Photosynthesis Research

, Volume 113, Issue 1–3, pp 165–180 | Cite as

Cost and benefit of the repair of photodamaged photosystem II in spinach leaves: roles of acclimation to growth light

  • Kazunori MiyataEmail author
  • Ko Noguchi
  • Ichiro Terashima
Regular Paper


When visible light is excess, the photosynthetic machinery is photoinhibited. The extent of net photoinhibition of photosystem II (PSII) is determined by a balance between the rate of photodamage to D1 and some other PSII proteins and the rate of the turnover cycle of these proteins. It is widely believed that the protein turnover requires much energy cost. The aims of this study are to (1) evaluate the energy cost of PSII repair, (2) measure the benefit in terms of photosynthetic gain realized by the repairing of the photodamaged PSII, and (3) know whether acclimation of photosynthesis to growth light affects the rates of the photodamage and repair. We grew spinach in high-light (HL) and low-light (LL) and measured the rates of D1 photodamage and repair in these leaves. We determined the rate constants of photodamage (k pi) and repair (k rec) by the PAM fluorometry in the presence or in the absence of lincomycin, an inhibitor of 70S protein synthesis. HL leaves showed smaller k pi and greater k rec than LL leaves. The energy cost of the repairing of the photodamaged D1 protein was <0.5 % of ATP produced by photophosphorylation at PPFDs ranging from 400 to 1600 μmol m−2 s−1 and was greater in HL leaves than in LL leaves. The benefits brought about by the repair were more than from 35 to 270 times the cost at PPFDs ranging from 400 to 1600 μmol m−2 s−1. The benefits of HL leaves were greater than those of LL leaves because of the higher photosynthesis rates in HL leaves. Running a simple simulation of daily photosynthesis using the parameters obtained in this study, we discuss why the plants need to pay the cost of D1 protein turnover to repair the photodamaged PSII.


Chlorophyll fluorescence D1 protein turnover Excess energy Light acclimation Photoinhibition Photosystem II 



We thank Dr. Riichi Oguchi and Mr. Masaru Kono for kind support and advice. We also thank Prof. Chikahiro Miyake (Kobe University) for a useful discussion concerning the ATP production rate. We are grateful to two anonymous reviewers and the handling editor, Dr. Shizue Matsubara, for their very constructive comments. The last author (IT.) once studies as a postdoctoral fellow under the supervision of Prof. Barry Osmond, and deeply thanks for his continuous encouragement.

Supplementary material

11120_2012_9767_MOESM1_ESM.doc (338 kb)
Supplementary material 1 (DOC 337 kb)


  1. Aro EM, Virgin I, Andersson B (1993a) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134. doi: 10.1016/0005-2728(93)90134-2 PubMedCrossRefGoogle Scholar
  2. Aro EM, McCaffery S, Anderson JM (1993b) Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiol 103:835–843. doi: 10.1104/pp.103.3.835 PubMedGoogle Scholar
  3. Berry S, Rumberg B (1996) H+/ATP coupling ratio at the unmodulated CF0CF1-ATP synthase determined by proton flux measurements. Biochim Biophys Acta 1276:51–56. doi: 10.1016/0005-2728(96)00031-X CrossRefGoogle Scholar
  4. Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbency changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185. doi: 10.1007/BF00033159 CrossRefGoogle Scholar
  5. Blankenship RE (2002) Chemiosmotic coupling and ATP synthesis. In: Blankenship RE (ed) Molecular mechanisms of photosynthesis. Wiley-Blackwell, Hoboken, pp 173–187CrossRefGoogle Scholar
  6. Chow WS (1994) Photoprotection and photoinhibitory damage. Adv Mol Cell Biol 10:151–196. doi: 10.1016/S1569-2558(08)60397-5 CrossRefGoogle Scholar
  7. Chow WS, Hope AB, Anderson JM (1989) Oxygen per flash from leaf disks quantifies photosystem II. Biochim Biophys Acta 973:105–108. doi: 10.1016/S0005-2728(89)80408-6 CrossRefGoogle Scholar
  8. Chow WS, Lee HY, He J, Hendrickson L, Hong YN, Matsubara S (2005) Photoinactivation of photosystem II in leaves. Photosynth Res 84:35–41. doi: 10.1007/s11120-005-0410-1 PubMedCrossRefGoogle Scholar
  9. Demmig B, Björkman O (1987) Comparison of the effect of excessive light on chlorophyll fluorescence (77 K) and photon yield of O2 evolution in leaves of higher plants. Planta 171:171–184. doi: 10.1007/BF00391092 CrossRefGoogle Scholar
  10. Demmig-Adams B, Adams WW III (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626. doi: 10.1146/annurev.pp.43.060192.003123 CrossRefGoogle Scholar
  11. Demmig-Adams B, Adams WW III, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of excess excitation. Physiol Plant 98:253–264. doi: 10.1034/j.1399-3054.1996.980206.x CrossRefGoogle Scholar
  12. Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci USA 91:11–17. doi: 10.1073/pnas.91.1.11 PubMedCrossRefGoogle Scholar
  13. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi: 10.1016/S0304-4165(89)80016-9 CrossRefGoogle Scholar
  14. Greer DH, Berry JA, Björkman O (1986) Photoinhibition of photosynthesis in intact been leaves. Role of light and temperature, requirement for chloroplast-protein synthesis during recovery. Planta 168:253–260. doi: 10.1007/BF00402971 Google Scholar
  15. Hakala M, Tuominen I, Keränen M, Tyystjärvi T, Tyystjärvi E (2005) Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II. Biochim Biophys Acta 1706:68–80. doi: 10.1016/j.bbabio.2004.09.001 PubMedCrossRefGoogle Scholar
  16. Haußühl K, Andersson B, Adamska I (2001) A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. EMBO J 20:713–722. doi: 10.1093/emboj/20.4.713 PubMedCrossRefGoogle Scholar
  17. Hikosaka K, Kato MC, Hirose T (2004) Photosynthesis rates and partitioning of absorbed light energy in photoinhibited leaves. Physiol Plant 121:699–708. doi: 10.1111/j.1399-3054.2004.00364.x CrossRefGoogle Scholar
  18. Hirose T, Werger MJA (1987) Nitrogen use efficiency in instantaneous and daily photosynthesis of leaves in the canopy of a Solidago altissima stand. Physiol Plant 70:215–222. doi: 10.1111/j.1399-3054.1987.tb06134.x CrossRefGoogle Scholar
  19. Huesgen PF, Schuhmann H, Adamska I (2006) Photodamaged D1 protein is degraded in Arabidopsis mutants lacking the Deg2 protease. FEBS Lett 580:6929–6932. doi: 10.1016/j.febslet.2006.11.058 PubMedCrossRefGoogle Scholar
  20. Itzhaki H, Naveh L, Lindahl M, Cook M, Adam Z (1998) Identification and characterization of DegP, a serine protease associated with the luminal side of the thylakoid membrane. J Biol Chem 273:7094–7098. doi: 10.1074/jbc.273.12.7094 PubMedCrossRefGoogle Scholar
  21. Jansen MAK, Mattoo AK, Edelman M (1999) D1–D2 protein degradation in the chloroplast. Complex light saturation kinetics. Eur J Biochem 260:527–532. doi: 10.1046/j.1432-1327.1999.00196.x PubMedCrossRefGoogle Scholar
  22. Kapri-Pardes E, Naveh L, Adam Z (2007) The thylakoid lumen protease Deg1 is involved in the repair of photosystem II from photoinhibition in Arabidopsis. Plant Cell 19:1039–1047. doi: 10.1105/tpc.106.046573 PubMedCrossRefGoogle Scholar
  23. Kato Y, Sakamoto W (2009) Protein quality control in chloroplasts: a current model of D1 protein degradation in the photosystem II repair cycle. J Biochem 146:463–469. doi: 10.1093/jb/mvp073 PubMedCrossRefGoogle Scholar
  24. Kato MC, Hikosaka K, Hirose T (2002) Photoinactivation and recovery of photosystem II in Chenopodium aibum leaves grown at different levels of irradiance and nitrogen availability. Funct Plant Biol 29:787–795. doi: 10.1071/PP01162 CrossRefGoogle Scholar
  25. Kato MC, Hikosaka K, Hirotsu N, Makino A, Hirose T (2003) The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. Plant Cell Physiol 44:318–325. doi: 10.1093/pcp/pcg045 PubMedCrossRefGoogle Scholar
  26. Kok B (1956) On the inhibition of photosynthesis by intense light. Biochim Biophys Acta 21:234–244. doi: 10.1016/0006-3002(56)90003-8 PubMedCrossRefGoogle Scholar
  27. Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution. I. A linear four step mechanism. Photochem Photobiol 11:467–475. doi: 10.1111/j.1751-1097.1970.tb06017.x CrossRefGoogle Scholar
  28. Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218. doi: 10.1023/B:PRES.0000015391.99477.0d PubMedCrossRefGoogle Scholar
  29. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basic. Annu Rev Plant Physiol Plant Mol Biol 42:313–349. doi: 10.1146/annurev.pp.42.060191.001525 CrossRefGoogle Scholar
  30. Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662. doi: 10.1146/annurev.pp.45.060194.003221 CrossRefGoogle Scholar
  31. Ma J, Peng L, Guo J, Lu Q, Lu C, Zhang L (2007) LPA2 is required for efficient assembly of photosystem II in Arabidopsis thaliana. Plant Cell 19:1980–1993. doi: 10.1105/tpc.107.050526 PubMedCrossRefGoogle Scholar
  32. Mulo P, Sirpiö S, Suorsa M, Aro EM (2008) Auxiliary proteins involved in the assembly and sustenance of photosystem II. Photosynth Res 98:489–501. doi: 10.1007/s11120-008-9320-3 PubMedCrossRefGoogle Scholar
  33. Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20:5587–5594. doi: 10.1093/emboj/20.20.5587 PubMedCrossRefGoogle Scholar
  34. Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43:11321–11330. doi: 10.1021/bi036178q PubMedCrossRefGoogle Scholar
  35. Noguchi K, Go CS, Miyazawa SI, Terashima I, Ueda S, Yoshinari T (2001a) Costs of protein turnover and carbohydrate export in leaves of sun and shade species. Aust J Plant Physiol 28:37–47. doi: 10.1071/PP00057 Google Scholar
  36. Noguchi K, Go CS, Terashima I, Ueda S, Yoshinari T (2001b) Activities of the cyanide-resistant respiratory pathway in leaves of sun and shade species. Aust J Plant Physiol 28:27–35. doi: 10.1071/PP00056 Google Scholar
  37. Ögren E, Öquist G, Hällgren JE (1984) Photoinhibition of photosynthesis in Lemna gibba as induced by the interaction between light and temperature I. Photosynthesis in vivo. Physiol Plant 62:181–186. doi: 10.1111/j.1399-3054.1984.tb00368.x CrossRefGoogle Scholar
  38. Oguchi R, Terashima I, Chow WS (2009) The involvement of dual mechanisms of photoinactivation of photosystem II in Capsicum annuum L. plants. Plant Cell Physiol 50:1815–1825. doi: 10.1093/pcp/pcp123 PubMedCrossRefGoogle Scholar
  39. Oguchi R, Douwstra P, Fujita T, Chow WS, Terashima I (2011a) Intra-leaf gradients of photoinhibition induced by different color lights: implications for the dual mechanisms of photoinhibition and for the application of conventional chlorophyll fluorometers. New Phytol 191:146–159. doi: 10.1111/j.1469-8137.2011.03669.x PubMedCrossRefGoogle Scholar
  40. Oguchi R, Terashima I, Kou J, Chow WS (2011b) Operation of dual mechanisms that both lead to photoinactivation of Photosystem II in leaves by visible light. Physiol Plant 142:47–55. doi: 10.1111/j.1399-3054.2011.01452.x PubMedCrossRefGoogle Scholar
  41. Ohnishi N, Allakhverdiev SI, Takahashi S, Higashi S, Watanabe M, Nishiyama Y, Murata N (2005) Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center. Biochemistry 44:8494–8499. doi: 10.1021/bi047518q PubMedCrossRefGoogle Scholar
  42. Öquist G, Anderson JM, McCaffery S, Chow WS (1992) Mechanistic differences in photoinhibition of sun and shade plants. Planta 188:422–431. doi: 10.1007/BF00192810 CrossRefGoogle Scholar
  43. Osmond CB (1994) What is photoinhibition? Some insights from comparison of shade and sun plants. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis: from molecular mechanisms to the field. Bios Scientific Publishers, Oxford, pp 1–24Google Scholar
  44. Park YI, Anderson JM, Chow WS (1996) Photoinactivation of functional photosystem II and D1-protein synthesis in vivo are independent of the modulation of the photosynthetic apparatus by growth irradiance. Planta 198:300–309. doi: 10.1007/BF00206257 CrossRefGoogle Scholar
  45. Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15–44. doi: 10.1146/annurev.pp.35.060184.000311 CrossRefGoogle Scholar
  46. Raven JA (1989) Fight or flight: the economics of repair and avoidance of photoinhibition of photosynthesis. Funct Ecol 3:5–19. doi: 10.2307/2389670 CrossRefGoogle Scholar
  47. Raven JA (2011) The cost of photoinhibition. Physiol Plant 142:87–104. doi: 10.1111/j.1399-3054.2011.01465.x PubMedCrossRefGoogle Scholar
  48. Raven JA, Samuelsson G (1986) Repair of photoinhibitory damage in Anacystis nidulans 625 (Synechococcus 6301): relation to catalytic capacity for, and energy supply to, protein synthesis, and implications for μmax and the efficiency of light-limited growth. New Phytol 103:625–643. doi: 10.1111/j.1469-8137.1986.tb00838.x CrossRefGoogle Scholar
  49. Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 49–70Google Scholar
  50. Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H, Müller DJ (2000) Structural biology: proton-powered turbine of a plant motor. Nature 405:418–419. doi: 10.1038/35013148 PubMedCrossRefGoogle Scholar
  51. Stefanov D, Terashima I (2008) Non-photochemical loss in PSII in high- and low-light-grown leaves of Vicia faba quantified by several fluorescence parameters including LNP, F0/Fm′, a novel parameter. Physiol Plant 133:327–338. doi: 10.1111/j.1399-3054.2008.01077.x PubMedCrossRefGoogle Scholar
  52. Sun X, Peng L, Guo J, Chi W, Ma J, Lu C, Zhang L (2007) Formation of DEG5 and DEG8 complexes and their involvement in the degradation of photodamaged photosystem II reaction center D1 protein in Arabidopsis. Plant Cell 19:1347–1361. doi: 10.1105/tpc.106.049510 PubMedCrossRefGoogle Scholar
  53. Takahashi S, Badger MR (2011) Photoprotection in plants a new light on photosystem II damage. Trends Plant Sci 16:53–60. doi: 10.1016/j.tplants.2010.10.001 PubMedCrossRefGoogle Scholar
  54. Terashima I, Wong SC, Osmond CB, Farquhar GD (1988) Characterisation of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies. Plant Cell Physiol 29:385–394Google Scholar
  55. Tyystjärvi E, Ali-Yrkko K, Kettunen R, Aro EM (1992) Slow degradation of the Dl protein is related to the susceptibility of low-light-grown pumpkin plants to photoinhibition. Plant Physiol 100:1310–1317. doi: 10.1104/pp.100.3.1310 PubMedCrossRefGoogle Scholar
  56. Vainonen JP, Hansson M, Vener AV (2005) STN8 protein kinase in Arabidopsis thaliana is specific in phosphorylation of photosystem II core proteins. J Biol Chem 280:33679–33686. doi: 10.1074/jbc.M505729200 PubMedCrossRefGoogle Scholar
  57. Vass I (2011) Role of charge recombination processes in photodamage and photoprotection of the photosystem II complex. Physiol Plant 142:6–16. doi: 10.1111/j.1399-3054.2011.01454.x PubMedCrossRefGoogle Scholar
  58. Vass I, Styring S, Hundal T, Koivuniemi A, Aro E, Andersson B (1992) Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci USA 89:1408–1412. doi: 10.1073/pnas.89.4.1408 PubMedCrossRefGoogle Scholar
  59. von Caemmerer S (2000) Modelling C3 photosynthesis. In: von Caemmerer S (ed) Techniques in plant science No 2. Biochemical models of leaf photosynthesis. CSIRO Publishing, Collingwood, pp 29–71Google Scholar
  60. Wünschmann G, Brand JJ (1992) Rapid turnover of a component required for photosynthesis explains temperature dependence and kinetics of photoinhibition in a cyanobacterium, Synechococcus 6301. Planta 186:426–433. doi: 10.1007/BF00195324 CrossRefGoogle Scholar
  61. Yamamoto Y, Akasaka T (1995) Degradation of antenna chlorophyll-binding protein CP43 during photoinhibition of photosystem II. Biochemistry 34:9038–9045. doi: 10.1021/bi00028a012 PubMedCrossRefGoogle Scholar
  62. Zerihun A, McKenzie BA, Morton JD (1998) Photosynthate costs associated with the utilization of different nitrogen-forms: influence on the carbon balance of plants and shoot-root biomass partitioning. New Phytol 138:1–11. doi: 10.1046/j.1469-8137.1998.00893.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations