Photosynthesis Research

, Volume 115, Issue 1, pp 1–22 | Cite as

Physiological and molecular mechanisms of plant salt tolerance



Salt tolerance is an important economic trait for crops growing in both irrigated fields and marginal lands. The plant kingdom contains plant species that possess highly distinctive capacities for salt tolerance as a result of evolutionary adaptation to their environments. Yet, the cellular mechanisms contributing to salt tolerance seem to be conserved to some extent in plants although some highly salt-tolerant plants have unique structures that can actively excrete salts. In this review, we begin by summarizing the research in Arabidopsis with a focus on the findings of three membrane transporters that are important for salt tolerance: SOS1, AtHKT1, and AtNHX1. We then review the recent studies in salt tolerance in crops and halophytes. Molecular and physiological mechanisms of salt tolerance in plants revealed by the studies in the model plant, crops, and halophytes are emphasized. Utilization of the Na+ transporters to improve salt tolerance in plants is also summarized. Perspectives are provided at the end of this review.


Salt tolerance Glycophytes Halophytes Na+ transporters 



Research work in Dr. Huazhong Shi’s laboratory was funded by the US Department of Agriculture National Research Initiative project 2007-35100-18378 and that in Dr. Jin-Lin Zhang’s by the National Natural Science Foundation of China (grant No. 31172256, 31170431 and 31222053) and the Program for New Century Excellent Talents, Ministry of Education, China (grant No. NCET-11-0217). We thank Mr. Rui Shi for his language editing for this manuscript.


  1. Agarie S, Shimoda T, Shimizu Y, Baumann K, Sunagawa H, Kondo A, Ueno O, Nakahara T, Nose A, Cushman JC (2007) Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J Exp Bot 58:1957–1967PubMedCrossRefGoogle Scholar
  2. Al-Aghabary K, Zhu Z, Shi QH (2004) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27:2101–2115CrossRefGoogle Scholar
  3. Alemán F, Nieves-Cordones M, Martínez V, Rubio F (2009a) Differential regulation of the HAK5 genes encoding the high-affinity K+ transporters of Thellungiella halophila and Arabidopsis thaliana. Environ Exp Bot 65:263–269CrossRefGoogle Scholar
  4. Alemán F, Nieves-Cordones M, Martínez V, Rubio F (2009b) Potassium/sodium steady-state homeostasis in Thellungiella halophila and Arabidopsis thaliana under long-term salinity conditions. Plant Sci 176:768–774CrossRefGoogle Scholar
  5. Ali Z, Park HC, Ali A, Oh D-H, Aman R, Kropornicka A, Hong H, Choi W, Chung WS, Kim W-Y, Bressan RA, Bohnert HJ, Lee SY, Yun D-J (2012) TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl. Plant Physiol 158:1463–1474PubMedCrossRefGoogle Scholar
  6. Allen GJ, Wyn Jones RG, Leigh RA (1995) Sodium transport measured in plasma membrane vesicles isolated from wheat genotypes with differing K+/Na+ discrimination traits. Plant Cell Environ 18:105–115CrossRefGoogle Scholar
  7. Amarasinghe V, Watson L (1989) Variation in salt secretory activity of microhairs in grasses. Aust J Plant Physiol 16:219–229CrossRefGoogle Scholar
  8. An R, Chen QJ, Chai MF, Lu PL, Su Z, Qin ZX, Chen J, Wang XC (2007) AtNHX8, a member of the monovalent cation: proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li/H antiporter. Plant J 49:718–728PubMedCrossRefGoogle Scholar
  9. Anil VS, Krishnamurthy P, Kuruvilla S, Sucharitha K, Thomas G, Mathew MK (2005) Regulation of the uptake and distribution of Na+ in shoots of rice (Oryza sativa) variety Pokkali: role of Ca2+ in salt tolerance response. Physiol Plantarum 124:451–464Google Scholar
  10. Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254PubMedCrossRefGoogle Scholar
  11. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258PubMedCrossRefGoogle Scholar
  12. Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36:229–239PubMedCrossRefGoogle Scholar
  13. Ardie SW, Xie L, Takahashi R, Liu S, Takano T (2009) Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. J Exp Bot 60:3491–3502PubMedCrossRefGoogle Scholar
  14. Ardie SW, Liu S, Takano T (2010) Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Rep 29:865–874PubMedCrossRefGoogle Scholar
  15. Ardie SW, Nishiuchi S, Liu S, Takano T (2011) Ectopic expression of the K+ channel β subunits from Puccinellia tenuiflora (KPutB1) and rice (KOB1) alters K+ homeostasis of yeast and Arabidopsis. Mol Biotechnol 48:76–86PubMedCrossRefGoogle Scholar
  16. Ayala F, O’Leary JW, Schumaker KS (1996) Increased vacuolar and plasma membrane H+-ATPase activities in Salicornia bigelovii Torr. in response to NaCl. J Exp Bot 47:25–32Google Scholar
  17. Baek D, Jiang J, Chung JS, Wang B, Chen J, Xin Z, Shi H (2011) Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance. Plant Cell Physiol 52:149–161PubMedCrossRefGoogle Scholar
  18. Balnokin YV, Kurkova EB, Khalilova LA, Myasoedov NA, Yusufov AG (2007) Pinocytosis in the root cells of a salt-accumulating halophyte Suaeda altissima and its possible involvement in chloride transport. Russ J Plant Physiol 54:797–805CrossRefGoogle Scholar
  19. Balsamo RA, Adams ME, Thomson WW (1995) Electrophysiology of the salt glands of Avicennia germinans. Int J Plant Sci 156:658–667CrossRefGoogle Scholar
  20. Banjara M, Zhu L, Shen G, Payton P, Zhang H (2012) Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1) in peanut to improve salt tolerance. Plant Biotechnol Rep 6:59–67CrossRefGoogle Scholar
  21. Bao AK, Wang SM, Wu GQ, Xi JJ, Zhang JL, Wang CM (2009) Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 176:232–240CrossRefGoogle Scholar
  22. Bartels D, Nelson D (1994) Approaches to improve stress tolerance using molecular genetics. Plant Cell Environ 17:659–667CrossRefGoogle Scholar
  23. Baumeister VW, Kloos G (1974) Salt secretion in Halimione portulacoides (L.) Aellen. Flora 163:310–326Google Scholar
  24. Baumeister W, Ziffus G (1981) Salt secretion by the salt glands of Armeria maritima L. J Plant Physiol 102:273–278Google Scholar
  25. Bayat F, Shiran B, Belyaev DV (2011) Overexpression of HvNHX2, a vacuolar Na+/H+ antiporter gene from barley, improves salt tolerance in Arabidopsis thaliana. Aust J Crop Sci 5:428–432Google Scholar
  26. Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Very AA, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014PubMedCrossRefGoogle Scholar
  27. Bhaskaran S, Savithramma DL (2011) Co-expression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic tomato. J Exp Bot 62:5561–5570PubMedCrossRefGoogle Scholar
  28. Blom-Zandstra M, Vogelzang S, Veen B (1998) Sodium fluxes in sweet pepper exposed to varying sodium concentrations. J Exp Biol 49:1863–1868Google Scholar
  29. Blumwald E, Poole RJ (1985) Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiol 78:163–167PubMedCrossRefGoogle Scholar
  30. Bowers K, Levi BP, Patel FI, Stevens TH (2000) The sodium/proton exchanger NHX1 is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae. Mol Biol Cell 11:4277–4294PubMedGoogle Scholar
  31. Brini F, Gaxiola RA, Berkowitz GA, Masmoudi K (2005) Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Plant Physiol Bioch 43:347–354CrossRefGoogle Scholar
  32. Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007) Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58:301–308PubMedCrossRefGoogle Scholar
  33. Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928PubMedCrossRefGoogle Scholar
  34. Cao Y, Jin X, Huang H, Derebe MG, Levin EJ, Kabaleeswaran V, Pan Y, Punta M, Love J, Weng J, Quick M, Ye S, Kloos B, Bruni R, Martinez-Hackert E, Hendrickson WA, Rost B, Javitch JA, Rajashankar KR, Jiang Y, Zhou M (2011) Crystal structure of a potassium ion transporter, TrkH. Nature 471:336–340Google Scholar
  35. Chai Q, Shao X, Zhang J (2010) Silicon effects on Poa pratensis responses to salinity. HortSci 45:1876–1881Google Scholar
  36. Chang-Qing Z, Shunsaku N, Shenkui L, Tetsuo T (2008) Characterization of two plasma membrane protein 3 genes (PutPMP3) from the alkali grass, Puccinellia tenuiflora, and functional comparison of the rice homologues, OsLti6a/b from rice. BMB Rep 41:448–454PubMedCrossRefGoogle Scholar
  37. Cheeseman JM (1988) Mechanisms of salinity tolerance in plants. Plant Physiol 87:547–550PubMedCrossRefGoogle Scholar
  38. Chen H, An R, Tang JH, Cui XH, Hao FS, Chen J, Wang XC (2007) Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice. Mol Breed 19:215–225CrossRefGoogle Scholar
  39. Chen LH, Zhang B, Xu ZQ (2008) Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Res 17:121–132PubMedCrossRefGoogle Scholar
  40. Chen J, Xiao Q, Wu F, Dong X, He J, Pei Z, Zheng H (2010) Nitric oxide enhances salt secretion and Na+ sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H+-ATPase and Na+/H+ antiporter under high salinity. Tree Physiol 30:1570–1585PubMedCrossRefGoogle Scholar
  41. Chung JS, Zhu JK, Bressan RA, Hasegawa PM, Shi H (2008) Reactive oxygen species mediate Na+-induced SOS1 mRNA stability in Arabidopsis. Plant J 53:554–565PubMedCrossRefGoogle Scholar
  42. Clipson NJW, Tomos AD, Flowers TJ, Wyn Jones RG (1985) Salt tolerance in the halophyte Suaeda maritima L. Dum. Planta 165:392–396Google Scholar
  43. Cotsaftis O, Plett D, Shirley N, Tester M, Hrmova M (2012) A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing. PLOS One 7:e39865PubMedCrossRefGoogle Scholar
  44. Cuin TA, Bose J, Stefano G, Jha D, Tester M, Mancuso S, Shabala S (2009) Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. Plant Cell Environ 34:947–961CrossRefGoogle Scholar
  45. Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H, Ali S, Yun DJ, Bressan RA, Zhu JK, Bohnert HJ, Cheeseman JM (2011) The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 43:913–918PubMedCrossRefGoogle Scholar
  46. Davenport RJ, Tester M (2000) A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiol 122:823–834PubMedCrossRefGoogle Scholar
  47. Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818PubMedCrossRefGoogle Scholar
  48. Davenport RJ, Muñoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30:497–507PubMedCrossRefGoogle Scholar
  49. Drew MC, Lauchli A (1987) The role of the mesocotyl in sodium exclusion from the shoot of Zea manys L. (cv. Pioneer 3906). J Exp Biol 38:409–418Google Scholar
  50. Duan XG, Yang AF, Gao F, Zhang SL, Zhang JR (2007) Heterologous expression of vacuolar H+-PPase enhances the electrochemical gradient across the vacuolar membrane and improves tobacco cell salt tolerance. Protoplasma 232:87–95PubMedCrossRefGoogle Scholar
  51. DuPont FM (1992) Salt induced changes in ion transport: regulation of primary pumps and secondary transporters. In: Clarkson DT, Cooke DT (eds) Transport and receptor proteins of plant membranes. molecular structure and function. Plenum, New York, pp 91–100CrossRefGoogle Scholar
  52. Fahn A (1988) Secretory tissues in vascular plants. New Phytol 108:229–257CrossRefGoogle Scholar
  53. Faiyue B, Al-Azzawi MJ, Flowers TJ (2010a) The role of lateral roots in bypass flow in rice (Oryza sativa L.). Plant Cell Environ 33:702–716PubMedGoogle Scholar
  54. Faiyue B, Vijayalakshmi C, Nawaz S, Nagato Y, Taketa S, Ichii M, Al-Azzawi MJ, Flowers T (2010b) Studies on sodium bypass flow in lateral rootless mutants lrt1 and lrt2, and crown rootless mutant crl1 of rice (Oryza sativa L.). Plant Cell Environ 33:687–701PubMedGoogle Scholar
  55. Feki K, Quintero F, Pardo J, Masmoudi K (2011) Regulation of durum wheat Na+/H+ exchanger TdSOS1 by phosphorylation. Plant Mol Biol 76:545–556PubMedCrossRefGoogle Scholar
  56. Ferjani A, Segami S, Horiguchi G, Muto Y, Maeshima M, Tsukaya H (2011) Keep an eye on PPi: the vacuolar-type H+-pyrophosphatase regulates postgerminative development in Arabidopsis. Plant Cell 23:2895–2908PubMedCrossRefGoogle Scholar
  57. Fitzgerald MA, Orlovich DA, Allaway WG (1992) Evidence that abaxial leaf glands are the sites of salt secretion in leaves of the mangrove Avicennia marina (Forsk.) Vierh. New Phytol 120:1–7CrossRefGoogle Scholar
  58. Flowers TJ (1972) Salt tolerance in Suaeda maritima (L) Dum. The effect of sodium chloride on growth respiration and soluble enzymes in a comparative study with Pisum sativum L. J Exp Bot 23:310–321CrossRefGoogle Scholar
  59. Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319PubMedCrossRefGoogle Scholar
  60. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963PubMedCrossRefGoogle Scholar
  61. Flowers TJ, Flowers SA, Hajibagheri MA, Yeo AR (1990) Salt tolerance in the halophytic wild rice, Porteresia coarctata Tateoka. New Phytol 114:675–684CrossRefGoogle Scholar
  62. Fukuda A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. BBA Gene Struct Exp 1446:149–155CrossRefGoogle Scholar
  63. Fukuda A, Chiba K, Maeda M, Nakamura A, Maeshima M, Tanaka Y (2004) Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley. J Exp Bot 55:585–594PubMedCrossRefGoogle Scholar
  64. Gao F, Gao Q, Duan XG, Yue G, Yang AF, Zhang JR (2006) Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot 57:3259–3270PubMedCrossRefGoogle Scholar
  65. Gao F, Zhou Y, Huang L, He D, Zhang G (2008) Proteomic analysis of long-term salinity stress-responsive proteins in Thellungiella halophila leaves. Chinese Sci Bull 53:3530–3537CrossRefGoogle Scholar
  66. Garciadeblás B, Senn ME, Bañuelos MA, Rodríguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801PubMedCrossRefGoogle Scholar
  67. Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA 96:1480–1485PubMedCrossRefGoogle Scholar
  68. Gaxiola RA, Li JS, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98:11444–11449PubMedCrossRefGoogle Scholar
  69. Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214PubMedCrossRefGoogle Scholar
  70. Genc Y, Oldach K, Verbyla A, Lott G, Hassan M, Tester M, Wallwork H, McDonald G (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet 121:877–894PubMedCrossRefGoogle Scholar
  71. Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255CrossRefGoogle Scholar
  72. Gong QQ, Li PH, Ma SS, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839PubMedCrossRefGoogle Scholar
  73. Gong HJ, Randall DP, Flowers TJ (2006) Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970–1979PubMedCrossRefGoogle Scholar
  74. Gouiaa S, Khoudi H, Leidi EO, Pardo JM, Masmoudi K (2012) Expression of wheat Na+/H+ antiporter TNHXS1 and H+- pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Mol Biol 79:137–155PubMedCrossRefGoogle Scholar
  75. Guan B, Hu Y, Zeng Y, Wang Y, Zhang F (2010) Molecular characterization and functional analysis of a vacuolar Na+/H+ antiporter gene (HcNHX1) from Halostachys caspica. Mol Biol Rep 38:1889–1899PubMedCrossRefGoogle Scholar
  76. Gunes A, Inal A, Bagci EG, Coban S (2007a) Silicon-mediated changes on some physiological and enzymatic parameters symptomatic of oxidative stress in barley grown in sodic-B toxic soil. J Plant Physiol 164:807–811PubMedCrossRefGoogle Scholar
  77. Gunes A, Inal A, Bagci EG, Pilbeam DJ (2007b) Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant Soil 290:103–114CrossRefGoogle Scholar
  78. Guo Y, Qiu QS, Quintero FJ, Pardo JM, Ohta M, Zhang C, Schumaker KS, Zhu JK (2004) Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell 16:435–449PubMedCrossRefGoogle Scholar
  79. Guo SL, Yin HB, Zhang X, Zhao FY, Li PH, Chen SH, Zhao YX, Zhang H (2006) Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mol Biol 60:41–50PubMedCrossRefGoogle Scholar
  80. Guo Q, Wang P, Ma Q, Zhang JL, Bao AK, Wang SM (2012) Selective transport capacity for K+ over Na+ is linked to the expression levels of PtSOS1 in halophyte Puccinellia tenuiflora. Funct Plant Biol 39:1047–1057Google Scholar
  81. Halfter U, Ishitani M, Zhu JK (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA 97:3735–3740PubMedCrossRefGoogle Scholar
  82. Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T (2001) Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Mol Biol 46:35–42PubMedCrossRefGoogle Scholar
  83. Hassidim M, Braun Y, Lerner HR, Reinhold L (1990) Na+/H+ and K+/H+ antiport in root membrane-vesicles isolated from the halophyte Atriplex and the glycophyte cotton. Plant Physiol 94:1795–1801PubMedCrossRefGoogle Scholar
  84. He C, Yan J, Shen G, Fu L, Holaday AS, Auld D, Blumwald E, Zhang H (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46:1848–1854PubMedCrossRefGoogle Scholar
  85. Hernández A, Jiang X, Cubero B, Nieto PM, Bressan RA, Hasegawa PM, Pardo JM (2009) Mutants of the Arabidopsis thaliana cation/H+ antiporter AtNHX1 conferring increased salt tolerance in yeast: the endosome/prevacuolar compartment is a target for salt toxicity. J Biol Chem 284:14276–14285PubMedCrossRefGoogle Scholar
  86. Hill AE, Hill BS (1976) Elimination processes by glands: mineral ions. In: Luttge U, Pitman MG (eds) Encyclopedia plant physiol new series 2B. Springer, Berlin, pp. 225–243Google Scholar
  87. Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27:129–138PubMedCrossRefGoogle Scholar
  88. Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 26:3003–3014PubMedCrossRefGoogle Scholar
  89. Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668PubMedCrossRefGoogle Scholar
  90. Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727PubMedCrossRefGoogle Scholar
  91. Huang S, Spielmeyer W, Lagudah ES, Munns R (2008) Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. J Exp Bot 59:927–937PubMedCrossRefGoogle Scholar
  92. Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12:1667–1678PubMedGoogle Scholar
  93. James RA, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142:1537–1547PubMedCrossRefGoogle Scholar
  94. James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62:2939–2947PubMedCrossRefGoogle Scholar
  95. Janz D, Polle A (2012) Harnessing salt for woody biomass production. Tree Physiol 32:1–3PubMedCrossRefGoogle Scholar
  96. Jha D, Shirley N, Tester M, Roy SJ (2010) Variation in salinity tolerance and shoot sodium accumulation in Arabidopsis ecotypes linked to differences in the natural expression levels of transporters involved in sodium transport. Plant Cell Environ 33:793–804PubMedGoogle Scholar
  97. Jha A, Joshi M, Yadav N, Agarwal P, Jha B (2011) Cloning and characterization of the Salicornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress. Mol Biol Rep 38:1965–1973PubMedCrossRefGoogle Scholar
  98. Kader MA, Seidel T, Golldack D, Lindberg S (2006) Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. J Exp Bot 57:4257–4268PubMedCrossRefGoogle Scholar
  99. Katiyar-Agarwal S, Zhu J, Kim K, Agarwal M, Fu X, Huang A, Zhu JK (2006) The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:18816–18821PubMedCrossRefGoogle Scholar
  100. Khoudi H, Maatar Y, Gouiaa S, Masmoudi K (2012) Transgenic tobacco plants expressing ectopically wheat H+-pyrophosphatase (H+-PPase) gene TaVP1 show enhanced accumulation and tolerance to cadmium. J Plant Physiol 169:98–103PubMedCrossRefGoogle Scholar
  101. Kobayashi H, Masaoka Y (2008) Salt secretion in Rhodes grass (Chloris gayana Kunth) under conditions of excess magnesium. Soil Sci Plant Nutr 54:393–399CrossRefGoogle Scholar
  102. Kobayashi S, Abe N, Yoshida K, Liu S, Takano T (2012) Molecular cloning and characterization of plasma membraneand vacuolar-type Na+/H+ antiporters of an alkaline-salt-tolerant monocot, Puccinellia tenuiflora. J Plant Res 125:587–594PubMedCrossRefGoogle Scholar
  103. Kramer D (1983) The possible role of transfer cells in the adaptation of plants to salinity. Physiol Plantarum 58:549–555CrossRefGoogle Scholar
  104. Krishnamurthy P, Ranathunge K, Franke R, Prakash H, Schreiber L, Mathew M (2009) The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta 230:119–134PubMedCrossRefGoogle Scholar
  105. Krishnamurthy P, Ranathunge K, Nayak S, Schreiber L, Mathew MK (2011) Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). J Exp Bot 62:4215–4228PubMedCrossRefGoogle Scholar
  106. Kronzucker HJ, Szczerba MW, Moazami-Goudarzi M, Britto DT (2006) The cytosolic Na+: K+ ratio does not explain salinity-induced growth impairment in barley: a dual-tracer study using 42K+ and 24Na+. Plant Cell Environ 29:2228–2237PubMedCrossRefGoogle Scholar
  107. Lerchl J, König S, Zrenner R, Sonnewald U (1995) Molecular cloning, characterization and expression analysis of isoforms encoding tonoplast-bound proton-translocating inorganic pyrophosphatase in tobacco. Plant Mol Biol 29:833–840PubMedCrossRefGoogle Scholar
  108. Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, Krizek BA, Murphy AS, Gilroy S, Gaxiola RA (2005) Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310:121–125PubMedCrossRefGoogle Scholar
  109. Li WY, Wong FL, Tsai SN, Phang TH, Shao GH, Lam HM (2006) Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. Plant Cell Environ 29:1122–1137PubMedCrossRefGoogle Scholar
  110. Li JY, Jiang GQ, Huang P, Ma J, Zhang FC (2007) Overexpression of the Na+/H+ antiporter gene from Suaeda salsa confers cold and salt tolerance to transgenic Arabidopsis thaliana. Plant Cell Tiss Org 90:41–48CrossRefGoogle Scholar
  111. Li B, Wei A, Song C, Li N, Zhang JR (2008a) Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnol J 6:146–159PubMedCrossRefGoogle Scholar
  112. Li J, He X, Xu L, Zhou J, Wu P, Shou H, Zhang F (2008b) Molecular and functional comparisons of the vacuolar Na+/H+ exchangers originated from glycophytic and halophytic species. J Zhejiang Univ Sci B 9:132–140PubMedCrossRefGoogle Scholar
  113. Li ZG, Baldwin M, Hu Q, Liu HB, Luo H (2010) Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.). Plant Cell Environ 33:272–289PubMedCrossRefGoogle Scholar
  114. Li W, Zhang C, Lu Q, Wen X, Lu C (2011) The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. J Plant Physiol 168:1743–1752PubMedCrossRefGoogle Scholar
  115. Liang YC, Zhang WH, Chen Q, Ding RX (2005) Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 53:29–37CrossRefGoogle Scholar
  116. Lindsay MP, Lagudah ES, Hare RA, Munns R (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol 31:1105–1114CrossRefGoogle Scholar
  117. Liphschitz N, Waisel Y (1974) Existence of salt glands in various genera of the Gramineae. New Phytol 73:507–513CrossRefGoogle Scholar
  118. Liphschitz N, Waisel Y (1982) Adaptation of plants to saline environments: salt excretion and glandular structure. In: Sen DN, Rajpurohit KS (eds) Tasks for vegetation science, contributions to the ecology of halophytes. Dr W Junk, The Hague, pp 197–214CrossRefGoogle Scholar
  119. Liphschitz N, Shomer-Ilan A, Eshel A, Waisel Y (1974) Salt glands on leaves of Rhodes grass (Chloris gayana Kth.). Ann Bot 38:459–462Google Scholar
  120. Liu J, Zhu JK (1997) Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol 114:591–596PubMedCrossRefGoogle Scholar
  121. Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt tolerance. Science 280:1943–1945PubMedCrossRefGoogle Scholar
  122. Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA 97:3730–3734PubMedCrossRefGoogle Scholar
  123. Liu H, Zhang X, Takano T, Liu S (2009) Characterization of a PutCAX1 gene from Puccinellia tenuiflora that confers Ca2+ and Ba2+ tolerance in yeast. Biochem Biophys Res Commun 383:392–396PubMedCrossRefGoogle Scholar
  124. Liu SP, Zheng LQ, Xue YH, Zhang Q, Wang L, Shou HX (2010) Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. J Plant Biol 53:444–452CrossRefGoogle Scholar
  125. Liu L, Zeng Y, Pan X, Zhang F (2012) Isolation, molecular characterization, and functional analysis of the vacuolar Na+/H+ antiporter genes from the halophyte Karelinia caspica. Mol Biol Rep 39:7193–7202PubMedCrossRefGoogle Scholar
  126. Lu SY, Jing YX, Shen SH, Zhao HY, Ma LQ, Zhou XJ, Ren Q, Li YF (2005) Antiporter gene from Hordum brevisubulatum (Trin.) link and its overexpression in transgenic tobaccos. J Integr Plant Biol 47:343–349CrossRefGoogle Scholar
  127. Lü SY, Jing YX, Pang XB, Zhao HY, Ma LQ, Li YF (2005) cDNA cloning of a vacuolar H+-pyrophosphatase and its expression in Hordeum brevisubulatum (Trin.) link in response to salt stress. Agr Sci China 4:247–251Google Scholar
  128. Lux A, Martinka M, Vaculik M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37PubMedCrossRefGoogle Scholar
  129. Lv SL, Zhang KW, Gao Q, Lian LJ, Song Y, Zhang J (2008) Overexpression of an H+-PPase gene from Thellungiella halophila (TsVP) in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol 49:1150–1164PubMedCrossRefGoogle Scholar
  130. Lv SL, Lian LJ, Tao PL, Li ZX, Zhang KW, Zhang JR (2009) Overexpression of Thellungiella halophila H+-PPase (TsVP) in cotton enhances drought stress resistance of plants. Planta 229:899–910PubMedCrossRefGoogle Scholar
  131. Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol 127:1773–1780PubMedCrossRefGoogle Scholar
  132. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691PubMedCrossRefGoogle Scholar
  133. Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212PubMedCrossRefGoogle Scholar
  134. Ma Q, Yue LJ, Zhang JL, Wu GQ, Bao AK, Wang SM (2012) Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. Tree Physiol 32:4–13PubMedCrossRefGoogle Scholar
  135. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158PubMedCrossRefGoogle Scholar
  136. Marcum KB (1999) Salinity tolerance mechanisms of grasses in the subfamily Chloridoideae. Crop Sci 39:1153–1160CrossRefGoogle Scholar
  137. Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012PubMedCrossRefGoogle Scholar
  138. Maruyama C, Tanaka Y, Takeyasu K, Yoshida M, Sato MH (1998) Structural studies of the vacuolar H+-pyrophosphatase: sequence analysis and identification of the residues modified by fluorescent cyclohexylcarbodiimide and maleimide. Plant Cell Physiol 39:1045–1053PubMedCrossRefGoogle Scholar
  139. Mäser P, Eckelman B, Vaidyanathan R, Horie T, Firbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W, Sussman MR, Schroeder JI (2002) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett 531:157–161PubMedCrossRefGoogle Scholar
  140. Matsushita N, Matoh T (1992) Function of the shoot base of salt-tolerant reed (Phragmites communis Trinius) Plants for Na+ exclusion from the shoots. Soil Sci Plant Nutr 38:565–571CrossRefGoogle Scholar
  141. McWhorter CG, Paul RN, Ouzts JC (1995) Bicellular trichomes of johnsongrass (Sorghum halepense) leaves: morphology, histochemistry, and function. Weed Sci 43:201–208Google Scholar
  142. Mennen H, Jacoby B, Marschner H (1990) Is sodium proton antiport ubiquitous in plant cells. J Plant Physiol 137:180–183CrossRefGoogle Scholar
  143. Mian A, Oomen RJ, Isayenkov S, Sentenac H, Maathuis FJ, Véry AA (2011) Over-expression of an Na+- and K+-permeable HKT transporter in barley improves salt tolerance. Plant J 68:468–479PubMedCrossRefGoogle Scholar
  144. Miao BH, Han XG, Zhang WH (2010) The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Ann Bot 105:967–973PubMedCrossRefGoogle Scholar
  145. Møller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 21:2163–2178PubMedCrossRefGoogle Scholar
  146. Mozafar A, Goodin JR (1970) Vesiculated hairs: a mechanism for salt tolerance in Atriplex halimus L. Plant Physiol 45:62–65PubMedCrossRefGoogle Scholar
  147. Munns R, Husain S, Rivelli AR, James RA, Condon AG, Lindsay MP, Lagudah ES, Schachtman DP, Hare RA (2002) Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil 247:93–105CrossRefGoogle Scholar
  148. Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043PubMedCrossRefGoogle Scholar
  149. Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364PubMedCrossRefGoogle Scholar
  150. Nah G, Pagliarulo CL, Mohr PG, Luo M, Sisneros N, Yu Y, Collura K, Currie J, Goicoechea JL, Wing RA, Schumaker KS (2009) Comparative sequence analysis of the salt overly sensitive1 orthologous region in Thellungiella halophila and Arabidopsis thaliana. Genomics 94:196–203PubMedCrossRefGoogle Scholar
  151. Naidoo G, Naidoo Y (1998) Salt tolerance in Sporobolus virginicus: the importance of ion relations and salt secretion. Flora 193:337–344Google Scholar
  152. Naidoo G, Naidoo Y, Govender TG (1997) The role of salt secretion in salt tolerance in Sporobolus virginicus. Plant Physiol 114:306Google Scholar
  153. Nakanishi Y, Maeshima M (1998) Molecular cloning of vacuolar H+-pyrophosphatase and its developmental expression in growing hypocotyl of mung bean. Plant Physiol 116:589–597PubMedCrossRefGoogle Scholar
  154. Oh DH, Gong QQ, Ulanov A, Zhang Q, Li YZ, Ma WY, Yun DJ, Bressan RA, Bohnert HJ (2007) Sodium stress in the halophyte Thellungiella halophila and transcriptional changes in a thsos1-RNA interference line. J Integr Plant Biol 4:1484–1496CrossRefGoogle Scholar
  155. Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ, Jiang X, D’Urzo MP, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun DJ, Pardo JM, Bohnert HJ (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiol 151:210–222PubMedCrossRefGoogle Scholar
  156. Oh DH, Lee SY, Bressan RA, Yun DJ, Bohnert HJ (2010a) Intracellular consequences of SOS1 deficiency during salt stress. J Exp Bot 61:1205–1213PubMedCrossRefGoogle Scholar
  157. Oh DH, Dassanayake M, Haas JS, Kropornika A, Wright C, d’Urzo MP, Hong H, Ali S, Hernandez A, Lambert GM, Inan G, Galbraith DW, Bressan RA, Yun DJ, Zhu JK, Cheeseman JM, Bohnert HJ (2010b) Genome structures and halophyte-specific gene expression of the extremophile Thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis. Plant Physiol 154:1040–1052PubMedCrossRefGoogle Scholar
  158. Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282Google Scholar
  159. Olías R, Eljakaoui Z, Li J, De Morales PA, Marín-Manzano MC, Pardo JM, Belver A (2009) The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ 32:904–916PubMedCrossRefGoogle Scholar
  160. Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9:2584–2599PubMedCrossRefGoogle Scholar
  161. Pang Q, Guo J, Chen S, Chen Y, Zhang L, Fei M, Jin S, Li M, Wang Y, Yan X (2012) Effect of salt treatment on the glucosinolate-myrosinase system in Thellungiella salsuginea. Plant Soil 355:363–374CrossRefGoogle Scholar
  162. Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57:1181–1199PubMedCrossRefGoogle Scholar
  163. Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD, Gaxiola RA (2005) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci USA 102:18830–18835PubMedCrossRefGoogle Scholar
  164. Parks GE, Dietrich MA, Schumaker KS (2002) Increased vacuolar Na+/H+ exchange activity in Salicornia bigelovii Torr. in response to NaCl. J Exp Bot 53:1055–1065PubMedCrossRefGoogle Scholar
  165. Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9:88–99PubMedCrossRefGoogle Scholar
  166. Pei L, Wang J, Li K, Li Y, Li B, Gao F, Yang A (2012) Overexpression of Thellungiella halophila H+-pyrophosphatase gene improves low phosphate tolerance in maize. PLOS One 7:e43501PubMedCrossRefGoogle Scholar
  167. Peng YH, Zhu YF, Mao YQ, Wang SM, Su WA, Tang ZC (2004) Alkali grass resists salt stress through high K+ and an endodermis barrier to Na+. J Exp Bot 55:939–949PubMedCrossRefGoogle Scholar
  168. Pollak G, Waisel Y (1970) Salt secretion in Aeluropus litoralis (Willd.) Parl. Ann Bot 34:879–888Google Scholar
  169. Porat R, Pavoncello D, Ben-Hayyim G, Lurie S (2002) A heat treatment induced the expression of a Na+/H+ antiport gene (cNHX1) in citrus fruit. Plant Sci 162:957–963CrossRefGoogle Scholar
  170. Qiao WH, Zhao XY, Li W, Luo Y, Zhang XS (2007) Overexpression of AeNHX1, a root-specific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants. Plant Cell Rep 26:1663–1672PubMedCrossRefGoogle Scholar
  171. Qiu NW, Chen M, Guo JR, Bao HY, Ma XL, Wang BS (2007) Coordinate up-regulation of V-H+-ATPase and vacuolar Na+/H+ antiporter as a response to NaCl treatment in a C-3 halophyte Suaeda salsa. Plant Sci 172:1218–1225CrossRefGoogle Scholar
  172. Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA 99:9061–9066PubMedCrossRefGoogle Scholar
  173. Quintero FJ, Martinez-Atienza J, Villalta I, Jiang X, Kim WY, Ali Z, Fujii H, Mendoza I, Yun DJ, Zhu JK, Pardo JM (2011) Activation of the plasma membrane Na/H antiporter salt-overly-sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci USA 108:2611–2616PubMedCrossRefGoogle Scholar
  174. Rahnama A, James RA, Poustini K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37:255–263CrossRefGoogle Scholar
  175. Rajagopal D, Agarwal P, Tyagi W, Singla-Pareek SL, Reddy MK, Sopory SK (2007) Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol Breed 19:137–151CrossRefGoogle Scholar
  176. Ramadan T (1998) Ecophysiology of salt excretion in the xero-halophyte Reaumuria hirtella. New Phytol 139:273–281CrossRefGoogle Scholar
  177. Ramadan T (2001) Dynamics of salt secretion by Sporobolus spicatus (Vahl) Kunth from sites of differing salinity. Ann Bot 87:259–266CrossRefGoogle Scholar
  178. Ramati A, Liphschitz N, Waisel Y (1976) Ion localization and salt secretion in Sporobolus arenarius (Gou.) Duv-Jouv. New Phytol 76:289–294Google Scholar
  179. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146PubMedCrossRefGoogle Scholar
  180. Rodríguez-Rosales MP, Gálvez FJ, Huertas R, Aranda MN, Baghour M, Cagnac O, Venema K (2009) Plant NHX cation/proton antiporters. Plant Signal Behav 4:265–276PubMedCrossRefGoogle Scholar
  181. Rozema J, Gude H, Pollack G (1981) An ecophysical study of the salt secretion of four halophytes. New Phytol 89:207–217CrossRefGoogle Scholar
  182. Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA 98:14150–14155PubMedCrossRefGoogle Scholar
  183. Rus A, Lee BH, Muñoz-Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM (2004) AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol 136:2500–2511PubMedCrossRefGoogle Scholar
  184. Rus A, Baxter I, Muthukumar B, Gustin J, Lahner B, Yakubova E, Salt DE (2006) Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis. PLOS Genet 2:e210PubMedCrossRefGoogle Scholar
  185. Sakakibara Y, Kobayashi H, Kasamo K (1996) Isolation and characterization of cDNAs encoding vacuolar H+-pyrophosphates isoforms from rice (Oryza sativa L.). Plant Mol Biol 31:1029–1038PubMedCrossRefGoogle Scholar
  186. Sarafian V, Kim Y, Poole RJ, Rea PA (1992) Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. Proc Natl Acad Sci USA 89:1775–1779PubMedCrossRefGoogle Scholar
  187. Schachtman DP, Liu WH (1999) Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci 4:281–287PubMedCrossRefGoogle Scholar
  188. Shabala S, Shabala S, Cuin TA, Pang J, Percey W, Chen Z, Conn S, Eing C, Wegner LH (2010) Xylem ionic relations and salinity tolerance in barley. Plant J 61:839–853PubMedCrossRefGoogle Scholar
  189. Shi H, Zhu JK (2002) Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol Biol 50:543–550PubMedCrossRefGoogle Scholar
  190. Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901PubMedCrossRefGoogle Scholar
  191. Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477PubMedCrossRefGoogle Scholar
  192. Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85PubMedCrossRefGoogle Scholar
  193. Shi LY, Li HQ, Pan XP, Wu GJ, Li MR (2008) Improvement of Torenia fournieri salinity tolerance by expression of Arabidopsis AtNHX5. Funct Plant Biol 35:185–192CrossRefGoogle Scholar
  194. Sobrado MA (2004) Influence of external salinity on the osmolality of xylem sap, leaf tissue and leaf gland secretion of the mangrove Laguncularia racemosa (L.) Gaertn. Trees-Struct Funct 18:422–427CrossRefGoogle Scholar
  195. Sottosanto JB, Gelli A, Blumwald E (2004) DNA array analyses of Arabidopsis thaliana lacking a vacuolar Na+/H+ antiporter: impact of AtNHX1 on gene expression. Plant J 40:752–771PubMedCrossRefGoogle Scholar
  196. Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149:1154–1165PubMedCrossRefGoogle Scholar
  197. Sun Z, Qi X, Li P, Wu C, Zhao Y, Zhang H, Wang Z (2008) Overexpression of a thellungiella halophila cbl9 homolog, thcbl9, confers salt and osmotic tolerances in transgenic Arabidopsis thaliana. J Plant Biol 51:25–34CrossRefGoogle Scholar
  198. Sunarpi Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938PubMedCrossRefGoogle Scholar
  199. Taji T, Komatsu K, Katori T, Kawasaki Y, Sakata Y, Tanaka S, Kobayashi M, Toyoda A, Seki M, Shinozaki K (2010) Comparative genomic analysis of 1047 completely sequenced cDNAs from an Arabidopsis-related model halophyte Thellungiella halophila. BMC Plant Biol 10:261Google Scholar
  200. Takahashi R, Liu S, Takano T (2007a) Cloning and functional comparison of a high-affinity K+ transporter gene PhaHKT1 of salt-tolerant and salt-sensitive reed plants. J Exp Bot 58:4387–4395PubMedCrossRefGoogle Scholar
  201. Takahashi R, Nishio T, Ichizen N, Takano T (2007b) Salt-tolerant reed plants contain lower Na+ and higher K+ than salt-sensitive reed plants. Acta Physiol Plant 29:431–438CrossRefGoogle Scholar
  202. Tanaka Y, Chiba K, Maeda M, Maeshima M (1993) Molecular cloning of cDNA for vacuolar membrane proton-translocating inorganic pyrophosphatase in Hordeum vulgare. Biochem Biophys Res Commun 190:1110–1114PubMedCrossRefGoogle Scholar
  203. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 9:503–527CrossRefGoogle Scholar
  204. Tian LM, Huang CL, Yu R, Liang RF, Li ZL, Zhang LS, Wang YQ, Zhang XH, Wu ZY (2006) Overexpression AtNHX1 confers salt-tolerance of transgenic tall fescue. Afr J Biotechnol 5:1041–1044Google Scholar
  205. Tuna AL, Kaya C, Higgs D, Murillo-Amador B, Aydemir S, Girgin AR (2008) Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62:10–16CrossRefGoogle Scholar
  206. Venema L, Quintero FJ, Pardo JM, Donaire JP (2002) The Arabidopsis Na+/H+ exchanger catalyzes low affinity Na+ and K+ transport in reconstituted vesicles. J Biol Chem 277:2413–2418PubMedCrossRefGoogle Scholar
  207. Verma D, Singla-Pareek SL, Rajagopal D, Reddy MK, Sopory SK (2007) Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J Biosciences 32:621–628CrossRefGoogle Scholar
  208. Volkov V, Amtmann A (2006) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. Plant J 48:342–353PubMedCrossRefGoogle Scholar
  209. Waisel Y (1991) The glands of Tamarix aphylla: a system for salt secretion or for carbon concentration. Physiol Plantarum 83:506–510CrossRefGoogle Scholar
  210. Waisel Y, Eshel A, Agami M (1986) Salt balance of leaves of the mangrove Avicennia marina. Physiol Plantarum 67:67–72CrossRefGoogle Scholar
  211. Wang XS, Han JG (2007) Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Sci Plant Nutr 53:278–285CrossRefGoogle Scholar
  212. Wang TB, Gassmann W, Rubio F, Schroeder JI, Glass AD (1998) Rapid Up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium. J Plant Physiol 118:651–659CrossRefGoogle Scholar
  213. Wang BS, Luttge U, Ratajczak R (2001) Effects of salt treatment and osmotic stress on V-ATPase and V- PPase in leaves of the halophyte Suaeda salsa. J Exp Bot 52:2355–2365PubMedCrossRefGoogle Scholar
  214. Wang SM, Zheng WJ, Ren JZ, Zhang CL (2002) Selectivity of various types of salt-resistant plants for K+ over Na+. J Arid Environ 52:457–472CrossRefGoogle Scholar
  215. Wang J, Zuo KJ, Wu WS, Song J, Sun XF, Lin J, Li XF, Tang KX (2003) Molecular cloning and characterization of a new Na+/H+ antiporter gene from Brassica napus. DNA Seq 14:351–358PubMedCrossRefGoogle Scholar
  216. Wang J, Zuo K, Wu W, Song J, Sun X, Lin J, Li X, Tang K (2004a) Expression of a novel antiporter gene from Brassica napus resulted in enhanced salt tolerance in transgenic tobacco plants. Biol Plant 48:509–515CrossRefGoogle Scholar
  217. Wang SM, Wan CG, Wang YR, Chen H, Zhou ZY, Fu H, Sosebee RE (2004b) The characteristics of Na+, K+ and free proline distribution in several drought-resistant plants of the Alxa Desert, China. J Arid Environ 56:525–539CrossRefGoogle Scholar
  218. Wang SM, Zhao GQ, Gao YS, Tang ZC, Zhang CL (2004c) Puccinellia tenuiflora exhibits stronger selectivity for K+ over Na+ than wheat. J Plant Nutr 27:1841–1857CrossRefGoogle Scholar
  219. Wang SM, Zhang JL, Flowers TJ (2007) Low-affinity Na+ aptake in the halophyte Suaeda maritima. Plant Physiol 145:559–571PubMedCrossRefGoogle Scholar
  220. Wang CM, Zhang JL, Liu XS, Li Z, Wu GQ, Cai JY, Wang SM (2009) Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+. Plant Cell Environ 32:486–496PubMedCrossRefGoogle Scholar
  221. Wang X, Yang R, Wang B, Liu G, Yang C, Cheng Y (2011) Functional characterization of a plasma membrane Na+/H+ antiporter from alkali grass (Puccinellia tenuiflora). Mol Biol Rep 38:4813–4822PubMedCrossRefGoogle Scholar
  222. Ward J (2001) Identification of novel families of membrane proteins from the model plant Arabidopsis thaliana. Bioinformatics 17:560–563PubMedCrossRefGoogle Scholar
  223. Watad AA, Pesci P, Reinhold L, Lerner HR (1986) Proton fluxes as a response to external salinity in wild type and NaCl-adapted Nicotiana cell lines. Plant Physiol 81:454–459PubMedCrossRefGoogle Scholar
  224. Wilson C, Shannon MC (1995) Salt-induced Na+/H+ antiport in root plasma membrane of a glycophytic and halophytic species of tomato. Plant Sci 107:147–157CrossRefGoogle Scholar
  225. Wu SJ, Lei D, Zhu JK (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8:617–627PubMedGoogle Scholar
  226. Wu CA, Yang GD, Meng QW, Zheng CC (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45:600–607PubMedCrossRefGoogle Scholar
  227. Wu YY, Chen QJ, Chen M, Chen J, Wang XC (2005) Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+ antiporter gene. Plant Sci 169:65–73CrossRefGoogle Scholar
  228. Wu C, Gao X, Kong X, Zhao Y, Zhang H (2009) Molecular cloning and functional analysis of a Na+/H+ antiporter gene ThNHX1 from a halophytic plant Thellungiella halophila. Plant Mol Biol Rep 27:1–12CrossRefGoogle Scholar
  229. Wu GQ, Xi JJ, Wang Q, Bao AK, Ma Q, Zhang JL, Wang SM (2011) The ZxNHX gene encoding tonoplast Na+/H+ antiporter from the xerophyte Zygophyllum xanthoxylum plays important roles in response to salt and drought. J Plant Physiol 168:758–767PubMedCrossRefGoogle Scholar
  230. Wu HJ, Zhang Z, Wang JY, Oh DH, Dassanayake M, Liu B, Huang Q, Sun HX, Xia R, Wu Y, Wang YN, Yang Z, Liu Y, Zhang W, Zhang H, Chu J, Yan C, Fang S, Zhang J, Wang Y, Zhang F, Wang G, Lee SY, Cheeseman JM, Yang B, Li B, Min J, Yang L, Wang J, Chu C, Chen SY, Bohnert HJ, Zhu JK, Wang XJ, Xie Q (2012) Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc Natl Acad Sci USA 109:12219–12224PubMedCrossRefGoogle Scholar
  231. Xia T, Apse MP, Aharon GS, Blumwald E (2002) Identification and characterization of a NaCl-inducible vacuolar Na+/H+ antiporter in Beta vulgaris. Physiol Plantarum 116:206–212CrossRefGoogle Scholar
  232. Xiong L, Zhu JK (2002) Salt tolerance. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. The American Society of Plant Biologists, Rockville, pp 1–23Google Scholar
  233. Xu H, Jiang X, Zhan K, Cheng X, Chen X, Pardo JM, Cui D (2008) Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Arch Biochem Biophys 473:8–15PubMedCrossRefGoogle Scholar
  234. Xue ZY, Zhi DY, Xue G, Zhang H, Zhao Y, Xia G (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859CrossRefGoogle Scholar
  235. Yamaguchi T, Fukuda-Tanaka S, Inagaki Y, Saito N, Yonekura-Sakakibara K, Tanaka Y, Kusumi T, Iida S (2001) Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Plant Cell Physiol 142:451–461CrossRefGoogle Scholar
  236. Yamaguchi T, Aharon GS, Sottosanto JB, Blumwald E (2005) Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proc Natl Acad Sci USA 102:16107–16112PubMedCrossRefGoogle Scholar
  237. Yang QC, Wu MS, Wang PQ, Kang JM, Zhou XL (2005) Cloning and expression analysis of a vacuolar Na+/H+ antiporter gene from Alfalfa. DNA Seq 16:352–357PubMedCrossRefGoogle Scholar
  238. Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, Silbart LK, Murphy A, Gaxiola RA (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+-pyrophosphatase. J Plant Biotechnol 5:735–745CrossRefGoogle Scholar
  239. Yao M, Zeng Y, Liu L, Huang Y, Zhao E, Zhang F (2012) Overexpression of the halophyte Kalidium foliatum H+-pyrophosphatase gene confers salt and drought tolerance in Arabidopsis thaliana. Mol Biol Rep 39:7989–7996PubMedCrossRefGoogle Scholar
  240. Ye CY, Zhang HC, Chen JH, Xia XL, Yin WL (2009) Molecular characterization of putative vacuolar NHX-type Na+/H+ exchanger genes from the salt-resistant tree Populus euphratica. Physiol Plantarum 137:166–174CrossRefGoogle Scholar
  241. Yeo A (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49:915–929Google Scholar
  242. Yeo AR, Läuchli A, Kramer D (1977) Ion measurements by X-ray microanalysis in unfixed, frozen, hydrated plant cells of species differing in salt tolerance. Planta 134:35–38Google Scholar
  243. Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565CrossRefGoogle Scholar
  244. Yin XY, Yang AF, Zhang KW, Zhang JR (2004) Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Bot Sin 46:854–861Google Scholar
  245. Yu JN, Huang J, Wang ZM, Zhang JS, Chen SY (2007) An Na+/H+ antiporter gene from wheat plays an important role in stress tolerance. J Biosci 32:1153–1161PubMedCrossRefGoogle Scholar
  246. Yu J, Chen S, Zhao Q, Wang T, Yang C, Diaz C, Sun G, Dai S (2011) Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. J Proteome Res 10:3852–3870PubMedCrossRefGoogle Scholar
  247. Yue LJ, Li SX, Ma Q, Zhou XR, Wu GQ, Bao AK, Zhang JL, Wang SM (2012) NaCl stimulates growth and alleviates water stress in the xerophyte Zygophyllum xanthoxylum. J Arid Environ 87:153–160CrossRefGoogle Scholar
  248. Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768PubMedCrossRefGoogle Scholar
  249. Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98:12832–12836PubMedCrossRefGoogle Scholar
  250. Zhang QF, Li YY, Pang CH, Lu CM, Wang BS (2005) NaCl enhances thylakoid-bound SOD activity in the leaves of C-3 halophyte Suaeda salsa L. Plant Sci 168:423–430CrossRefGoogle Scholar
  251. Zhang H, Shen G, Kuppu S, Gaxiola R, Payton P (2011) Creating drought- and salt-tolerant cotton by overexpressing a vacuolar pyrophosphatase gene. Plant Signal Behav 6:861–863PubMedCrossRefGoogle Scholar
  252. Zhang YM, Liu ZH, Wen ZY, Zhang HM, Yang F, Guo XL (2012) The vacuolar Na+-H+ antiport gene TaNHX2 confers salt tolerance on transgenic alfalfa (Medicago sativa). Funct Plant Biol 39:708–716CrossRefGoogle Scholar
  253. Zhao FY, Zhang XJ, Li PH, Zhao YX, Zhang H (2006) Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Mol Breeding 17:341–353CrossRefGoogle Scholar
  254. Zhu JK (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406PubMedCrossRefGoogle Scholar
  255. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445PubMedCrossRefGoogle Scholar
  256. Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis. Evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1191PubMedGoogle Scholar
  257. Zhu ZJ, Wei GQ, Li J, Qian QQ, Yu JQ (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533CrossRefGoogle Scholar
  258. Zorb C, Noll A, Karl S, Leib K, Yan F, Schubert S (2005) Molecular characterization of Na+/H+ antiporters (ZmNHX) of maize (Zea mays L.) and their expression under salt stress. J Plant Physiol 162:55–66PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouChina
  2. 2.Department of Chemistry and Biochemistry, Center for Chemical BiologyTexas Tech UniversityLubbockUSA

Personalised recommendations