Photosynthesis Research

, Volume 114, Issue 1, pp 1–13 | Cite as

Biological water-oxidizing complex: a nano-sized manganese–calcium oxide in a protein environment

  • Mohammad Mahdi Najafpour
  • Atefeh Nemati Moghaddam
  • Young Nam Yang
  • Eva-Mari Aro
  • Robert Carpentier
  • Julian J. Eaton-Rye
  • Choon-Hwan Lee
  • Suleyman I. Allakhverdiev


The resolution of Photosystem II (PS II) crystals has been improved using isolated PS II from the thermophilic cyanobacterium Thermosynechococcus vulcanus. The new 1.9 Å resolution data have provided detailed information on the structure of the water-oxidizing complex (Umena et al. Nature 473: 55–61, 2011). The atomic level structure of the manganese–calcium cluster is important for understanding the mechanism of water oxidation and to design an efficient catalyst for water oxidation in artificial photosynthetic systems. Here, we have briefly reviewed our knowledge of the structure and function of the cluster.


Artificial photosynthesis Photosystem II Water-oxidizing complex Nano-sized manganese–calcium cluster Oxygen Water 



M. M. Najafpour and A. Nemati Moghaddam are grateful to the Institute for Advanced Studies in Basic Sciences for financial support. This study was also supported by Grants from the Russian Foundation for Basic Research (Nos: 11-04-01389a, 11-04-92690a, and 12-04-92101a), by BMBF (No: 8125) Bilateral Cooperation between Germany and Russia, and by Brain Pool Program of the Ministry of Education Science and Technology (MEST) and the Korean Federation of Science and Technology (KOFST) to SIA. C–H Lee is grateful for the support by the National Research Foundation (NRF) of Korea grant funded by MEST (No. 2012-0004968).


  1. Ädelroth P, Lindberg K, Andreasson LE (1995) Studies of Ca2+ binding in spinach photosystem II using 45Ca2+. Biochemistry 34:9021–9027PubMedCrossRefGoogle Scholar
  2. Allakhverdiev SI (2011) Recent progress in the studies of structure and function of photosystem II. J Photochem Photobiol B: Biol 104:1–8CrossRefGoogle Scholar
  3. Allakhverdiev SI (2012) Photosynthetic and biomimetic hydrogen production. Int J Hydrogen Energy 37:8744–8752CrossRefGoogle Scholar
  4. Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1657:23–32PubMedCrossRefGoogle Scholar
  5. Allakhverdiev SI, Kreslavski VD, Thavasi V, Zharmukhamedov SK, Klimov VV, Nagata T, Nishihara H, Ramakrishna S (2009) Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems. Photochem Photobiol Sci 8:148–156PubMedCrossRefGoogle Scholar
  6. Allakhverdiev SI, Thavasi V, Kreslavski VD, Zharmukhamedov SK, Klimov VV, Ramakrishna S, Los DA, Mimuro M, Nishihara H, Carpentier R (2010) Photosynthetic hydrogen production. J Photochem Photobiol, C 11:87–99CrossRefGoogle Scholar
  7. Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134PubMedCrossRefGoogle Scholar
  8. Barber J (2008) Crystal structure of the oxygen-evolving complex of photosystem II. Inorg Chem 47:1700–1710PubMedCrossRefGoogle Scholar
  9. Barber J, Murray JW (2008) Revealing the structure of the Mn-cluster of photosystem II by X-ray crystallography. Coord Chem Rev 252:233–243CrossRefGoogle Scholar
  10. Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28:141–145CrossRefGoogle Scholar
  11. Beauchemin R, Gauthier A, Harnois J, Boisvert S, Govindachary S, Carpentier R (2007) Spermine and spermidine inhibition of photosystem II: disassembly of the oxygen evolving complex and consequent perturbation in electron donation from Tyrz to P680+ and the quinone acceptors QA to QB. Biochim Biophys Acta 1767:905–912PubMedCrossRefGoogle Scholar
  12. Bockris JOM (1977) Energy-the solar hydrogen alternative. Wiley, New YorkGoogle Scholar
  13. Boisvert S, Joly D, Leclerc S, Govindachary S, Harnois J, Carpentier R (2007) Inhibition of the oxygen-evolving complex of photosystem II and depletion of extrinsic polypeptides by nickel. Biometals 20:879–889PubMedCrossRefGoogle Scholar
  14. Boppana VBR, Jiao F (2011) Nanostructured MnO2: an efficient and robust water oxidation catalyst. Chem Commun 47:8973–8975CrossRefGoogle Scholar
  15. Boussac A, Rappaport F, Carrier P, Verbavatz JM, Gobin R, Kirilovsky D, Rutherford AW, Sugiura M (2004) Biosynthetic Ca2+/Sr2+ exchange in the photosystem II oxygen evolving enzyme of Thermosynechococcus elongatus. J Biol Chem 279:22809–22819PubMedCrossRefGoogle Scholar
  16. Bricker TM (1992) Oxygen evolution in the absence of the 33-kilodalton manganese-stabilizing protein. Biochemistry 31:4623–4628PubMedCrossRefGoogle Scholar
  17. Bricker TM, Roose JL, Fagerlund RD, Frankel LK, Eaton-Rye JJ (2012) The extrinsic proteins of photosystem II. Biochim Biophys Acta 1817:121–142PubMedCrossRefGoogle Scholar
  18. Brimblecombe R, Koo A, Dismukes GC, Swiegers GF, Spiccia L (2010) Solar-driven water oxidation by a bio-inspired manganese molecular catalyst. J Am Chem Soc 132:2892–2894PubMedCrossRefGoogle Scholar
  19. Duan L, Bozoglian F, Mandal S, Stewart B, Privalov T, Llobet A, Sun L (2012) A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nature Chem 4:418–423CrossRefGoogle Scholar
  20. Dau H, Haumann M (2008) The manganese complex of photosystem II in its reaction cycle-basic framework and possible realization at the atomic level. Coord Chem Rev 252:273–295CrossRefGoogle Scholar
  21. Dau H, Iuzzolino L, Dittmer J (2001) The tetra-manganese complex of photosystem II during its redox cycle: X-ray absorption results and mechanistic implications. Biochim Biophys Acta 1503:24–39PubMedCrossRefGoogle Scholar
  22. Debus RJ (2008) Protein ligation of the photosynthetic oxygen-evolving center. Coord Chem Rev 252:244–258PubMedCrossRefGoogle Scholar
  23. Dismukes GC, Brimblecombe R, Felton GAN, Pryadun RS, Sheats JE, Spiccia L, Swiegers GF (2009) Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis. Acc Chem Res 42:1935–1943PubMedCrossRefGoogle Scholar
  24. Eaton-Rye JJ, Shand JA, Nicoll WS (2003) pH-Dependent photoautotrophic growth of specific photosystem II mutants lacking lumenal extrinsic polypeptides in Synechocystis PCC 6803. FEBS Lett 543:148–153PubMedCrossRefGoogle Scholar
  25. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen evolving centre. Science 303:1831–1838PubMedCrossRefGoogle Scholar
  26. Gauthier A, Carpentier R (2008) Disorganization of the Mn4Ca complex of photosystem II by ruthenium red: a thermoluminescence study. Luminescence 24:108–114CrossRefGoogle Scholar
  27. Ghanotakis DF, Babcock GT, Yocum CF (1984) Calcium reconstitutes high rates of oxygen evolution in polypeptide depleted photosystem II preparations. FEBS Lett 167:127–130CrossRefGoogle Scholar
  28. Golbeck JH (2006) Advances in photosynthesis and respiration photosystem I: the light-driven plastocyanin: ferredoxin oxidoreductase, vol 24. Springer, DordrechtGoogle Scholar
  29. Govindjee Shevela D (2011) Adventures with cyanobacteria: a personal perspective. Front Plant Sci 2:1–17CrossRefGoogle Scholar
  30. Govindjee, Kern JF, Messinger J, Whitmarsh J (2010) Photosystem II. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. doi: 10.1002/9780470015902.a0000669
  31. Grundmeier A, Dau H (2012) Structural models of the manganese complex of photosystem II and mechanistic implications. Biochim Biophys Acta 1817:88–105PubMedCrossRefGoogle Scholar
  32. Guo X, Sigle W, Fleig J, Maier J (2002) Role of space charge in the grain boundary blocking effect in doped zirconia. Solid State Ionics 154–155:555–561CrossRefGoogle Scholar
  33. Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342PubMedCrossRefGoogle Scholar
  34. Hamdani S, Carpentier R (2009) Interaction of methylamine with extrinsic and intrinsic subunits of photosystem II. Biochim Biophys Acta 1787:1223–1229PubMedCrossRefGoogle Scholar
  35. Hammarstrom L, Styring S (2011) Proton-coupled electron transfer of tyrosines in photosystem II and model systems for artificial photosynthesis: the role of a redox-active link between catalyst and photosensitizer. Energy Environ Sci 4:2379–2388CrossRefGoogle Scholar
  36. Hammarstrom L, Sun L, Akermark B, Styring S (2001) A biomimetic approach to artificial photosynthesis: Ru(II)–polypyridine photo-sensitisers linked to tyrosine and manganese electron donors. Spectrochim Acta, A 37:2145–2160Google Scholar
  37. Harriman A, Richoux M, Christensen PA, Mosseri S, Neta P (1987) Redox reactions with colloidal metal o xides. Comparison of radiation-generated and chemically generated RuO2·2H2O. J Chem Soc, Faraday Trans 1(83):3001–3014Google Scholar
  38. Hillier W, Wydrzynski T (2008) 18O-Water exchange in photosystem II: substrate binding and intermediates of the water-splitting reaction. Coord Chem Rev 252:306–317CrossRefGoogle Scholar
  39. Ho FM (2008) Uncovering channels in photosystem II by computer modelling: current progress, future prospects, and lessons from analogous systems. Photosynth Res 98:503–522PubMedCrossRefGoogle Scholar
  40. Ho FM, Styring S (2008) Access channels and methanol binding site to the CaMn4 cluster in photosystem II based on solvent accessibility simulations, with implications for substrate water access. Biochim Biophys Acta 1777:140–153PubMedCrossRefGoogle Scholar
  41. Hocking RK, Brimblecombe R, Chang L, Singh A, Cheah MH, Glover C, Casey WH, Spiccia L (2011) Water-oxidation catalysis by manganese in a geochemical-like cycle. Nat Chem 3:461–465PubMedGoogle Scholar
  42. Hoganson CW, Babcock GT (1997) A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science 277:1953–1956PubMedCrossRefGoogle Scholar
  43. Hou HJ (2010) Structural and mechanistic aspects of Mn-oxo and co-based compounds in water oxidation catalysis and potential applications in solar fuel production. J Integr Plant Biol 52:704–711PubMedCrossRefGoogle Scholar
  44. Hou HJ, Mauzerall D (2011) Listening to PS II: enthalpy, entropy, and volume changes. J Photochem Photobiol, B 104:357–365CrossRefGoogle Scholar
  45. Jamnik J, Maier J (2003) Nanocrystallinity effects in lithium battery materials. Aspects of nano-ionics. Phys Chem Chem Phys 5:5215–5220CrossRefGoogle Scholar
  46. Jiao F, Frei H (2010a) Nanostructure manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem Commun 46:2920–2922CrossRefGoogle Scholar
  47. Jiao F, Frei H (2010b) Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ Sci 3:1018–1027CrossRefGoogle Scholar
  48. Jo IS, Han DU, Cho YJ, Lee EJ (2010) Effects of light, temperature, and water depth on growth of a rare aquatic plant, Ranunculus kadzusensis. J Plant Biol 54:384–395Google Scholar
  49. Joliot P (2005) Period-four oscillations of the flash-induced oxygen formation in photosynthesis. Photosynth Res 20:371–378CrossRefGoogle Scholar
  50. Joliot P, Kok B (1975) Oxygen evolution in photosynthesis. In: Govindjee (ed) Bioenergetics of photosynthesis. Academic Press, New York, pp 387–412Google Scholar
  51. Joliot P, Barbieri G, Chabaud R (1969) Un nouveau modele des centresphotochimiques du systeme II. Photochem Photobiol 10:309–329CrossRefGoogle Scholar
  52. Kamiya N, Shen JR (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7 Å resolution. Proc Natl Acad Sci USA 100:98–103PubMedCrossRefGoogle Scholar
  53. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075PubMedCrossRefGoogle Scholar
  54. Kawakami K, Umena Y, Kamiya N, Shen JR (2011) Structure of the catalytic, inorganic core of oxygen-evolving photosystem II at 1.9 Å resolution. J Photochem Photobiol, B 104:9–18CrossRefGoogle Scholar
  55. Keren N, Berg A, van Kan PJM, Levanon H, Ohad I (1997) Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: the role of back electron flow. Proc Natl Acad Sci USA 94:1579–1584PubMedCrossRefGoogle Scholar
  56. Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution: I. A linear four-step mechanism. Photochem Photobiol 11:457–475PubMedCrossRefGoogle Scholar
  57. Komenda J, Sobotka R, Nixon PJ (2012) Assembling and maintaining the photosystem II complex in chloroplasts and cyanobacteria. Curr Opin Plant Biol 15:245–251PubMedCrossRefGoogle Scholar
  58. Lee C, Lakshmi KV, Brudvig GW (2007) Probing the functional role of Ca2+ in the oxygen-evolving complex of photosystem II by metal ion inhibition. Biochemistry 46:3211–3223PubMedCrossRefGoogle Scholar
  59. Limburg J, Szalai A, Brudvig GW (1999) A mechanistic and structural model for the formation and reactivity of a Mn(V) = O species in photosynthetic water oxidation. J Chem Soc, Dalton Trans 9:1353–1362CrossRefGoogle Scholar
  60. Lohmiller T, Cox N, Su JH, Messinger J, Lubitz W (2012) The basic properties of the electronic structure of the oxygen-evolving complex of photosystem II are not perturbed by Ca2+ removal. J Biol Chem 287:24721–24733PubMedCrossRefGoogle Scholar
  61. Lutterman DA, Surendranath Y, Nocera DG (2009) A self-healing oxygen-evolving catalyst. J Am Chem Soc 131:3838–3839PubMedCrossRefGoogle Scholar
  62. Mar T, Govindjee (1972) Kinetic models of oxygen evolution. J Theoret Biol 36:427–446CrossRefGoogle Scholar
  63. McEvoy J, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106:4455–4483PubMedCrossRefGoogle Scholar
  64. Miyao M, Murata N (1984) Role of the 33 kDa polypeptide in preserving Mn in the photosynthetic oxygen-evolution system and its replacement by chloride ions. FEBS Lett 170:350–354CrossRefGoogle Scholar
  65. Mulo P, Sakurai I, Aro EM (2012) Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. Biochim Biophys Acta 1817:247–257PubMedCrossRefGoogle Scholar
  66. Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421PubMedCrossRefGoogle Scholar
  67. Murata N, Allakhverdiev SI, Nishiyama Y (2012) The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. Biochim Biophys Acta 1817:1127–1133PubMedCrossRefGoogle Scholar
  68. Najafpour MM (2006) Current molecular mechanisms of photosynthetic oxygen evolution. Plant Biosyst 140:163–170CrossRefGoogle Scholar
  69. Najafpour MM (2011a) Calcium manganese oxides as structural and functional models for active site in oxygen evolving complex in photosystem II: Lessons from simple models. J Photochem Photobiol B 104:111–117PubMedCrossRefGoogle Scholar
  70. Najafpour MM (2011b) Amorphous manganese-calcium oxides as a possible evolutionary origin for the CaMn4 cluster in photosystem II. Orig Life Evol Biosph 41:237–247PubMedCrossRefGoogle Scholar
  71. Najafpour MM (2011c) A soluble form of nano-sized colloidal manganese (IV) oxide as an efficient catalyst for water oxidation. Dalton Trans 40:3805–3807PubMedCrossRefGoogle Scholar
  72. Najafpour MM (ed) (2012) Artificial photosynthesis. Tech Publications, Rijeka. ISBN 979-953-307-665-1Google Scholar
  73. Najafpour MM, Govindjee (2011) Oxygen evolving complex in photosystem II: better than excellent. Dalton Trans 40:9076–9084PubMedCrossRefGoogle Scholar
  74. Najafpour MM, Allakhverdiev SI (2012) Manganese compounds as water oxidizing catalysts for hydrogen production via water splitting: from manganese complexes to nano-sized manganese oxides. Int J Hydrogen Energy 37:8753–8764CrossRefGoogle Scholar
  75. Najafpour MM, Nayeri S, Pashaei B (2011) Nano-size amorphous calcium–manganese oxide as an efficient and biomimetic water oxidizing catalyst for artificial photosynthesis: back to manganese. Dalton Trans 40:9374–9378PubMedCrossRefGoogle Scholar
  76. Najafpour MM, Nemati Moghaddam A, Allakhverdiev SI, Govindjee (2012a) Biological water oxidation: lessons from nature. Biochim Biophys Acta 1817:1110–1121PubMedCrossRefGoogle Scholar
  77. Najafpour MM, Pashaei B, Nayeri S (2012b) Nano-sized layered aluminium or zinc–manganese oxides as efficient water oxidizing catalysts. Dalton Trans 41:7134–7140PubMedCrossRefGoogle Scholar
  78. Najafpour MM, Rahimi F, Amini M, Nayeri S, Bagherzadeh M (2012c) A very simple method to synthetize nano-sized manganese oxide: an efficient catalyst for water oxidation and epoxidation of olefins. Dalton Trans. doi: 10.1039/C2DT30553D Google Scholar
  79. Navrotsky A, Lilova C, Ma K, Birkner N (2010) Nanophase transition metal oxides show large thermodynamically driven shifts in oxidation-reduction equilibria. Science 330:199–201PubMedCrossRefGoogle Scholar
  80. Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749PubMedCrossRefGoogle Scholar
  81. Nishiyama Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant 142:35–46PubMedCrossRefGoogle Scholar
  82. Ono TA, Inoue Y (1983) Mn-preserving extraction of 33-, 23-, and 16 kDa proteins from O2-evolving PS II particles by divalent salt-washing. FEBS Lett 164:255–260CrossRefGoogle Scholar
  83. Pace R (2005) An integrated artificial photosynthesis model. In: Collings AF, Critchley C (eds) Artificial photosynthesis: from basic biology to industrial application, 1st edn. Wiley, Weinheim, pp 13–34Google Scholar
  84. Payne JL, McClain CR, Boyer AG, Brown JH, Finnegan S, Kowalewski M, Krause RA Jr, Lyons SK, McShea DW, Novack-Gottshall PM, Smith FA, Spaeth P, Stempien JA, Wang SC (2011) The evolutionary consequences of oxygenic photosynthesis: a body size perspective. Photosynth Res 107:7–10CrossRefGoogle Scholar
  85. Pecoraro VL, Baldwin MJ, Caudle MT, Hsieh WY, Law NA (1998) A proposal for water oxidation in photosystem II. Pure Appl Chem 70:925–929CrossRefGoogle Scholar
  86. Peloquin JM, Campbell KA, Randall QW, Evanchik MA, Pecoraro VL, Armstrong WH, Britt RD (2000) 55Mn ENDOR of the S2-state multiline EPR signal of photosystem II: implications on the structure of the tetranuclear Mn cluster. J Am Chem Soc 22:10926–10942CrossRefGoogle Scholar
  87. Petrie S, Gatt P, Stranger R, Pace RJ (2012) The interaction of His337 with the Mn4Ca cluster of photosystem II. Phys Chem Chem Phys 14:4651–4657PubMedCrossRefGoogle Scholar
  88. Pirson A (1937) A study of the nutrition and metabolism of Fontinalis and Chlorella. Z Bot 31:193–267Google Scholar
  89. Popelkova H, Betts SD, Lydakis-Simantiris N, Im MM, Swenson E, Yocum CF (2006) Mutagenesis of basic residues R151 and R161 in manganese-stabilizing protein of photosystem II causes inefficient binding of chloride to the oxygen evolving complex. Biochemistry 45:3107–3115PubMedCrossRefGoogle Scholar
  90. Popelkova H, Boswell N, Yocum C (2011) Probing the topography of the photosystem II oxygen evolving complex: PsbO is required for efficient calcium protection of the manganese cluster against dark-inhibition by an artificial reductant. Photosynth Res 110:111–121PubMedCrossRefGoogle Scholar
  91. Renger G (2012) Photosynthetic water splitting: apparatus and mechanism. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynthesis: plastid biology, energy conversion and carbon assimilation, advances in photosynthesis and respiration, vol 34. Springer, Dordrecht, pp 359–411Google Scholar
  92. Rivalta I, Amin M, Luber S, Vassiliev S, Pokhrel R, Umena Y, Kawakami K, Shen JR, Kamiya N, Bruce D, Brudvig GW, Gunner MR, Batista VS (2011) Structural–functional role of chloride in photosystem II. Biochemistry 50:6312–6315PubMedCrossRefGoogle Scholar
  93. Rutherford AW, Boussac A (2004) Water photolysis in biology. Science 303:1782–1784PubMedCrossRefGoogle Scholar
  94. Sauer K, Yachandra VK, Britt RD, Klein MP (1992) The photosynthetic water oxidation complex studied by EPR and X-ray absorption spectroscopy. In: Pecoraro VL (ed) Manganese redox enzymes. VCH, New YorkGoogle Scholar
  95. Shutova T, Nikitina J, Deikus G, Andersson B, Klimov V, Samuelsson G (2005) Structural dynamics of the manganese-stabilizing protein effect of pH, calcium, and manganese. Biochemistry 44:15182–15192PubMedCrossRefGoogle Scholar
  96. Siegbahn PE (2009) Structures and energetics for O2 formation in photosystem II. Acc Chem Res 42:1871–1880PubMedCrossRefGoogle Scholar
  97. Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Ǻ. Nature 473:55–60PubMedCrossRefGoogle Scholar
  98. Wang Y, Kim SG, Kim ST, Agrawal GK, Rakwal R, Kang KY (2011) Biotic stress-responsive rice proteome: an overview. J Plant Biol 54:219–226CrossRefGoogle Scholar
  99. Wydrzynski TJ, Satoh K (eds) (2005) Photosystem II: the light-driven water: plastoquinone oxidoreductase, advances in photosynthesis and respiration, vol 22. Springer, DordrechtGoogle Scholar
  100. Yano J, Kern J, Irrgang KD, Latimer MJ, Bergmann U, Glatzel P, Pushkar Y, Biesiadka J, Loll B, Sauer K, Messinger J, Zouni A, Yachandra VK (2005) X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. Proc Natl Acad Sci USA 102:12047–12052PubMedCrossRefGoogle Scholar
  101. Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A, Yachandra VK (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314:821–825PubMedCrossRefGoogle Scholar
  102. Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739–743PubMedCrossRefGoogle Scholar
  103. Zulfugarov I, Tovuu A, Kim J-H, Lee C-H (2011) Detection of reactive oxygen species in higher plants. J Plant Biol 54:351–357CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Mohammad Mahdi Najafpour
    • 1
    • 2
  • Atefeh Nemati Moghaddam
    • 1
  • Young Nam Yang
    • 3
  • Eva-Mari Aro
    • 4
  • Robert Carpentier
    • 5
  • Julian J. Eaton-Rye
    • 6
  • Choon-Hwan Lee
    • 3
  • Suleyman I. Allakhverdiev
    • 7
    • 8
  1. 1.Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS)ZanjanIran
  2. 2.Institute for Advanced Studies in Basic Sciences (IASBS)Center of Climate Change and Global WarmingZanjanIran
  3. 3.Department of Molecular BiologyPusan National UniversityBusanSouth Korea
  4. 4.Department of Biochemistry and Food ChemistryUniversity of TurkuTurkuFinland
  5. 5.Groupe de Recherche en Biologie Végétale (GRBV)Université du Québec à Trois-RivièresQuebecCanada
  6. 6.Department of BiochemistryUniversity of OtagoDunedinNew Zealand
  7. 7.Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  8. 8.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations