Advertisement

Photosynthesis Research

, Volume 114, Issue 2, pp 97–110 | Cite as

Reactive oxygen and oxidative stress: N-formyl kynurenine in photosystem II and non-photosynthetic proteins

  • Tina M. Dreaden Kasson
  • Bridgette A. BarryEmail author
Review

Abstract

While light is the essential driving force for photosynthetic carbon fixation, high light intensities are toxic to photosynthetic organisms. Prolonged exposure to high light results in damage to the photosynthetic membrane proteins and suboptimal activity, a phenomenon called photoinhibition. The primary target for inactivation is the photosystem II (PSII) reaction center. PSII catalyzes the light-induced oxidation of water at the oxygen-evolving complex. Reactive oxygen species (ROS) are generated under photoinhibitory conditions and induce oxidative post translational modifications of amino acid side chains. Specific modification of tryptophan residues to N-formylkynurenine (NFK) occurs in the CP43 and D1 core polypeptides of PSII. The NFK modification has also been detected in other proteins, such as mitochondrial respiratory enzymes, and is formed by a non-random, ROS-targeted mechanism. NFK has been shown to accumulate in PSII during conditions of high light stress in vitro. This review provides a summary of what is known about the generation and function of NFK in PSII and other proteins. Currently, the role of ROS in photoinhibition is under debate. Furthermore, the triggers for the degradation and accelerated turnover of PSII subunits, which occur under high light, are not yet identified. Owing to its unique optical and Raman signal, NFK provides a new marker to use in the identification of ROS generation sites in PSII and other proteins. Also, the speculative hypothesis that NFK, and other oxidative modifications of tryptophan, play a role in the PSII damage and repair cycle is discussed. NFK may have a similar function during oxidative stress in other biologic systems.

Keywords

Tryptophan N-formylkynurenine Photoinhibition Post translational modification Proteolysis Synechocystis PCC. 6803 Reactive oxygen species High light stress Photosystem II Photosynthetic oxygen evolution 

Abbreviations

apoB-100

apoB lipoprotein

Chl

Chlorophyll

EPR

Electron paramagnetic resonance

ELISA

Enzyme-linked immunosorbent assay

FtsH

Filamentation temperature-sensitive protease

HPLC

High pressure liquid chromatography

LDL

Low density lipoprotein

LHC

Light harvesting complex

NFK

N-formylkynurenine

ND

Not determined

OEC

Oxygen evolving complex

PSII

Photosystem II

PTM

Post-translational modification

ROS

Reactive oxygen species

Rubisco

Ribulose-1,5-bisphosphate carboxylase oxygenase

1O2

Singlet oxygen

3chl

Triplet chlorophyll

Trp

Tryptophan

MS/MS

Tandem mass spectrometry

UV

Ultraviolet

References

  1. Adir N, Zer H, Shochat S, Ohad I (2003) Photoinhibition: a historical perspective. Photosynth Res 76:343–370PubMedCrossRefGoogle Scholar
  2. Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335PubMedCrossRefGoogle Scholar
  3. Anderson LB, Maderia M, Ouellette AJA, Putnam-Evans C, Higgins L, Krick T, MacCoss MJ, Lim H, Yates J III, Barry BA (2002) Posttranslational modifications in the CP43 subunit of photosystem II. Proc Natl Acad Sci USA 99:14676–14681PubMedCrossRefGoogle Scholar
  4. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495PubMedCrossRefGoogle Scholar
  5. Beinert H, Kennedy MC (1993) Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB J 7:1442–1449PubMedGoogle Scholar
  6. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316PubMedCrossRefGoogle Scholar
  7. Bricker TM, Frankel LK (2002) The structure and function of CP47 and CP43 in photosystem II. Photosynth Res 72:131–146PubMedCrossRefGoogle Scholar
  8. Busi MV, Maliandi MV, Valdez H, Clemente M, Zabaleta EJ, Araya A, Gomez-Casati DF (2006) Deficiency of Arabidopsis thaliana frataxin alters activity of mitochondrial Fe-S proteins and induces oxidative stress. Plant J 48:873–882PubMedCrossRefGoogle Scholar
  9. Caldwell CR (1993) Ultraviolet-induced photodegradation of cucumber (Cucumis sativus L.) microsomal and soluble protein tryptophanyl residues in vitro. Plant Physiol 101:947–953PubMedGoogle Scholar
  10. Correia AR, Ow SY, Wright PC, Gomes CM (2009) The conserved Trp155 in human frataxin as a hotspot for oxidative stress related chemical modifications. Biochem Biophys Res Commun 390:1007–1011PubMedCrossRefGoogle Scholar
  11. Cossée M, Dürr A, Schmitt M, Dáhl N, Trouillas P, Allinson P, Kostrzewa M, Nivelon-Chevallier A, Gustavson K-H, Kohlschütter A, Müller U, Mandel J-L, Brice A, Koenig M, Cavalcanti F, Tammaro A, De Michele G, Filla A, Cocozza S, Labuda M, Montermini L, Poirier J, Pandolfo M (1999) Friedreich’s ataxia: point mutations and clinical presentation of compound heterozygotes. Ann Neurol 45:200–206PubMedCrossRefGoogle Scholar
  12. Dall’Osto L, Fiore A, Cazzaniga S, Giuliano G, Bassi R (2007) Different roles of α- and β- branch xanthophylls in photosystem assembly and photoprotection. J Biol Chem 282:35056–35068PubMedCrossRefGoogle Scholar
  13. D’Autreaux B, Toledana M (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostatis. Nat Rev Mol Cell Biol 8:813–824PubMedCrossRefGoogle Scholar
  14. Davies MJ (2003) Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 305:761–770PubMedCrossRefGoogle Scholar
  15. Davies MJ, Truscott RJW (2001) Photo-oxidation of proteins and its role in cataractogenesis. J Photochem Photobiol B 63:114–125PubMedCrossRefGoogle Scholar
  16. Delatycki MB, Williamson R, Forrest SM (2000) Friedreich ataxia: an overview. J Med Genet 37:1–8PubMedCrossRefGoogle Scholar
  17. Demmig-Adams B, Cohu CM, Muller O, Adams WW III (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res 113:75–88PubMedCrossRefGoogle Scholar
  18. Dreaden Kasson TM, Rexroth S, Barry BA (2012) Light-induced oxidative Stress, N-formylkynurenine, and oxygenic photosynthesis. PLoS One 7:e42220PubMedCrossRefGoogle Scholar
  19. Dreaden TM, Chen J, Rexroth S, Barry BA (2011) N-formylkynurenine as a marker of high light stress in photosynthesis. J Biol Chem 286:22632–22641PubMedCrossRefGoogle Scholar
  20. Ehrenshaft M, Silva SdO, Perdivara I, Bilski P, Sik RH, Chignell CF, Tomer KB, Mason RP (2009) Immunological detection of N-formylkynurenine in oxidized proteins. Free Radic Biol Med 46:1260–1266PubMedCrossRefGoogle Scholar
  21. Ehrenshaft M, Bonini MG, Feng L, Chignell CF, Mason RP (2010) Partial colocalization of oxidized, N-formylkynurenine-containing proteins in mitochondria and Golgi of keratinocytes. Photochem Photobiol 86:752–756PubMedCrossRefGoogle Scholar
  22. Fedorova M, Todorovsky T, Kuleva N, Hoffmann R (2010) Quantitative evaluation of tryptophan oxidation in actin and troponin I from skeletal muscles using a rat model of acute oxidative stress. Proteomics 10:2692–2700PubMedCrossRefGoogle Scholar
  23. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838PubMedCrossRefGoogle Scholar
  24. Finkel T (2001) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15CrossRefGoogle Scholar
  25. Frankel LK, Sallans L, Limbach PA, Bricker TM (2012) Identification of oxidized amino acid residues in the vicinity of the Mn4CaO5 cluster of photosystem II: implications for the identification of oxygen channels within the photosystem. Biochemistry 51:6371–6377PubMedCrossRefGoogle Scholar
  26. Fujimori E (1981) Blue fluorescence and crosslinking of photooxidized proteins. FEBS Lett 135:257–260CrossRefGoogle Scholar
  27. Galetskiy D, Lohscheider JN, Kononikhin AS, Popov IA, Nikolaev EN, Adamska I (2011) Mass spectrometric characterization of photooxidative protein modifications in Arabidopsis thaliana thylakoid membranes. Rapid Commun Mass Spectrom 25:184–190PubMedCrossRefGoogle Scholar
  28. Garab G, Cseh Z, Kovács L, Rajagopal S, Várkonyi Z, Wentworth M, Mustárdy L, Dér A, Ruban AV, Papp E, Holzenburg A, Horton P (2002) Light-induced trimer to monomer transition in the main light-harvesting antenna complex of plants: thermo-optic mechanism. Biochemistry 41:15121–15129PubMedCrossRefGoogle Scholar
  29. Gießauf A, Steiner E, Esterbauer H (1995) Early destruction of tryptophan residues of apolipoprotein B is a vitamin E independent process during copper mediated oxidation of LDL. Biochim Biophys Acta 1256:221–232PubMedCrossRefGoogle Scholar
  30. Gießauf A, van Wickern B, Simat T, Steinhart H, Esterbauer H (1996) Formation of N-formylkynurenine suggests the involvement of apolipoprotein B-100 centered tryptophan radicals in the initiation of LDL lipid peroxidation. FEBS Lett 389:136–140PubMedCrossRefGoogle Scholar
  31. Gracanin M, Hawkins CL, Pattison DI, Davies MJ (2009) Singlet-oxygen-mediated amino acid and protein oxidation: formation of tryptophan peroxides and decomposition products. Free Radic Biol Med 47:92–102PubMedCrossRefGoogle Scholar
  32. Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725–749PubMedGoogle Scholar
  33. Grossman AR, Bhaya D, Apt KE, Kehoe DM (1995) Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. Annu Rev Genet 29:231–288PubMedCrossRefGoogle Scholar
  34. Gruszka J, Pawlak A, Kruk J (2008) Tocochromanols, plastoquinol, and other biological prenyllipids as singlet oxygen quenchers-determination of singlet oxygen quenching rate constants and oxidation products. Free Radic Biol Med 45:920–928PubMedCrossRefGoogle Scholar
  35. Guptasarma P, Balasubramanian D, Matsugo S, Saito I (1992) Hydroxyl radical mediated damage to proteins, with special reference to the crystallins. Biochemistry 31:4296–4303PubMedCrossRefGoogle Scholar
  36. Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystem II at 2.9 Å resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342PubMedCrossRefGoogle Scholar
  37. Hakala M, Tuominen I, Keränen M, Tyystjärvi T, Tyystjärvi E (2005) Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem II. Biochim Biophys Acta 1706:68–80PubMedCrossRefGoogle Scholar
  38. Hakemian AS, Rosenzweig AC (2007) The biochemistry of methane oxidation. Ann Rev Biochemistry 76:223–241CrossRefGoogle Scholar
  39. Helland R, Fjellbirkeland A, Karlsen OA, Ve T, Lillehaug JR, Jensen HB (2008) An oxidized tryptophan facilitates copper binding in Methylococcus capsulatus-secreted protein MopE. J Biol Chem 283:13897–13904PubMedCrossRefGoogle Scholar
  40. Herman C, Prakash S, Lu CZ, Matouschek A, Gross CA (2003) Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Mol Cell 11:659–669PubMedCrossRefGoogle Scholar
  41. Hideg E, Spetea C, Vass I (1994) Singlet oxygen and free radical production during acceptor-induced and donor-side photoinhibition: studies with spin-trapping EPR spectroscopy. Biochim Biophys Acta 1186:143–152CrossRefGoogle Scholar
  42. Hillier W, Wydrzynski T (1993) Increases in peroxide formation by the photosystem II oxygen-evolving reactions upon removal of the extrinsic 16, 22, and 33 kDa proteins are reversed by CaCl2 addition. Photosynth Res 38:417–423CrossRefGoogle Scholar
  43. Huang HV, Bond MW, Hunkapiller MW, Hood LE (1983) Cleavage at tryptophanyl residues with dimethylsulfoxide hydrochloric acid and cyanogen bromide. Methods Enzymol 91:318–324PubMedCrossRefGoogle Scholar
  44. Huesgen PF, Schuhmann H, Adamska I (2006) Photodamaged D1 protein is degraded in Arabidopsis mutants lacking the Deg2 protease. FEBS Lett 580:6929–6932PubMedCrossRefGoogle Scholar
  45. Hunzinger C, Wozny W, Schwall GP, Poznanović S, Stegmann W, Zengerling H, Schoepf R, Groebe K, Cahill MA, Osiewacz HD, Jägemann N, Bloch M, Dencher NA, Krause F, Schrattenholz A (2006) Comparative profiling of the mammalian mitochondrial proteome: multiple aconitase-2 isoforms including N-formylkynurenine modifications as part of a protein biomarker signature for reactive oxidative species. J Proteome Res 5:625–633PubMedCrossRefGoogle Scholar
  46. Inoue M, Sato EF, Nishikawa M, Park A-M, Kira Y, Imada I, Utsumi K (2003) Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem 10:2495–2505PubMedCrossRefGoogle Scholar
  47. Inoue S, Ejima K, Iwai E, Hayashi H, Appel J, Tyystjarvi E, Murata N, Nishiyama N (2011) Protection by alpha-tocopherol of the repair of photosystem II during photoinhibition in Synechocystis sp. PCC 6803. Biochim Biophys Acta 807:236–241Google Scholar
  48. Ito K, Akiyama Y (2005) Cellular functions, mechanism of action, and regulation of FtsH protease. Annu Rev Microbiol 59:211–231PubMedCrossRefGoogle Scholar
  49. Jacobson KB (1978) New substrate for formylkynurenine formidase: N’, N α-diformylkynurenine. Arch Biochem Biophys 186:84–88PubMedCrossRefGoogle Scholar
  50. Janes SM, Mu D, Wemmer D, Smith AJ, Kaur S, Maltby D, Burlingame AL, Klinman JP (1990) A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science 248:981–987PubMedCrossRefGoogle Scholar
  51. Ji JA, Zhang BY, Cheng W, Wang YJ (2009) Methionine, tryptophan, and histidine oxidation in a model protein, PTH: mechanisms and stabilization. J Pharm Sci 98:4485–4500PubMedCrossRefGoogle Scholar
  52. Kamiya N, Shen J-R (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7 Å resolution. Proc Natl Acad Sci USA 100:98–103PubMedCrossRefGoogle Scholar
  53. Karlsen OA, Berven FS, Stafford GP, Larsen O, Murrell JC, Jensen HB, Fjellbirkeland A (2003) The surface-associated and secreted MopE protein of Methylococcus capsulatus (Bath) responds to changes in the concentration of copper in the growth medium. Appl Environ Microbiol 69:2386–2388PubMedCrossRefGoogle Scholar
  54. Keren N, Krieger-Liszkay A (2011) Photoinhibition: molecular mechanisms and physiological significance. Physiol Plant 142:1–5PubMedCrossRefGoogle Scholar
  55. Kim CH, Meskauskiene R, Apel K, Laloi C (2008) No single way to understand singlet oxygen signalling in plants. EMBO Rep 9:435–439PubMedCrossRefGoogle Scholar
  56. Koeck T, Stuehr DJ, Aulak KS (2005) Mitochondria and regulated tyrosine nitration. Biochem Soc Trans 33:1399–1403PubMedCrossRefGoogle Scholar
  57. Komenda J, Barker M, Kuviková S, de Vries R, Mullineaux CW, Tichy M, Nixon PJ (2006) The FtsH protease slr0228 is important for quality control of photosystem II in the thylakoid membrane of Synechocystis sp. PCC 6803. J Biol Chem 281:1145–1151PubMedCrossRefGoogle Scholar
  58. Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98:551–564PubMedCrossRefGoogle Scholar
  59. Kruk J, Strzalka K, Leblanc RM (1992) Monolayer study of plastoquinones, α-tocopherol quinone, their hydroquinone forms and their interaction with monogalatosyldiacylglycerol. Charge-transfer complexes in a mixed monolayer. Biochim Biophys Acta 1112:19–26PubMedCrossRefGoogle Scholar
  60. Kühlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621PubMedCrossRefGoogle Scholar
  61. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044PubMedCrossRefGoogle Scholar
  62. Lynch SM, Frei B (1993) Mechanisms of copper-dependent and iron-dependent oxidative modification of human low density lipoprotein. J Lipid Res 34:1745–1753PubMedGoogle Scholar
  63. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309PubMedCrossRefGoogle Scholar
  64. Murata N, Allakhverdiev SI, Nishiyama Y (2012) The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. Biochim Biophys Acta 1817:1127–1133PubMedCrossRefGoogle Scholar
  65. Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Ann Rev Plant Biol 57:521–565CrossRefGoogle Scholar
  66. Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749PubMedCrossRefGoogle Scholar
  67. Nixon PJ, Barker M, Boehm M, de Vries R, Komenda J (2005) FtsH-mediated repair of the photosystem II complex in response to light stress. J Exp Bot 56:357–363PubMedCrossRefGoogle Scholar
  68. Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J (2010) Recent advances in understanding the assembly and repair of photosystem II. Ann Bot 106:1–16PubMedCrossRefGoogle Scholar
  69. Nyström T (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24:1311–1317PubMedCrossRefGoogle Scholar
  70. Ohad I, Kyle DJ, Arntzen CJ (1984) Membrane protein damage and repair: removal and replacement of inactivated 32 kilodalton polypeptides in chloroplast membranes. J Cell Biol 99:481–485PubMedCrossRefGoogle Scholar
  71. Ohnishi N, Allakhverdiev SI, Takahashi S, Higashi S, Watanabe M, Nishiyama Y, Murata N (2005) Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center. Biochemistry 44:8494–8499PubMedCrossRefGoogle Scholar
  72. Pospíšil P (2009) Production of reactive oxygen species by photosystem II. Biochim Biophys Acta 1787:1151–1160PubMedCrossRefGoogle Scholar
  73. Pospíšil P (2012) Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim Biophys Acta 1817:218–231PubMedCrossRefGoogle Scholar
  74. Previero A, Coletti-Previero M-A, Jollès P (1967) Localization of non-essential tryptophan residues for biological activity of lysozyme. J Mol Biol 24:261–268PubMedCrossRefGoogle Scholar
  75. Rexroth S, Poetsch A, Rogner M, Hamann A, Werner A, Osiewacz HD, Schafer ER, Seelert H, Dencher NA (2012) Reactive oxygen species target specific tryptophan site in the mitochondrial ATP synthase. Biochim Biophys Acta 1817:381–387PubMedCrossRefGoogle Scholar
  76. Rhee K-H, Morris EP, Barber J, Kühlbrandt W (1998) Three-dimensional structure of the plant photosystem II reaction center at 8 Å resolution. Nature 396:283–286PubMedCrossRefGoogle Scholar
  77. Rinalducci S, Pedersen JZ, Zolla L (2004) Formation of radicals from singlet oxygen produced during photoinhibition of isolated light-harvesting proteins of photosystem II. Biochim Biophys Acta 1608:63–73PubMedCrossRefGoogle Scholar
  78. Rinalducci S, Campostrini N, Antonioli P, Righetti PG, Roepstorff P, Zolla L (2005) Formation of truncated proteins and high-molecular-mass aggregates upon soft illumination of photosynthetic proteins. J Proteome Res 4:2327–2337PubMedCrossRefGoogle Scholar
  79. Roose JL, Wegener KM, Pakrasi HB (2007) The extrinsic proteins of photosystem II. Photosynth Res 92:369–387PubMedCrossRefGoogle Scholar
  80. Santabarbara S, Neverov KV, Garlaschi FM, Zucchelli G, Jennings RC (2001) Involvement of uncoupled antenna chlorophylls in photoinhibition in thylakoids. FEBS Lett 491:109–113PubMedCrossRefGoogle Scholar
  81. Shi L-X, Schröder WP (2004) The low molecular mass subunits of the photosynthetic supracomplex, photosystem II. Biochim Biophys Acta 1608:75–96PubMedCrossRefGoogle Scholar
  82. Simat T, Meyer K, Steinhart H (1994) Synthesis and analysis of oxidation of carbonyl condensation compounds of tryptophan. J Chromatogr A 661:93–99CrossRefGoogle Scholar
  83. Stadtman ER (1990) Covalent modification reactions are marking steps in protein turnover. Biochemistry 29:6323–6331PubMedCrossRefGoogle Scholar
  84. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol. Modifications of low density lipoprotein that increase its atherogenicity. New Engl J Med 320:915–924PubMedCrossRefGoogle Scholar
  85. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D (1984) Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA 81:3883–3887PubMedCrossRefGoogle Scholar
  86. Taylor SW, Fahy E, Murray J, Capaldi RA, Ghosh SS (2003) Oxidative post-translational modification of tryptophan residues in cardiac mitochondrial proteins. J Biol Chem 278:19587–19590PubMedCrossRefGoogle Scholar
  87. Telfer A (2005) Too much light? How β-carotene protects the photosystem II reaction centre. Photochem Photobiol Sci 4:950–956PubMedCrossRefGoogle Scholar
  88. Thomas C, Mackey MM, Diaz AA, Cox DP (2009) Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation. Redox Rep 14:102–108PubMedCrossRefGoogle Scholar
  89. Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60PubMedCrossRefGoogle Scholar
  90. Vásquez-Vivar J, Kalyanaraman B, Kennedy MC (2000) Mitochondrial aconitase is a source of hydroxyl radical—an electron spin resonance investigation. J Biol Chem 275:14064–14069PubMedCrossRefGoogle Scholar
  91. Vass I, Styring S, Hundal T, Koivuniemi A, Aro E-M, Andersson B (1992) Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci USA 89:1408–1412PubMedCrossRefGoogle Scholar
  92. Wagner D, Przybyla D, Camp ROD, Kim C, Landgraf F, Lee KP, Würsch M, Laloi C, Nater M, Hideg E, Apel K (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306:1183–1185PubMedCrossRefGoogle Scholar
  93. Walrant P, Santus R (1974) Ultraviolet and N-formylkynurenine-sensitized photoactivation of bovine carbonic anhydrase: and internal photodynamic effect. Photochem Photobiol 20:455–460CrossRefGoogle Scholar
  94. Yamamoto Y, Akasaka T (1995) Degradation of antenna chlorophyll-binding protein CP43 during photoinhibition of Photosystem II. Biochemistry 34:9038–9045PubMedCrossRefGoogle Scholar
  95. Yang D-H, Paulsen H, Andersson B (2000) The N-terminal domain of the light-harvesting chlorophyll a/b-binding protein complex (LHCII) is essential for its acclimative proteolysis. FEBS Lett 466:385–388PubMedCrossRefGoogle Scholar
  96. Yocum CF (2008) The calcium and chloride requirements of the O2 evolving complex. Coord Chem Rev 252:296–305CrossRefGoogle Scholar
  97. Zhao H, Sagert J, Hwang DS, Waite JH (2009) Glycosylated hydroxytryptophan in a mussel adhesive protein from Perna viridis. J Biol Chem 284:23344–23352PubMedCrossRefGoogle Scholar
  98. Zigler JS, Goosey JD (1981) Photosensitized oxidation in the ocular lens: evidence for photosensitizers endogenous to the human lens. Photochem Photobiol 33:869–874PubMedCrossRefGoogle Scholar
  99. Zigler JS, Jernigan HM, Garland D, Reddy VN (1985) The effects of “oxygen radicals” generated in the medium on lenses in organ culture: inhibition of damage by chelated iron. Arch Biochem Biophys 241:163–172PubMedCrossRefGoogle Scholar
  100. Zolla L, Rinalducci S (2002) Involvement of active oxygen species in degradation of light-harvesting proteins under light stresses. Biochemistry 41:14391–14402PubMedCrossRefGoogle Scholar
  101. Zouni A, Witt H-T, Kern J, Fromme P, Krauß N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739–743PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.School of Chemistry and Biochemistry and Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations