.0060026 PubMedGoogle Scholar
  50. Hnilova M, Karaca BT, Park J et al (2012) Fabrication of hierarchical hybrid structures using bio-enabled layer-by-layer self-assembly. Biotechnol Bioeng 109:1120–1130. doi: 10.1002/bit.24405 PubMedGoogle Scholar
  51. Hogan CJ Jr, Kettleson EM, Ramaswami B et al (2006) Charge reduced electrospray size spectrometry of mega-and gigadalton complexes: whole viruses and virus fragments. Anal Chem 78:844–852PubMedGoogle Scholar
  52. Hohmann-Marriott MF, Blankenship RE (2007) Hypothesis on chlorosome biogenesis in green photosynthetic bacteria. FEBS Lett 581:800–803. doi: 10.1016/j.febslet.2007.01.078 PubMedGoogle Scholar
  53. Holzwarth AR, Schaffner K (1994) On the structure of bacteriochlorophyll molecular aggregates in the chlorosomes of green bacteria. A molecular modelling study. Photosynth Res 41:225–233Google Scholar
  54. Holzwarth AR, Griebenow K, Schaffner K (1990) A photosynthetic antenna system which contains a protein-free chromophore aggregate. Zeitschrift für Naturforschung C 45c:203–206Google Scholar
  55. Huang RY-C, Wen J, Blankenship RE, Gross ML (2012) Hydrogen-deuterium exchange mass spectrometry reveals the interaction of Fenna–Matthews–Olson protein and chlorosome CsmA protein. Biochemistry 51:187–193. doi: 10.1021/bi201620y PubMedGoogle Scholar
  56. Huijser A, Marek PL, Savenije TJ et al (2007) Photosensitization of TiO2 and SnO2 by artificial self-assembling mimics of the natural chlorosomal bacteriochlorophylls. J Phys Chem C 111:11726–11733Google Scholar
  57. Huster MS, Smith KM (1990) Biosynthetic studies of substituent homologation in bacteriochlorophylls c and d. Biochemistry 29:4348–4355PubMedGoogle Scholar
  58. Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna–Matthews–Olson protein) gene sequences. Int J Syst Evol Microbiol 53:941–951. doi: 10.1099/ijs.0.02403-0 PubMedGoogle Scholar
  59. Kopnov F, Cohen-Ofri I, Noy D (2011) Electron transport between photosystem II and photosystem I encapsulated in sol–gel glasses. Angew Chem Int Ed Engl 50:12347–12350. doi: 10.1002/anie.201106293 PubMedGoogle Scholar
  60. Krasnovsky AA, Bystrova MI (1980) Self-assembly of chlorophyll aggregated structures. Biosystems 12:181–194. doi: 10.1016/0303-2647(80)90016-7 PubMedGoogle Scholar
  61. Li H (2006) Organization and function of chlorosome proteins in the green sulfur bacterium Chlorobium tepidum. The Pennsylvania State University, University ParkGoogle Scholar
  62. Li H, Bryant DA (2009) Envelope proteins of the CsmB/CsmF and CsmC/CsmD motif families influence the size, shape, and composition of chlorosomes in Chlorobaculum tepidum. J Bacteriol 191:7109–7120. doi: 10.1128/JB.00707-09 PubMedGoogle Scholar
  63. Li H, Frigaard N-U, Bryant DA (2006) Molecular contacts for chlorosome envelope proteins revealed by cross-linking studies with chlorosomes from Chlorobium tepidum. Biochemistry 45:9095–9103. doi: 10.1021/bi060776y PubMedGoogle Scholar
  64. Li H, Frigaard N-U, Bryant DA (2013) [2Fe-2S] proteins in chlorosomes: CsmI and CsmJ participate in light-dependent control of energy transfer in chlorosomes of Chlorobaculum tepidum. Biochemistry. doi: 10.1021/bi301454g Google Scholar
  65. Linnanto JM, Korppi-Tommola JEI (2004) Semiempirical PM5 molecular orbital study on chlorophylls and bacteriochlorophylls: comparison of semiempirical, ab initio, and density functional results. J Comput Chem 25:123–138. doi: 10.1002/jcc.10344 PubMedGoogle Scholar
  66. Linnanto JM, Korppi-Tommola JEI (2008) Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates. Photosynth Res 96:227–245. doi: 10.1007/s11120-008-9304-3 PubMedGoogle Scholar
  67. Liu Z, Bryant DA (2011) Identification of a gene essential for the first committed step in the biosynthesis of bacteriochlorophyll c. J Biol Chem 286:22393–22402. doi: 10.1074/jbc.M111.249433 PubMedGoogle Scholar
  68. Luo T-JM, Soong R, Lan E et al (2005) Photo-induced proton gradients and ATP biosynthesis produced by vesicles encapsulated in a silica matrix. Nat Mater 4:220–224. doi: 10.1038/nmat1322 PubMedGoogle Scholar
  69. Manske AK, Glaeser J, Kuypers MMM (2005) Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 M. Appl Environ Microbiol 71:8049–8060. doi: 10.1128/AEM.71.12.8049 PubMedGoogle Scholar
  70. Maresca JA, Gomez Maqueo Chew A et al (2004) The bchU Gene of Chlorobium tepidum encodes the C-20 methyltransferase in bacteriochlorophyll c biosynthesis. J Bacteriol 186:2558–2566. doi: 10.1128/JB.186.9.2558 PubMedGoogle Scholar
  71. Marschall E, Jogler M, Hessge U, Overmann J (2010) Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea. Environ Microbiol 12:1348–1362. doi: 10.1111/j.1462-2920.2010.02178.x PubMedGoogle Scholar
  72. Martinez-Planells A, Arellano JB, Borrego CM et al (2002) Determination of the topography and biometry of chlorosomes by atomic force microscopy. Photosynth Res 71:83–90. doi: 10.1023/A:1014955614757 PubMedGoogle Scholar
  73. Martiskainen J, Linnanto JM, Aumanen V et al (2012) Excitation energy transfer in isolated chlorosomes from Chlorobaculum tepidum and Prosthecochloris aestuarii. Photochem Photobiol 88:675–683. doi: 10.1111/j.1751-1097.2012.01098.x PubMedGoogle Scholar
  74. Mass O, Pandithavidana DR, Ptaszek M et al (2011) De novo synthesis and properties of analogues of the self-assembling chlorosomal bacteriochlorophylls. New J Chem 35:2671. doi: 10.1039/c1nj20611g Google Scholar
  75. Mimuro M, Nozawa T, Tamai N et al (1989) Excitation energy flow in chlorosome antennas of green photosynthetic bacteria. J Phys Chem 93:7503–7509. doi: 10.1021/j100358a047 Google Scholar
  76. Modesto-Lopez LB, Thimsen EJ, Collins AM et al (2010) Electrospray-assisted characterization and deposition of chlorosomes to fabricate a biomimetic light-harvesting device. Energy Environ Sci 3:216. doi: 10.1039/b914758f Google Scholar
  77. Montaño GA, Bowen BP, LaBelle JT et al (2003a) Characterization of Chlorobium tepidum chlorosomes: a calculation of bacteriochlorophyll c per chlorosome and oligomer modeling. Biophys J 85:2560–2565. doi: 10.1016/S0006-3495(03)74678-5 PubMedGoogle Scholar
  78. Montaño GA, Wu H-M, Lin S et al (2003b) Isolation and characterization of the B798 light-harvesting baseplate from the chlorosomes of Chloroflexus aurantiacus. Biochemistry 42:10246–10251. doi: 10.1021/bi034350k PubMedGoogle Scholar
  79. Niedzwiedzki DM, Blankenship RE (2010) Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls. Photosynth Res 106:227–238. doi: 10.1007/s11120-010-9598-9 PubMedGoogle Scholar
  80. Novoderezhkin V, Taisova A, Fetisova ZG (2001) Unit building block of the oligomeric chlorosomal antenna of the green photosynthetic bacterium Chloroflexus aurantiacus: modeling of nonlinear optical spectra. Chem Phys Lett 335:234–240Google Scholar
  81. O’Dell WB, Beatty KJ, Tang K-H et al (2012) Sol–gel entrapped light harvesting antennas: immobilization and stabilization of chlorosomes for energy harvesting. J Mater Chem 22:22582. doi: 10.1039/c2jm34357f Google Scholar
  82. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740Google Scholar
  83. Oostergetel GT, Reus M, Gomez Maqueo Chew A et al (2007) Long-range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo-electron microscopy. FEBS Lett 581:5435–5439. doi: 10.1016/j.febslet.2007.10.045 PubMedGoogle Scholar
  84. Oostergetel GT, Van Amerongen H, Boekema EJ (2010) The chlorosome: a prototype for efficient light harvesting in photosynthesis. Photosynth Res 104:245–255. doi: 10.1007/s11120-010-9533-0 PubMedGoogle Scholar
  85. Orf GS, Tank M, Vogl K et al (2013) Spectroscopic insights into the decreased efficiency of chlorosomes containing bacteriochlorophyll f. Biochim Biophys Acta 1827:493–501. doi: 10.1016/j.bbabio.2013.01.006 PubMedGoogle Scholar
  86. Pandit A, De Groot HJM (2011) Solid-state NMR applied to photosynthetic light-harvesting complexes. Photosynth Res. doi: 10.1007/s11120-011-9674-9 PubMedGoogle Scholar
  87. Pedersen MØ, Borch J, Højrup P et al (2006) The light-harvesting antenna of Chlorobium tepidum: interactions between the FMO protein and the major chlorosome protein CsmA studied by surface plasmon resonance. Photosynth Res 89:63–69. doi: 10.1007/s11120-006-9081-9 PubMedGoogle Scholar
  88. Pedersen MØ, Pham L, Steensgaard DB, Miller M (2008a) A reconstituted light-harvesting complex from the green sulfur bacterium Chlorobium tepidum containing CsmA and bacteriochlorophyll a. Biochemistry 47:1435–1441. doi: 10.1021/bi701616r PubMedGoogle Scholar
  89. Pedersen MØ, Underhaug J, Dittmer J et al (2008b) The three-dimensional structure of CsmA: a small antenna protein from the green sulfur bacterium Chlorobium tepidum. FEBS Lett 582:2869–2874. doi: 10.1016/j.febslet.2008.07.020 PubMedGoogle Scholar
  90. Pedersen MØ, Linnanto JM, Frigaard N-U et al (2010) A model of the protein-pigment baseplate complex in chlorosomes of photosynthetic green bacteria. Photosynth Res 104:233–243. doi: 10.1007/s11120-009-9519-y PubMedGoogle Scholar
  91. Prokhorenko VI, Steensgaard DB, Holzwarth AR (2000) Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. Biophys J 79:2105–2120. doi: 10.1016/S0006-3495(00)76458-7 PubMedGoogle Scholar
  92. Prokhorenko VI, Steensgaard DB, Holzwarth AR (2003) Exciton theory for supramolecular chlorosomal aggregates: 1. Aggregate size dependence of the linear spectra. Biophys J 85:3173–3186. doi: 10.1016/S0006-3495(03)74735-3 PubMedGoogle Scholar
  93. Pšenčík J, Ma Y-Z, Arellano JB et al (2002) Excitation energy transfer in chlorosomes of Chlorobium phaeobacteroides strain CL1401: the role of carotenoids. Photosynth Res 71:5–18. doi: 10.1023/A:1014943312031 PubMedGoogle Scholar
  94. Pšenčík J, Ma Y-Z, Arellano JB et al (2003) Excitation energy transfer dynamics and excited-state structure in chlorosomes of Chlorobium phaeobacteroides. Biophys J 84:1161–1179. doi: 10.1016/S0006-3495(03)74931-5 PubMedGoogle Scholar
  95. Pšenčík J, Ikonen TP, Laurinmäki PA et al (2004) Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Biophys J 87:1165–1172. doi: 10.1529/biophysj.104.040956 PubMedGoogle Scholar
  96. Pšenčík J, Arellano JB, Ikonen TP et al (2006) Internal structure of chlorosomes from brown-colored chlorobium species and the role of carotenoids in their assembly. Biophys J 91:1433–1440. doi: 10.1529/biophysj.106.084228 PubMedGoogle Scholar
  97. Pšenčík J, Collins AM, Liljeroos L et al (2009) Structure of chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus. J Bacteriol 191:6701–6708. doi: 10.1128/JB.00690-09 PubMedGoogle Scholar
  98. Saga Y, Shibata Y, Itoh S, Tamiaki H (2007) Direct counting of submicrometer-sized photosynthetic apparatus dispersed in medium at cryogenic temperature by confocal laser fluorescence microscopy: estimation of the number of bacteriochlorophyll c in single light-harvesting antenna complexes chlorosomes of green photosynthetic bacteria. J Phys Chem B 111:12605–12609. doi: 10.1021/jp071559p PubMedGoogle Scholar
  99. Sakuragi Y, Frigaard N-U, Shimada K, Matsuura K (1999) Association of bacteriochlorophyll a with the CsmA protein in chlorosomes of the photosynthetic green filamentous bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 1413:172–180PubMedGoogle Scholar
  100. Savikhin S, Blankenship RE, Struve WS (1996) Ultrafast energy transfer in chlorosomes from the green photosynthetic bacterium Chloroflexus aurantiacus. J Phys Chem 100:3320–3322PubMedGoogle Scholar
  101. Schmidt K (1978) Biosynthesis of carotenoids. In: Clayton R, Sistrom W (eds) The photosynthetic bacteria. Plenum Press, New York, pp 729–750Google Scholar
  102. Senge M, Smith NW, Smith KM (1993) Structure and conformation of photosynthetic pigments and related compounds. 5′. Structural investigation of nickel(II) bacteriopetroporphyrins related to the bacteriochlorophylls c and d: evidence for localized conformational distortion in the c-series. Inorg Chem 32:1259–1265Google Scholar
  103. Shah VB, Orf GS, Reisch S et al (2012) Characterization and deposition of various light-harvesting antenna complexes by electrospray atomization. Anal Bioanal Chem 404:2329–2338. doi: 10.1007/s00216-012-6368-x PubMedGoogle Scholar
  104. Smith KM, Kehres LA, Fajer J (1983) Aggregation of the bacteriochlorophylls c, d, and e. Models for the antenna chlorophylls of green and brown photosynthetic bacteria. J Am Chem Soc 105:1387–1389. doi: 10.1021/ja00343a062 Google Scholar
  105. Somsen OJ, Van Grondelle R, Van Amerongen H (1996) Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins. Biophys J 71:1934–1951. doi: 10.1016/S0006-3495(96)79392-X PubMedGoogle Scholar
  106. Sørensen PG, Cox RP, Miller M (2008) Chlorosome lipids from Chlorobium tepidum: characterization and quantification of polar lipids and wax esters. Photosynth Res 95:191–196. doi: 10.1007/s11120-007-9242-5 PubMedGoogle Scholar
  107. Springer JW, Faries KM, Diers JR et al (2012) Effects of substituents on synthetic analogs of chlorophylls. Part 3: the distinctive impact of auxochromes at the 7- versus 3-positions. Photochem Photobiol 88:651–674. doi: 10.1111/j.1751-1097.2012.01083.x PubMedGoogle Scholar
  108. Staehelin LA, Golecki JR, Fuller RC, Drews G (1978) Visualization of the supramolecular architecture of chlorosomes (chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Arch Microbiol 119:269–277. doi: 10.1007/BF00405406 Google Scholar
  109. Staehelin LA, Golecki JR, Drews G (1980) Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta 589:30–45PubMedGoogle Scholar
  110. Struck A, Cmiel E, Katheder I et al (1992) Bacteriochlorophylls modified at position C-3: long range intramolecular interaction with position C-132. Biochim Biophys Acta 1101:321–328Google Scholar
  111. Suzuki JY, Bollivar DW, Bauer CE (1997) Genetic analysis of chlorophyll biosynthesis. Ann Rev Genet 31:61–89PubMedGoogle Scholar
  112. Tamiaki H, Komada J, Kunieda M et al (2011) In vitro synthesis and characterization of bacteriochlorophyll-f and its absence in bacteriochlorophyll-e producing organisms. Photosynth Res 107:133–138. doi: 10.1007/s11120-010-9603-3 PubMedGoogle Scholar
  113. Tanaka A, Ito H, Tanaka R et al (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95:12719–12723PubMedGoogle Scholar
  114. Tang K-H, Barry K, Chertkov O et al (2011) Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. BMC Genomics 12:334. doi: 10.1186/1471-2164-12-334 PubMedGoogle Scholar
  115. Theroux SJ, Redlinger TE, Fuller RC, Robinson SJ (1990) Gene encoding the 5.7-kilodalton chlorosome protein of Chloroflexus aurantiacus: regulated message levels and a predicted carboxy-terminal protein extension. J Bacteriol 172:4497–4504PubMedGoogle Scholar
  116. Vassilieva EV, Antonkine ML, Zybailov BL et al (2001) Electron transfer may occur in the chlorosome envelope: the CsmI and CsmJ proteins of chlorosomes are 2Fe-2S ferredoxins. Biochemistry 40:464–473PubMedGoogle Scholar
  117. Vassilieva EV, Ormerod JG, Bryant DA (2002) Biosynthesis of chlorosome proteins is not inhibited in acetylene-treated cultures of Chlorobium vibrioforme. Photosynth Res 71:69–81. doi: 10.1023/A:1014903630687 PubMedGoogle Scholar
  118. Vogl K, Tank M, Orf GS et al (2012) Bacteriochlorophyll f: properties of chlorosomes containing the “forbidden chlorophyll”. Frontiers Microbiol 3:1–12. doi: 10.3389/fmicb.2012.00298 Google Scholar
  119. Wang J, Brune DC, Blankenship RE (1990) Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria. Biochim Biophys Acta 1015:457–463PubMedGoogle Scholar
  120. Wen J, Tsukatani Y, Cui W et al (2011) Structural model and spectroscopic characteristics of the FMO antenna protein from the aerobic chlorophototroph, Candidatus Chloracidobacterium thermophilum. Biochim Biophys Acta 1807:157–164. doi: 10.1016/j.bbabio.2010.09.008 PubMedGoogle Scholar
  121. Xiong J, Fischer WM, Inoue K et al (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730. doi: 10.1126/science.289.5485.1724 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Departments of Chemistry and BiologyWashington University in St. LouisSt. LouisUSA
  2. 2.Photosynthetic Antenna Research Center (PARC)Washington University in St. LouisSt. LouisUSA

Personalised recommendations