Photosynthesis Research

, Volume 120, Issue 1–2, pp 59–70 | Cite as

Evolution of reaction center mimics to systems capable of generating solar fuel

  • Benjamin D. Sherman
  • Michael D. Vaughn
  • Jesse J. Bergkamp
  • Devens Gust
  • Ana L. Moore
  • Thomas A. Moore
Review

Abstract

Capturing and converting solar energy via artificial photosynthesis offers an ideal way to limit society’s dependence on fossil fuel and its myriad consequences. The development and study of molecular artificial photosynthetic reactions centers and antenna complexes and the combination of these constructs with catalysts to drive the photochemical production of a fuel helps to build the understanding needed for development of future scalable technologies. This review focuses on the study of molecular complexes, design of which is inspired by the components of natural photosynthesis, and covers research from early triad reaction centers developed by the group of Gust, Moore, and Moore to recent photoelectrochemical systems capable of using light to convert water to oxygen and hydrogen.

Keywords

Artificial photosynthesis Solar energy conversion Biomimicry Sustainability 

Abbreviations

NPP

Net primary production of photosynthesis

HANPP

Human appropriation of net primary production of photosynthesis

OEC

Oxygen evolving complex

NADPH

Nicotinamide adenine dinucleotide phosphate

ATP

Adenosine triphosphate

ADP

Adenosine diphosphate

Pi

Inorganic phosphate

P–Q

Porphyrin–quinone

C–P–Q

Carotenoid–porphyrin–quinone

C–P–C60

Carotenoid–porphyrin–fullerene

BPEA

Bis(phenylethynyl)anthracene

DHI

Dihydroindolizine

BT

Betaine

TyrZ–His190

TyrosineZ–histidine190

PCET

Proton coupled electron transfer

BiP

Benzimidazolephenol

TCNP

Tetracyanoporphyrin

FTO

Fluorine-doped tin oxide

PEC

Photoelectrochemical cell

CEPA

2-Dicarboxyethylphosphonic acid

Pg

Petagram

APP

Artificial photosynthetic production

References

  1. Archer MD, Barber J (2004) Molecular to global photosynthesis. Imperial College Press, LondonGoogle Scholar
  2. Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed Engl 46:52–66. doi:10.1002/anie.200602373 PubMedCrossRefGoogle Scholar
  3. Bahr JL, Kuciauskas D, Liddell PA et al (2000) Driving force and electronic coupling effects on photoinduced electron transfer in a fullerene-based molecular triad. Photochem Photobiol 72:598–611. doi:10.1562/0031-8655(2000)0720598DFAECE2.0.CO2 PubMedCrossRefGoogle Scholar
  4. Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28:141–145. doi:10.1021/ar00051a007 CrossRefGoogle Scholar
  5. Barnosky AD, Hadly EA, Bascompte J et al (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58. doi:10.1038/nature11018 PubMedCrossRefGoogle Scholar
  6. Bennett IM, Farfano HMV, Bogani F et al (2002) Active transport of Ca2+ by an artificial photosynthetic membrane. Nature 420:398–401. doi:10.1038/nature01209 PubMedCrossRefGoogle Scholar
  7. Blankenship RE (2002) Molecular mechanisms of photosynthesis. Wiley-Blackwell, OxfordGoogle Scholar
  8. Cramer W, Kicklighter DW, Bondeau A et al (1999) Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob Chang Biol 5:1–15. doi:10.1046/j.1365-2486.1999.00009.x CrossRefGoogle Scholar
  9. Faller P, Goussias C, Rutherford AW, Un S (2003) Resolving intermediates in biological proton-coupled electron transfer: a tyrosyl radical prior to proton movement. Proc Natl Acad Sci 100:8732–8735. doi:10.1073/pnas.1530926100 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240PubMedCrossRefGoogle Scholar
  11. Gust D, Moore TA (1989) Mimicking photosynthesis. Science 244:35–41. doi:10.1126/science.244.4900.35 PubMedCrossRefGoogle Scholar
  12. Gust D, Moore TA, Liddell PA et al (1987) Charge separation in carotenoporphyrin–quinone triads: synthetic, conformational, and fluorescence lifetime studies. J Am Chem Soc 109:846–856. doi:10.1021/ja00237a035 CrossRefGoogle Scholar
  13. Gust D, Moore TA, Moore AL et al (1988a) Photoinitiated charge separation in a carotenoid–porphyrin–diquinone tetrad: enhanced quantum yields via multistep electron transfers. J Am Chem Soc 110:321–323. doi:10.1021/ja00209a068 CrossRefGoogle Scholar
  14. Gust D, Moore TA, Moore AL et al (1988b) A carotenoid–diporphyrin–quinone model for photosynthetic multistep electron and energy transfer. J Am Chem Soc 110:7567–7569. doi:10.1021/ja00230a064 CrossRefGoogle Scholar
  15. Gust D, Moore TA, Moore AL et al (1990) Efficient multistep photoinitiated electron transfer in a molecular pentad. Science 248:199–201. doi:10.1126/science.248.4952.199 PubMedCrossRefGoogle Scholar
  16. Gust D, Moore TA, Moore AL et al (1991) Long-lived photoinitiated charge separation in carotene–diporphyrin triad molecules. J Am Chem Soc 113:3638–3649. doi:10.1021/ja00010a002 CrossRefGoogle Scholar
  17. Gust D, Moore TA, Moore AL (1993a) Molecular mimicry of photosynthetic energy and electron transfer. Acc Chem Res 26:198–205. doi:10.1021/ar00028a010 CrossRefGoogle Scholar
  18. Gust D, Moore TA, Moore AL et al (1993b) Photoinduced electron and energy transfer in molecular pentads. J Am Chem Soc 115:11141–11152. doi:10.1021/ja00077a011 CrossRefGoogle Scholar
  19. Gust D, Moore TA, Moore AL (2009) Solar fuels via artificial photosynthesis. Acc Chem Res 42:1890–1898. doi:10.1021/ar900209b PubMedCrossRefGoogle Scholar
  20. Haberl H, Erb KH, Krausmann F et al (2007) Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proc Natl Acad Sci USA 104:12942–12947. doi:10.1073/pnas.0704243104 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Horton P, Ruban AV, Walters RG (2012) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684. doi:10.1146/annurev.arplant.47.1.655 CrossRefGoogle Scholar
  22. Imahori H, Hagiwara K, Aoki M et al (1996) Linkage and solvent dependence of photoinduced electron transfer in zincporphyrin-C60 dyads. J Am Chem Soc 118:11771–11782. doi:10.1021/ja9628415 CrossRefGoogle Scholar
  23. IPCC (2011) Special report on renewable energy sources and climate change mitigation. p 1–1088Google Scholar
  24. Ito A (2011) A historical meta-analysis of global terrestrial net primary productivity: are estimates converging? Glob Chang Biol 17:3161–3175. doi:10.1111/j.1365-2486.2011.02450.x CrossRefGoogle Scholar
  25. Kodis G, Liddell PA, la Garza de L et al (2002) Efficient energy transfer and electron transfer in an artificial photosynthetic antenna—reaction center complex. J Phys Chem A 106:2036–2048. doi:10.1021/jp012133s CrossRefGoogle Scholar
  26. Kodis G, Liddell PA, Moore AL et al (2004) Synthesis and photochemistry of a carotene–porphyrin–fullerene model photosynthetic reaction center. J Phys Org Chem 17:724–734. doi:10.1002/poc.787 CrossRefGoogle Scholar
  27. Kodis G, Terazono Y, Liddell PA et al (2006) Energy and photoinduced electron transfer in a wheel-shaped artificial photosynthetic antenna-reaction center complex. J Am Chem Soc 128:1818–1827. doi:10.1021/ja055903c PubMedCrossRefGoogle Scholar
  28. Kuciauskas D, Liddell PA, Lin S et al (1999) An artificial photosynthetic antenna-reaction center complex. J Am Chem Soc 121:8604–8614. doi:10.1021/ja991255j CrossRefGoogle Scholar
  29. Kuciauskas D, Liddell PA, Lin S et al (2000) Photoinduced electron transfer in carotenoporphyrin–fullerene triads: temperature and solvent effects. J Phys Chem B 104:4307–4321. doi:10.1021/jp9935135 CrossRefGoogle Scholar
  30. Liddell PA, Sumida JP, Macpherson AN et al (1994) Preparation and photophysical studies of porphyrin-C60 dyads. Photochem Photobiol 60:537–541. doi:10.1111/j.1751-1097.1994.tb05145.x CrossRefGoogle Scholar
  31. Liddell PA, Kuciauskas D, Sumida JP et al (1997) Photoinduced charge separation and charge recombination to a triplet state in a carotene–porphyrin–fullerene triad. J Am Chem Soc 119:1400–1405. doi:10.1021/ja9631054 CrossRefGoogle Scholar
  32. Megiatto JD, Antoniuk-Pablant A, Sherman BD et al (2012) Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation. Proc Natl Acad Sci USA. doi:10.1073/pnas.1118348109 Google Scholar
  33. Moore TA, Gust D, Mathis P et al (1984) Photodriven charge separation in a carotenoporphyrin–quinone triad. Nature 307:630–632. doi:10.1038/307630a0 CrossRefGoogle Scholar
  34. Moore GF, Hambourger M, Gervaldo M et al (2008) A bioinspired construct that mimics the proton coupled electron transfer between p680·+ and the Tyrz–His190 pair of photosystem II. J Am Chem Soc 130:10466–10467. doi:10.1021/ja803015m PubMedCrossRefGoogle Scholar
  35. Moore GF, Hambourger M, Kodis G et al (2010) Effects of protonation state on a tyrosine–histidine bioinspired redox mediator. J Phys Chem B 114:14450–14457. doi:10.1021/jp101592m PubMedCrossRefGoogle Scholar
  36. Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching: a response to excess light energy. Plant Physiol 125:1558–1566. doi:10.1104/pp.125.4.1558 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Rappaport F, Diner BA (2008) Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in Photosystem II. Coord Chem Rev 252:259–272. doi:10.1016/j.ccr.2007.07.016 CrossRefGoogle Scholar
  38. Rockström J, Steffen W, Noone K et al (2009) A safe operating space for humanity. Nature 461:472–475. doi:10.1038/461472a PubMedCrossRefGoogle Scholar
  39. Seta P, Bienvenue E, Moore AL et al (1985) Photodriven transmembrane charge separation and electron transfer by a carotenoporphyrin–quinone triad. Nature 316:653–655. doi:10.1038/316653a0 CrossRefGoogle Scholar
  40. Sherman BD, Pillai S, Kodis G et al (2011) A porphyrin-stabilized iridium oxide water oxidation catalyst. Can J Chem 89:152–157. doi:10.1139/V10-118 CrossRefGoogle Scholar
  41. Sorensen BS (2010) Renewable energy, fourth edition: physics, engineering, environmental impacts, economics & planning. Academic Press, OxfordGoogle Scholar
  42. Steinberg-Yfrach G, Liddell PA, Hung SC et al (1997) Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature 385:239–241CrossRefGoogle Scholar
  43. Steinberg-Yfrach G, Rigaud JL, Durantini EN et al (1998) Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature 392:479–482. doi:10.1038/33116 PubMedCrossRefGoogle Scholar
  44. Straight SD, Kodis G, Terazono Y et al (2008) Self-regulation of photoinduced electron transfer by a molecular nonlinear transducer. Nat Nanotechnol 3:280–283. doi:10.1038/nnano.2008.97 PubMedCrossRefGoogle Scholar
  45. Terazono Y, Kodis G, Liddell PA et al (2009) Multiantenna artificial photosynthetic reaction center complex. J Phys Chem B 113:7147–7155. doi:10.1021/jp900835s PubMedCrossRefGoogle Scholar
  46. Wee T-L, Sherman BD, Gust D et al (2011) Photochemical synthesis of a water oxidation catalyst based on cobalt nanostructures. J Am Chem Soc 133:16742–16745. doi:10.1021/ja206280g PubMedCrossRefGoogle Scholar
  47. Youngblood WJ, Lee S-HA, Kobayashi Y et al (2009) Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131:926–927. doi:10.1021/ja809108y PubMedCrossRefGoogle Scholar
  48. Zhao Y, Swierk JR, Megiatto JD et al (2012) Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator. Proc Natl Acad Sci USA. doi:10.1073/pnas.1118339109 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Benjamin D. Sherman
    • 1
    • 2
    • 3
  • Michael D. Vaughn
    • 1
    • 2
    • 3
  • Jesse J. Bergkamp
    • 1
    • 2
    • 3
  • Devens Gust
    • 1
    • 2
    • 3
  • Ana L. Moore
    • 1
    • 2
    • 3
  • Thomas A. Moore
    • 1
    • 2
    • 3
  1. 1.Department of Chemistry and BiochemistryArizona State UniversityTempeUSA
  2. 2.Center for Bio-Inspired Solar Fuel ProductionArizona State UniversityTempeUSA
  3. 3.Center for Bioenergy and PhotosynthesisArizona State UniversityTempeUSA

Personalised recommendations