Photosynthesis Research

, Volume 116, Issue 2–3, pp 489–509 | Cite as

Regulatory role of membrane fluidity in gene expression and physiological functions

  • Dmitry A. Los
  • Kirill S. Mironov
  • Suleyman I. Allakhverdiev
Review

Abstract

Plants, algae, and photosynthetic bacteria experience frequent changes in environment. The ability to survive depends on their capacity to acclimate to such changes. In particular, fluctuations in temperature affect the fluidity of cytoplasmic and thylakoid membranes. The molecular mechanisms responsible for the perception of changes in membrane fluidity have not been fully characterized. However, the understanding of the functions of the individual genes for fatty acid desaturases in cyanobacteria and plants led to the directed mutagenesis of such genes that altered the membrane fluidity of cytoplasmic and thylakoid membranes. Characterization of the photosynthetic properties of the transformed cyanobacteria and higher plants revealed that lipid unsaturation is essential for protection of the photosynthetic machinery against environmental stresses, such as strong light, salt stress, and high and low temperatures. The unsaturation of fatty acids enhances the repair of the damaged photosystem II complex under stress conditions. In this review, we summarize the knowledge on the mechanisms that regulate membrane fluidity, on putative sensors that perceive changes in membrane fluidity, on genes that are involved in acclimation to new sets of environmental conditions, and on the influence of membrane properties on photosynthetic functions.

Keywords

Cold stress Cyanobacteria Membrane fluidity Fatty acid desaturases Photosynthesis 

Abbreviations

ACP

Acyl carrier protein

DPH

1,6-Diphenyl-1,3,5-hexatriene

FA

Fatty acid

FAD

Fatty acid desaturase

FTIR spectroscopy

Fourier transform infrared spectroscopy

HSP

Heat shock protein

PS I

Photosystem I

PS II

Photosystem II

PUFA

Polyunsaturated fatty acid

UFA

Unsaturated fatty acid

TM

Transmembrane

References

  1. Aguilar PS, de Mendoza D (2006) Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Mol Microbiol 62:1507–1514. doi:10.1111/j.1365-2958.2006.05484.x PubMedGoogle Scholar
  2. Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D (2001) Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J 20:1681–1691. doi:10.1093/emboj/20.7.1681 PubMedGoogle Scholar
  3. Albanesi D, Mansilla MC, de Mendoza D (2004) The membrane fluidity sensor DesK of Bacillus subtilis controls the signal decay of its cognate response regulator. J Bacteriol 186:2655–2663. doi:10.1128/JB.186.9.2655-2663.2004 PubMedGoogle Scholar
  4. Albanesi D, Martín M, Trajtenberg F, Mansilla MC, Haouz A, Alzari PM, de Mendoza D, Buschiazzo A (2009) Structural plasticity and catalysis regulation of a thermosensor histidine kinase. Proc Natl Acad Sci USA 106:16185–16190. doi:10.1073/pnas.0906699106 PubMedGoogle Scholar
  5. Allakhverdiev SI, Murata N (2008) Salt stress inhibits photosystems II and I in cyanobacteria. Photosynth Res 98:529–539. doi:10.1007/s11120-008-9334-x PubMedGoogle Scholar
  6. Allakhverdiev SI, Nishiyama Y, Suzuki I, Tasaka Y, Murata N (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci USA 96:5862–5867. doi:10.1073/pnas.96.10.5862 PubMedGoogle Scholar
  7. Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056. doi:10.1104/pp.123.3.1047 PubMedGoogle Scholar
  8. Allakhverdiev SI, Kinoshita M, Inaba M, Suzuki I, Murata N (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol 125:1842–1853. doi:10.1104/pp.125.4.1842 PubMedGoogle Scholar
  9. Ariizumi T, Kishitani S, Inatsugi R, Nishida I, Murata N, Toriyama K (2002) An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant Cell Physiol 43:751–758. doi:10.1093/pcp/pcf087 PubMedGoogle Scholar
  10. Arondel V, Lemieux B, Hwang I, Gibson S, Goodman HM, Somerville CR (1992) Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science 258:1353–1355. doi:10.1126/science.1455229 PubMedGoogle Scholar
  11. Benedict C, Geisler M, Trygg J, Huner N, Hurry V (2006) Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis. Plant Physiol 141:1219–1232. doi:10.1104/pp.106.083527 PubMedGoogle Scholar
  12. Bossie MA, Martin CE (1989) Nutritional regulation of yeast Δ-9 fatty acid desaturase activity. J Bacteriol 171:6409–6413. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC210528/ Google Scholar
  13. Cahoon EB, Lindqvist Y, Schneider G, Shanklin J (1997) Redesign of soluble fatty acid desaturases from plants for altered substrate specificity and double bond position. Proc Natl Acad Sci USA 94:4872–4877. doi:10.1073/pnas.94.10.4872 PubMedGoogle Scholar
  14. Carratu L, Franceschelli S, Pardini CL, Kobayashi GS, Horváth I, Vigh L, Maresca B (1996) Membrane lipid perturbation modifies the set point of the temperature of heat shock response in yeast. Proc Natl Acad Sci USA 93:3870–3875. doi:10.1073/pnas.93.9.3870 PubMedGoogle Scholar
  15. Cossins AR (1977) Adaptation of biological membranes to temperature. The effect of temperature acclimation of goldfish upon the viscosity of synaptosomal membranes. Biochim Biophys Acta 470:395–411. doi:10.1016/0005-2736(77)90131-6 PubMedGoogle Scholar
  16. Cybulski LE, de Mendoza D (2011) Playing with transmembrane signals. Commun Integr Biol. 4:69–71. doi:10.4161/cib.4.1.13778 PubMedGoogle Scholar
  17. Cybulski LE, Mansilla MC, Aguilar PS, de Mendoza D (2002) Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl-lipid desaturase. Mol Microbiol 45:1379–1388. doi:10.1046/j.1365-2958.2002.03103.x PubMedGoogle Scholar
  18. Cybulski LE, Martín M, Mansilla MC, Fernández A, de Mendoza D (2010) Membrane thickness cue for cold sensing in a bacterium. Curr Biol 20:1539–1544. doi:10.1016/j.cub.2010.06.074 PubMedGoogle Scholar
  19. Digel I (2011) Primary thermosensory events in cells. Adv Exp Med Biol 704:451–468. doi:10.1007/978-94-007-0265-3_25 PubMedGoogle Scholar
  20. Dilley RA, Nishiyama Y, Gombos Z, Murata N (2001) Bioenergetic responses of Synechocystis 6803 fatty acid desaturase mutants at low temperatures. J Bioenerg Biomembr 33:135–141. doi:10.1023/A:1010752531909 PubMedGoogle Scholar
  21. Dyer JM, Mullen RT (2001) Immunocytological localization of two plant fatty acid desaturases in the endoplasmic reticulum. FEBS Lett 494:44–47. doi:10.1016/S0014-5793(01)02315-8 PubMedGoogle Scholar
  22. Espenshade PJ, Hughes AL (2007) Regulation of sterol synthesis in eukaryotes. Annu Rev Genet 41:401–427. doi:10.1146/annurev.genet.41.110306.130315 PubMedGoogle Scholar
  23. Falcone DL, Gibson S, Lemieux B, Somerville CR (1994) Identification of a gene that complements an Arabidopsis mutant deficient in chloroplast ω6 desaturase activity. Plant Physiol 106:1453–1459. doi:10.1104/pp.106.4.1453 PubMedGoogle Scholar
  24. Feng Y, Cronan JE (2009) Escherichia coli unsaturated fatty acid synthesis. Complex transcription of the fabA gene and in vivo identification of the essential reaction catalyzed by FabB. J Biol Chem 284:29526–29535. doi:10.1074/jbc.M109.023440 PubMedGoogle Scholar
  25. Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold-response pathway. Plant Cell 14:1675–1690. doi:10.1105tpc.003483 PubMedGoogle Scholar
  26. Frentzen M, Nishida I, Murata N (1987) Properties of the plastidial acyl-(acyl-carrier protein): glycerol-3-phosphate acyltransferase from the chilling-sensitive plant squash (Cucurbita moschata). Plant Cell Physiol 28:1195–1201. http://pcp.oxfordjournals.org/content/28/7/1195.abstract Google Scholar
  27. Gao J, Ajjawi I, Manoli A, Sawin A, Xu C, Froehlich JE, Last RL, Benning C (2009) FATTY ACID DESATURASE4 of Arabidopsis encodes a protein distinct from characterized fatty acid desaturases. Plant J 60:832–839. doi:10.1111/j.1365-313X.2009.04001.x PubMedGoogle Scholar
  28. Gibson S, Arondel V, Iba K, Somerville C (1994) Cloning of a temperature-regulated gene encoding a chloroplast ω-3 desaturase from Arabidopsis thaliana. Plant Physiol 106:1615–1621. doi:10.1104/pp.106.4.1615 PubMedGoogle Scholar
  29. Glatz A, Vass I, Los DA, Vigh L (1998) The Synechocystis model of stress: from molecular chaperones to membranes. Plant Physiol Biochem 37:1–12. doi:10.1016/S0981-9428(99)80061-8 Google Scholar
  30. Gombos Z, Kanervo E, Tsvetkova N, Sakamoto T, Aro EM, Murata N (1997) Genetic enhancement of the ability to tolerate photoinhibition by introduction of unsaturated bonds into membrane glycerolipids. Plant Physiol 115:551–559. doi:10.1104/pp.115.2.551 PubMedGoogle Scholar
  31. Gutensohn M, Fan E, Frielingsdorf S, Hanner P, Hou B, Hust B, Klösgen RB (2006) Toc, Tic, Tat et al.: structure and function of protein transport machineries in chloroplasts. J Plant Physiol 163:333–347. doi:10.1016/j.jplph.2005.11.009 PubMedGoogle Scholar
  32. Guy JE, Whittle E, Kumaran D, Lindqvist Y, Shanklin J (2007) The crystal structure of the ivy Δ4–16:0-ACP desaturase reveals structural details of the oxidized active site and potential determinants of regioselectivity. J Biol Chem 282:19863–19871. doi:10.1074/jbc.M702520200 PubMedGoogle Scholar
  33. Guy JE, Whittle E, Moche M, Lengqvist J, Lindqvist Y, Shanklin J (2011) Remote control of regioselectivity in acyl–acyl carrier protein-desaturases. Proc Natl Acad Sci USA 108:16594–16599. doi:10.1073/pnas.1110221108 PubMedGoogle Scholar
  34. Hakala M, Tuominen I, Keränen M, Tyystjärvi T, Tyystjärvi E (2005) Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem II. Biochim Biophys Acta 1706:68–80. doi:10.1016/j.bbabio.2004.09.001 PubMedGoogle Scholar
  35. Hartmann MA (1998) Plant sterols and membrane environment. Trends Plant Sci 3:170–175. doi:10.1016/S1360-1385(98)01233-3 Google Scholar
  36. Harwood JL (2007) Temperature stress: reacting and adapting: lessons from poikilotherms. Ann NY Acad Sci 1113:52–57. doi:10.1196/annals.1391.025 PubMedGoogle Scholar
  37. Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol 57:19–42. doi:10.1146/annurev.ph.57.030195.000315 PubMedGoogle Scholar
  38. Heilmann I, Mekhedov S, King B, Browse J, Shanklin J (2004) Identification of the Arabidopsis palmitoyl-monogalactosyldiacylglycerol Δ7-desaturase gene FAD5, and effects of plastidial retargeting of Arabidopsis desaturases on the fad5 mutant phenotype. Plant Physiol 136:4237–4245. doi:10.1104/pp.104.052951 PubMedGoogle Scholar
  39. Heipieper HJ, Meinhardt F, Segura A (2003) The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress-adaptive mechanism. FEMS Microbiol Lett 229:1–7. doi:10.1016/S0378-1097(03)00792-4 PubMedGoogle Scholar
  40. Higashi S, Murata N (1993) Desaturases and acyltransferases in lipid synthesis in Synechocystis PCC 6803. Plant Physiol 102:1275–1278. doi:10.1104/pp.102.4.1275 PubMedGoogle Scholar
  41. Horváth I, Glatz A, Varvasovszki V, Török Z, Pali T, Balogh G, Kovacs E, Nadasdi L, Benko S, Joo F, Vigh L (1998) Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a “fluidity gene”. Proc Natl Acad Sci USA 95:3513–3518. doi:10.1073/pnas.95.7.3513 PubMedGoogle Scholar
  42. Horváth I, Multhoff G, Sonnleitner A, Vígh L (2008) Membrane-associated stress proteins: more than simply chaperones. Biochim Biophys Acta 1778:1653–1664. doi:10.1016/j.bbamem.2008.02.012 PubMedGoogle Scholar
  43. Horváth I, Glatz A, Nakamoto H, Mishkind ML, Munnik T, Saidi Y, Goloubinoff P, Harwood JL, Vigh L (2012) Heat shock response in photosynthetic organisms: membrane and lipid connections. Prog Lipid Res 51:208–220. doi:10.1016/j.plipres.2012.02.002 PubMedGoogle Scholar
  44. Hugly S, Kunst L, Browse J, Somerville C (1989) Enhanced thermal tolerance of photosynthesis and altered chloroplast ultrastructure in a mutant of Arabidopsis deficient in lipid desaturation. Plant Physiol 90:1134–1142. doi:10.1104/pp.90.3.1134 PubMedGoogle Scholar
  45. Iba K, Gibson S, Nishiuchi T, Fuse T, Nishimura M, Arondel V, Hugly S, Somerville C (1993) A gene encoding a chloroplast ω-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. J Biol Chem 268: 24099–24105. http://www.jbc.org/content/268/32/24099.full.pdf+html
  46. Inaba M, Suzuki I, Szalontai B, Kanesaki Y, Los DA, Hayashi H, Murata N (2003) Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in Synechocystis. J Biol Chem 278:12191–12198. doi:10.1074/jbc.M212204200 PubMedGoogle Scholar
  47. Ishizaki-Nishizawa O, Fujii T, Azuma M, Sekiguchi K, Murata N, Ohtani T, Toguri T (1996) Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nature Biotechnol 14:1003–1006. doi:10.1038/nbt0896-1003 Google Scholar
  48. Ivanov AG, Allakhverdiev SI, Huner NPA, Murata N (2012) Genetic decrease in fatty acid unsaturation of phosphatidylglycerol increased photoinhibition of photosystem I at low temperature in tobacco leaves. Biochim Biophys Acta 1817:1374–1379. doi:10.1016/j.bbabio.2012.03.010 PubMedGoogle Scholar
  49. Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF (2001) A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci USA 98:9448–9453. doi: 10.1073/pnas.151258398 Google Scholar
  50. Kachroo A, Shanklin J, Whittle E, Lapchyk L, Hildebrand D, Kachroo P (2007) The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Mol Biol 63:257–271. doi:10.1007/s11103-006-9086-y PubMedGoogle Scholar
  51. Kanervo E, Aro EM, Murata N (1995) Low unsaturation level of thylakoid membrane lipids limits turnover of the D1 protein of photosystem II at high irradiance. FEBS Lett 364:239–242. doi:10.1016/0014-5793(95)00404-W PubMedGoogle Scholar
  52. Kanervo E, Tasaka Y, Murata N, Aro EM (1997) Membrane lipid unsaturation modulates processing of the photosystem II reaction-center protein D1 at low temperatures. Plant Physiol 114:841–849. doi:10.1104/pp.114.3.841 PubMedGoogle Scholar
  53. Kappell AD, van Waasbergen LG (2007) The response regulator RpaB binds the high light regulatory 1 sequence upstream of the high-light-inducible hliB gene from the cyanobacterium Synechocystis PCC 6803. Arch Microbiol 187:337–342PubMedGoogle Scholar
  54. Knight MR, Knight H (2012) Low temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol 195:737–751. doi:10.1111/j.1469-8137.2012.04239.x PubMedGoogle Scholar
  55. Kojima K, Nakamoto H (2007) A novel light- and heat-responsive regulation of the groE transcription in the absence of HrcA or CIRCE in cyanobacteria. FEBS Lett 581:1871–1880. doi:10.1016/j.febslet.2007.03.084 PubMedGoogle Scholar
  56. Krishna PS, Rani BR, Mohan MK, Suzuki I, Shivaji S, Prakash JS (2013) A novel transcriptional regulator, Sll1130, negatively regulates heat-responsive genes in Synechocystis sp. PCC6803. Biochem J 449:751–760. doi:10.1042/BJ20120928 PubMedGoogle Scholar
  57. Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl-lipid metabolism. Arabidopsis Book 11:e0161. doi:10.1199/tab.0133 PubMedGoogle Scholar
  58. Liu X-Y, Li B, Yang J-H, Sui N, Yang X-M, Meng Q-W (2008) Overexpression of tomato chloroplast omega-3 fatty acid desaturase gene alleviates the photoinhibition of photosystems 2 and 1 under chilling stress. Photosynthetica 46:185–192. doi:10.1007/s11099-008-0030-z Google Scholar
  59. Los DA, Murata N (1998) Structure and expression of fatty acid desaturases. Biochim Biophys Acta 1394:3–15. doi:10.1016/S0005-2760(98)00091-5 PubMedGoogle Scholar
  60. Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666:142–157. doi:10.1016/j.bbamem.2004.08.002 PubMedGoogle Scholar
  61. Los DA, Zinchenko VV (2009) Regulatory role of membrane fluidity in gene expression. In: Wada H, Murata N (eds) Lipids in photosynthesis. Essential and regulatory functions. Springer Science, Dordrecht, pp 329–348. doi:10.1007/978-90-481-2863-1_15 Google Scholar
  62. Los DA, Ray MK, Murata N (1997) Differences in the control of the temperature-dependent expression of four genes for desaturases in Synechocystis sp. PCC 6803. Mol Microbiol 25:1167–1175. doi:10.1046/j.1365-2958.1997.5641912.x PubMedGoogle Scholar
  63. Los DA, Suzuki I, Zinchenko VV, Murata N (2008) Stress responses in Synechocystis: regulated genes and regulatory systems. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genomics and evolution. Caister Academic Press, Norfolk, pp 117–157Google Scholar
  64. Los DA, Zorina A, Sinetova M, Kryazhov S, Mironov K, Zinchenko VV (2010) Stress sensors and signal transducers in cyanobacteria. Sensors 10:2386–2415. doi:10.3390/s100302386 PubMedGoogle Scholar
  65. Lyons JM, Raison JK (1970) Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol 45:386–389. doi:10.1104/pp.45.4.386 PubMedGoogle Scholar
  66. Ma X, Browse J (2006) Altered rates of protein transport in Arabidopsis mutants deficient in chloroplast membrane unsaturation. Phytochemistry 67:1629–1636. doi:10.1016/j.phytochem.2006.04.008 PubMedGoogle Scholar
  67. Macartney AI, Maresca B, Cossins AR (1994) Acyl–CoA desaturases and the adaptive regulation of membrane lipid composition. In: Cossins AR (ed) Temperature adaptation of biological membranes. Portland, London, pp 129–139Google Scholar
  68. Mansilla MC, de Mendoza D (2005) The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Arch Microbiol 183:229–235. doi:10.1007/s00203-005-0759-8 PubMedGoogle Scholar
  69. Mansilla MC, Cybulsky LE, Albanesi D, de Mendoza D (2004) Control of membrane fluidity by molecular thermosensors. J Bacteriol 186:6681–6688. doi:10.1128/JB.186.20.6681-6688.2004 PubMedGoogle Scholar
  70. Maresca B, Kobayashi G (1993) Changes in membrane fluidity modulate heat shock gene expression and produced attenuated strains in the dimorphic fungus Histoplasma capsulatum. Arch Med Res 24:247–249PubMedGoogle Scholar
  71. Martin CA, Milinsk MA, Visentainer JV, Matsishita M, De-Souza NE (2007) Trans fatty acid-forming processes in foods: a review. Ann Brazil Acad Sci 79:343–350. doi:10.1590/S0001-37652007000200015 Google Scholar
  72. Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, Fujita M, Yoshiwara K, Matsukura S, Morishita Y, Sasaki R, Suzuki H, Saito K, Shibata D, Shinozaki K, Yamaguchi-Shinozaki K (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150:1972–1980. doi:10.1104/pp.109.135327 PubMedGoogle Scholar
  73. Matsuda O, Sakamoto H, Hashimoto T, Iba K (2005) A temperature-sensitive mechanism that regulates post-translational stability of a plastidial ω-3 fatty acid desaturase (FAD8) in Arabidopsis leaf tissues. J Biol Chem 280:3597–3604. doi:10.1074/jbc.M407226200 PubMedGoogle Scholar
  74. Matsui A, Ishida J, Morosawa T, Okamoto M, Kim JM, Kurihara Y, Kawashima M, Tanaka M, To TK, Nakaminami K, Kaminuma E, Endo TA, Mochizuki Y, Kawaguchi S, Kobayashi N, Shinozaki K, Toyoda T, Seki M (2010) Arabidopsis tiling array analysis to identify the stress-responsive genes. Methods Mol Biol 639:141–155. doi:10.1007/978-1-60761-702-0_8 PubMedGoogle Scholar
  75. McCartney AW, Dyer JM, Dhanoa PK, Kim PK, Andrews DW, McNew JA, Mullen RT (2004) Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J 37:156–173. doi:10.1111/j.1365-313X.2004.01949.x PubMedGoogle Scholar
  76. McClung CR, Davis SJ (2010) Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing. Curr Biol 20:R1086–R1092. doi:10.1016/j.cub.2010.10.035 PubMedGoogle Scholar
  77. Michaelson LV, Zäuner S, Markham JE, Haslam RP, Desikan R, Mugford S, Albrecht S, Warnecke D, Sperling P, Heinz E, Napier JA (2009) Functional characterization of a higher plant sphingolipid Δ4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis. Plant Physiol 149:487–498. doi:10.1104/pp.108.129411 PubMedGoogle Scholar
  78. Mironov KS, Maksimov EG, Maksimov GV, Los DA (2012a) Feedback between fluidity of membranes and transcription of the desB gene for the ω3-desaturase in the cyanobacterium Synechocystis. Mol Biol 46:134–141. doi:10.1134/S002689331201013X. PMID: 22642112Google Scholar
  79. Mironov KS, Sidorov RA, Trofimova MS, Bedbenov VS, Tsydendambaev VS, Allakhverdiev SI, Los DA (2012b) Light-dependent cold-induced fatty acid unsaturation, changes in membrane fluidity, and alterations in gene expression in Synechocystis. Biochim Biophys Acta 1817:1352–1359. doi:10.1016/j.bbabio.2011.12.011 PubMedGoogle Scholar
  80. Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125. doi:10.1016/j.tibs.2011.11.007 PubMedGoogle Scholar
  81. Moellering ER, Benning C (2011) Galactoglycerolipid metabolism under stress: a time for remodeling. Trends Plant Sci 16:98–107. doi:10.1016/j.tplants.2010.11.004 PubMedGoogle Scholar
  82. Moellering ER, Muthan B, Benning C (2010) Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 330:226–228. doi:10.1126/science.1191803 PubMedGoogle Scholar
  83. Moon BY, Higashi S, Gombos Z, Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92:6219–6223. doi:10.1073/pnas.92.14.6219 PubMedGoogle Scholar
  84. Mullineaux CW, Kirchhoff H (2009) Role of lipids in the dynamics of thylakoid membranes. In: Wada H, Murata N (eds) Lipids in photosynthesis essential and regulatory function. Springer Science, Dordrecht, pp 283–294. doi:10.1007/978-90-481-2863-1_13 Google Scholar
  85. Murata N, Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115:875–879. doi:10.1104/pp.115.3.875 PubMedGoogle Scholar
  86. Murata N, Los DA (2006) Histidine kinase Hik33 is an important participant in cold signal transduction in cyanobacteria. Physiol Plant 126:17–27. doi:10.1111/j.1399-3054.2005.00608.x Google Scholar
  87. Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356:710–713. doi:10.1038/356710a0 357: 607 (correction)Google Scholar
  88. Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421. doi:10.1016/j.bbabio.2006.11.019 PubMedGoogle Scholar
  89. Mustardy L, Los DA, Gombos Z, Murata N (1996) Immunocytochemical localization of acyl-lipid desaturases in cyanobacterial cells: evidence that both thylakoid membranes and cytoplasmic membranes are sites of lipid desaturation. Proc Natl Acad Sci USA 93:10524–10527. doi:10.1073/pnas.93.19.10524 PubMedGoogle Scholar
  90. Najle SR, Inda ME, de Mendoza D, Cybulski LE (2009) Oligomerization of Bacillus subtilis DesR is required for fine tuning regulation of membrane fluidity. Biochim Biophys Acta 1790:1238–1243. doi:10.1016/j.bbagen.2009.07.002 PubMedGoogle Scholar
  91. Nakamoto H, Suzuki M, Kojima K (2003) Targeted inactivation of the hrcA repressor gene in cyanobacteria. FEBS Lett 549:57–62. doi:10.1016/S0014-5793(03),00768-3 PubMedGoogle Scholar
  92. Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568. doi:10.1146/annurev.arplant.47.1.541 PubMedGoogle Scholar
  93. Nishida I, Frentzen M, Ishizaki O, Murata N (1987) Purification of isomeric forms of acyl-[acyl-carrier-protein]:glycerol-3-phosphate acyltransferase from greening squash cotyledons. Plant Cell Physiol 28:1071–1079Google Scholar
  94. Nishida I, Tasaka Y, Shiraishi H, Murata N (1993) The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thaliana. Plant Mol Biol 21:267–277. doi:10.1007/BF00019943 PubMedGoogle Scholar
  95. Nishiyama Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant 142:35–46. doi:10.1111/j.1399-3054.2011.01457.x PubMedGoogle Scholar
  96. Ohnishi N, Allakhverdiev SI, Takahashi S, Higashi S, Watanabe M, Nishiyama Y, Murata N (2005) The two-step mechanism of photodamage to photosystem II: step one occurs at the oxygen-evolving complex and step two occurs at the photochemical reaction center. Biochemistry 44:8494–8499. doi:10.1021/bi047518q PubMedGoogle Scholar
  97. Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158. doi:10.1105/tpc.6.1.147 PubMedGoogle Scholar
  98. Okuyama H, Okajima N, Sasaki S, Higashi S, Murata N (1991) The cis/trans isomerization of the double bond of a fatty acid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium, Vibrio sp. strain ABE-1. Biochim Biophys Acta 1084:3–20. doi:10.1016/0005-2760(91)90049-N PMID: 2054374Google Scholar
  99. Orlova IV, Serebriiskaya TS, Popov V, Merkulova N, Nosov AM, Trunova TI, Tsydendambaev VD, Los DA (2003) Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants. Plant Cell Physiol 44:447–450. doi:10.1093/pcp/pcg047 PubMedGoogle Scholar
  100. Orvar BL, Sangwan V, Omann F, Dhindsa RS (2000) Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23:785–794. doi:10.1046/j.1365-313x.2000.00845.x PubMedGoogle Scholar
  101. Popova AV, Velitchkova M, Zanev Y (2007) Effect of membrane fluidity on photosynthetic oxygen production reactions. Z Naturforsch C 62:253–260PubMedGoogle Scholar
  102. Porta A, Eletto A, Török Z, Franceschelli S, Glatz A, Vígh L, Maresca B (2010a) Changes in membrane fluid state and heat shock response cause attenuation of virulence. J Bacteriol 192:1999–2005. doi:10.1128/JB.00990-09 PubMedGoogle Scholar
  103. Porta A, Török Z, Horvath I, Franceschelli S, Vígh L, Maresca B (2010b) Genetic modification of the Salmonella membrane physical state alters the pattern of heat shock response. J Bacteriol 192:1988–1998. doi:10.1128/JB.00988-09 PubMedGoogle Scholar
  104. Prakash JSS, Sinetova M, Kupriyanova E, Zorina A, Suzuki I, Murata N, Los DA (2009) DNA supercoiling regulates the stress-inducible expression of genes in the cyanobacterium. Mol BioSyst 5:1904–1912. doi:10.1039/B903022k PubMedGoogle Scholar
  105. Rodríguez-Vargas S, Sánchez-García A, Martínez-Rivas JM, Prieto JA, Randez-Gil F (2007) Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Appl Environ Microbiol 73:110–116. doi:10.1128/AEM.01360-06 PubMedGoogle Scholar
  106. Ruelland E, Zachowski A (2010) How plants sense temperature? Environ Exp Bot 69:225–232. doi:10.1016/j.envexpbot.2010.05.011 Google Scholar
  107. Ryan PR, Liu Q, Sperling P, Dong B, Franke S, Delhaize E (2007) A higher plant Δ8 sphingolipid desaturase with a preference for (Z)-isomer formation confers aluminum tolerance to yeast and plants. Plant Physiol 144:1968–1977. doi:10.1104/pp.107.100446 PubMedGoogle Scholar
  108. Sakamoto A, Sulpice R, Hou CX, Kinoshita M, Higashi S, Kanaseki T, Nonaka H, Moon BY, Murata N (2003) Genetic modification of fatty acid unsaturation of phosphatidylglycerol in chloroplasts alters the sensitivity of tobacco plants to cold stress. Plant Cell Environ 27:99–105. doi:10.1046/j.0016-8025.2003.01131.x Google Scholar
  109. Sangwan V, Orvar BL, Beyerly J, Hirt H, Dhindsa RS (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J 31:629–638. doi:10.1046/j.1365-313X.2002.01384.x PubMedGoogle Scholar
  110. Sarcina M, Murata N, Tobin MJ, Mullineaux CW (2003) Lipid diffusion in the thylakoid membranes of the cyanobacterium Synechococcus sp.: Effect of fatty acid desaturation. FEBS Lett 553:295–298. doi:10.1016/S0014-5793(03)01031-7 PubMedGoogle Scholar
  111. Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72. doi:10.1105/tpc.13.1.61 PubMedGoogle Scholar
  112. Shimojima M, Ohta H (2011) Critical regulation of galactolipid synthesis controls membrane differentiation and remodeling in distinct plant organs and following environmental changes. Prog Lipid Res 50:258–266. doi:10.1016/j.plipres.2011.03.001 PubMedGoogle Scholar
  113. Shimojima M, Ohta H, Nakamura Y (2009) Biosynthesis and function of chloroplast lipids. In: Wada H, Murata N (eds) Lipids in photosynthesis. Essential and regulatory functions. Springer Science, Dordrecht, pp 35–55. doi:10.1007/978-90-481-2863-1_3 Google Scholar
  114. Shimura Y, Shiraiwa Y, Suzuki I (2012) Characterization of the subdomains in the N-terminal region of histidine kinase Hik33 in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 53:1255–1266. doi:10.1093/pcp/pcs068 PubMedGoogle Scholar
  115. Sinensky M (1974) Homeoviscous adaptation: a homeostatic process that regulates viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71:522–525. doi:10.1073/pnas.71.2.522 PubMedGoogle Scholar
  116. Sippola K, Kanervo E, Murata N, Aro EM (1998) A genetically engineered increase in fatty acid unsaturation in Synechococcus sp. PCC 7942 allows exchange of D1 protein forms and sustenance of photosystem II activity at low temperature. Eur J Biochem 251:641–648. doi:10.1046/j.1432-1327.1998.2510641.x PubMedGoogle Scholar
  117. Slabas AR, Suzuki I, Murata N, Simon WJ, Hall JJ (2006) Proteomic analysis of the heat shock response in Synechocystis PCC6803 and a thermally tolerant knockout strain lacking the histidine kinase 34 gene. Proteomics 6:845–864. doi:10.1002/pmic.200500196 PubMedGoogle Scholar
  118. Smith MA, Dauk M, Ramadan H, Yang H, Seamons LE, Haslam RP, Beaudoin F, Ramirez-Erosa I, Forseille L (2013) Involvement of Arabidopsis ACYL-COENZYME A DESATURASE-LIKE2 (At2g31360) in the biosynthesis of the very-long-chain monounsaturated fatty acid components of membrane lipids. Plant Physiol 16:81–96. doi:10.1104/pp.112.202325 Google Scholar
  119. Sui N, Li M, Zhao SJ, Li F, Liang H, Meng QW (2007a) Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta 226:1097–1108. doi:10.1007/s00425-007-0554-7 PubMedGoogle Scholar
  120. Sui N, Li M, Shu DF, Zhao SJ, Meng QW (2007b) Antisense-mediated depletion of tomato chloroplast glycerol-3-phosphate acyltransferase affects male fertility and increases thermal tolerance. Physiol Plant 130:301–314. doi:10.1111/j.1399-3054.2007.00907.x Google Scholar
  121. Suzuki I, Los DA, Kanesaki Y, Mikami K, Murata N (2000) The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J 19:1327–1334. doi:10.1093/emboj/19.6.1327 PubMedGoogle Scholar
  122. Suzuki I, Kanesaki Y, Mikami K, Kanehisa M, Murata N (2001) Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol Microbiol 40:235–244. doi:10.1046/j.1365-2958.2001.02379.x PubMedGoogle Scholar
  123. Suzuki I, Kanesaki Y, Hayashi H, Hall JJ, Simon WJ, Slabas AR, Murata N (2005) The histidine kinase Hik34 is involved in thermotolerance by regulating the expression of heat shock genes in Synechocystis. Plant Physiol 138:1409–1421. doi:10.1104/pp.104.059097 PubMedGoogle Scholar
  124. Szalontai B, Nishiyama Y, Gombos Z, Murata N (2000) Membrane dynamics as seen by Fourier transform infrared spectroscopy in a cyanobacterium, Synechocystis PCC 6803: the effects of lipid unsaturation and the protein-to-lipid ratio. Biochim Biophys Acta 1509:409–419. doi:10.1016/S0005-2736(00)00323-0 PubMedGoogle Scholar
  125. Szalontai B, Kota Z, Nonaka H, Murata N (2003) Structural consequences of genetically engineered saturation of the fatty acids of phosphatidylglycerol in tobacco thylakoid membranes. An FTIR study. Biochemistry 42:4292–4299. doi:10.1021/bi026894c PubMedGoogle Scholar
  126. Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182. doi:10.1016/j.tplants.2008.01.005 PubMedGoogle Scholar
  127. Tang G-Q, Novitzky WP, Griffin HC, Huber SC, Dewey RE (2005) Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. Plant J 44:433–446. doi:10.1111/j.1365-313X.2005.02535.x PubMedGoogle Scholar
  128. Tasaka Y, Gombos Z, Nishiyama Y, Mohanty P, Ohba T, Ohki K, Murata N (1996) Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis. EMBO J 15:6416–6425 PMCID: PMC452467PubMedGoogle Scholar
  129. Thewke D, Kramer M, Sinensky MS (2003) Transcriptional homeostatic control of membrane lipid composition. Biochem Biophys Res Commun 273:1–4. doi:10.1006/bbrc.2000.2826 Google Scholar
  130. Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577. doi:10.1104/pp.110.161794 PubMedGoogle Scholar
  131. Tiku PE, Gracey AY, Macartney AI, Beynon RJ, Cossins AR (1996) Cold-induced expression of Δ9-desaturase in carp by transcriptional and posttranslational mechanisms. Science 271:815–818. doi:10.1126/science.271.5250.815 PubMedGoogle Scholar
  132. Török Z, Goloubinoff P, Horváth I, Tsvetkova NM, Glatz A, Balogh G, Varvasovszki V, Los DA, Vierling E, Crowe JH, Vigh L (2001) Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc Natl Acad Sci USA 98:3098–3103. doi:10.1073/pnas.051619498 PubMedGoogle Scholar
  133. Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana: effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol 109:15–30. doi:10.1104/pp.109.1.15 PubMedGoogle Scholar
  134. Vaultier MN, Cantrel C, Vergnolle C, Justin AM, Demandre C, Benhassaine-Kesri G, Ciçek D, Zachowski A, Ruelland E (2006) Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in Arabidopsis cells. FEBS Lett 580:4218–4223. doi:10.1016/j.febslet.2006.06.083 PubMedGoogle Scholar
  135. Velitchkova M, Lazarova D, Popova A (2009) Response of isolated thylakoid membranes with altered fluidity to short term heat stress. Physiol Mol Biol Plants 15:43–52. doi: 10.1007/s12298-009-0004-zhttp://link.springer.com/article/10.1007%2Fs12298-009-0004-z
  136. Vigh L, Los DA, Horváth I, Murata N (1993) The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc Natl Acad Sci USA 90:9090–9094. doi:10.1073/pnas.90.19.9090 PubMedGoogle Scholar
  137. Vigh L, Maresca B, Harwood JL (1998) Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem Sci 23:369–374. doi:10.1016/S0968-0004(98)01279-1 PubMedGoogle Scholar
  138. Vijayan P, Browse J (2002) Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation. Plant Physiol 129:876–885. doi:10.1104/pp.004341 PubMedGoogle Scholar
  139. Wada H, Gombos Z, Murata N (1990) Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347:200–203. doi:10.1038/347200a0 PubMedGoogle Scholar
  140. Wallis JG, Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41:254–278. doi:10.1016/S0163-7827(01)00027-3 PubMedGoogle Scholar
  141. Yokoi S, Higashi S, Kishitani S, Murata N, Toriyama K (1998) Introduction of the cDNA for Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice. Mol Breed 4:269–275. doi:10.1023/A:1009671231614 Google Scholar
  142. Zeller G, Henz SR, Widmer CK, Sachsenberg T, Rätsch G, Weigel D, Laubinger S (2009) Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J. 58:1068–1082. doi:10.1111/j.1365-313X.2009.03835.x PubMedGoogle Scholar
  143. Zhang J, Liu H, Sun J, Li B, Zhu Q, Chen S, Zhang H (2012) Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth. PLoS One 7:e30355. doi:10.1371/journal.pone.0030355 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Dmitry A. Los
    • 1
  • Kirill S. Mironov
    • 1
  • Suleyman I. Allakhverdiev
    • 1
  1. 1.Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations