Photosynthesis Research

, Volume 111, Issue 3, pp 269–283 | Cite as

Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare

  • Usue Pérez-LópezEmail author
  • Anabel Robredo
  • Maite Lacuesta
  • Amaia Mena-Petite
  • Alberto Muñoz-Rueda
Regular Paper


The future environment may be altered by high concentrations of salt in the soil and elevated [CO2] in the atmosphere. These have opposite effects on photosynthesis. Generally, salt stress inhibits photosynthesis by stomatal and non-stomatal mechanisms; in contrast, elevated [CO2] stimulates photosynthesis by increasing CO2 availability in the Rubisco carboxylating site and by reducing photorespiration. However, few studies have focused on the interactive effects of these factors on photosynthesis. To elucidate this knowledge gap, we grew the barley plant, Hordeum vulgare (cv. Iranis), with and without salt stress at either ambient or elevated atmospheric [CO2] (350 or 700 μmol mol−1 CO2, respectively). We measured growth, several photosynthetic and fluorescence parameters, and carbohydrate content. Under saline conditions, the photosynthetic rate decreased, mostly because of stomatal limitations. Increasing salinity progressively increased metabolic (photochemical and biochemical) limitation; this included an increase in non-photochemical quenching and a reduction in the PSII quantum yield. When salinity was combined with elevated CO2, the rate of CO2 diffusion to the carboxylating site increased, despite lower stomatal and internal conductance. The greater CO2 availability increased the electron sink capacity, which alleviated the salt-induced metabolic limitations on the photosynthetic rate. Consequently, elevated CO2 partially mitigated the saline effects on photosynthesis by maintaining favorable biochemistry and photochemistry in barley leaves.


Climate change Elevated CO2 Hordeum vulgare L. Photosynthesis Salinity 



This research was financially supported by grants MICINN-BFU2010-16349/BFI, K-EGOKITZEN IE10-277, UFI11/24, and GRUPO GV-IT326-10. U. Pérez-López was the recipient of a grant from the Departamento de Educación, Universidades e Investigación del Gobierno Vasco (Spain). We also thank IZAITE, Ehne, Factor CO2 and Petronor for their support. The authors would like to thank Dr Galmes, Dr Ribas-Carbó, and Dr Flexas for useful and stimulating discussion relating to this work.


  1. Alonso A, Pérez P, Martínez-Carrasco R (2009) Growth in elevated CO2 enhances temperature response of photosynthesis in wheat. Physiol Plant 135:109–120. doi: 10.1111/j.1399-3054.2008.01177.x PubMedCrossRefGoogle Scholar
  2. Arnon DI, Hoagland DR (1940) Crop production in artificial culture solutions and in soils with special reference to factors influencing yields and absorption of inorganic nutrients. Soil Sci 50:463–485Google Scholar
  3. Ashraf M (2003) Relationship between leaf gas exchange characteristics and growth of differently adapted populations of blue panicgrass (Panicum antidotale Retz.) under salinity or waterlogging. Plant Sci 165:69–75. doi: 10.1016/S0168-9452(03)00128-6 CrossRefGoogle Scholar
  4. Belkhodja R, Morales F, Abadía A, Medrano H, Abadia J (1999) Effects of salinity on chlorophyll fluorescence and photosynthesis of barley (Hordeum vulgare L.) grown under a triple-line-source sprinkler system in the field. Photosynthetica 36:375–387. doi: 10.1023/A:1007019918225 CrossRefGoogle Scholar
  5. Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP (2002) Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol 130:1992–1998PubMedCrossRefGoogle Scholar
  6. Bongi G, Loreto F (1989) Gas-exchange properties of salt-stressed olive (Olea europea L.) leaves. Plant Physiol 90:1408–1416PubMedCrossRefGoogle Scholar
  7. Bowes G (1996) Photosynthetic responses to changing atmospheric carbon dioxide concentration. In: Baker NR (ed) Photosynthesis and the environment. Advances in photosynthesis, vol 5. Kluwer, Dordrecht, pp 387–407. doi: 10.1007/0-306-48135-9_16 CrossRefGoogle Scholar
  8. Brugnoli EM, Lauteri M (1991) Effect of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol 95:628–635PubMedCrossRefGoogle Scholar
  9. Bunce JA (1998) The temperature dependence of the stimulation of photosynthesis by elevated carbon dioxide in wheat and barley. J Exp Bot 49:1555–1561. doi: 10.1093/jxb/49.326.1555 CrossRefGoogle Scholar
  10. Centritto M, Loreto F, Chartzoulakis K (2003) The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. Plant Cell Environ 26:585–594. doi: 10.1046/j.1365-3040.2003.00993.x CrossRefGoogle Scholar
  11. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560. doi: 10.1093/aob/mcn125 PubMedCrossRefGoogle Scholar
  12. Chaves MM, Costa JM, Madeira-Saibo NJ (2011) Recent advances in photosynthesis under drought and salinity. Adv Bot Res 57:49–104. doi: 10.1016/B978-0-12-387692-8.00003-5 CrossRefGoogle Scholar
  13. Chen K, Hu G, Keutgen N, Janssesns MJJ, Lenz F (1999) Effects of NaCl salinity and CO2 enrichment on pepino (Solanum muricatum Ait.). II. Leaf photosynthetic properties and gas exchange. Sci Hortic 81:43–56. doi: 10.1016/S0304-4238(98)00263-5 CrossRefGoogle Scholar
  14. Colmer TD, Munns R, Flowers TJ (2005) Improving salt tolerance of wheat and barley: future prospects. Aust J Exp Agric 45:1425–1443. doi: 10.1071/EA04162 CrossRefGoogle Scholar
  15. Delfine S, Alvino A, Zacchini M, Loreto F (1998) Consequences of salt stress on conductance to CO2 diffusion, Rubisco characteristics and anatomy of spinach leaves. Aust J Plant Physiol 25:395–402CrossRefGoogle Scholar
  16. Delfine S, Alvino A, Villani MC, Loreto F (1999) Restrictions to carbon dioxide conductance and photosynthesis in spinach leaves recovering from salt stress. Plant Physiol 119:1101–1106PubMedCrossRefGoogle Scholar
  17. Demmig-Adams B, Adams WW, Grace SC (1997) Physiology of light tolerance in plants. Hortic Rev 18:215–246Google Scholar
  18. Díaz-Espejo A, Nicolás E, Fernández JE (2007) Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought. Plant Cell Environ 30:922–933. doi: 10.1111/j.1365-3040.2007.001686.x PubMedCrossRefGoogle Scholar
  19. Dionisio-Sese ML, Tobita S (2000) Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. J Plant Physiol 157:54–58CrossRefGoogle Scholar
  20. Drake BG, González-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol Plant Mol Biol 48:609–639. doi: 10.1146/annurev.arplant.48.1.609 PubMedCrossRefGoogle Scholar
  21. Eamus D, Jarvis PG (1989) The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests. In: Begon M, Fitter AH, Ford ED, MacFadyen A (eds) Advances in ecological research. Academic Press, London, pp 1–55Google Scholar
  22. Egea G, González-Real MM, Baille A, Nortes PA, Díaz-Espejo A (2011) Disentangling the contributions of ontogeny and water stress to photosynthetic limitations in almond trees. Plant Cell Environ 34:962–979. doi: 10.1111/j.1365-3042.2011.02297.x PubMedCrossRefGoogle Scholar
  23. Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar–von Caemmerer–Berry leaf photosynthesis model. Plant Cell Environ 27:137–153. doi: 10.1111/j.1365-3040.2004.01140.x CrossRefGoogle Scholar
  24. Farquhar G, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90. doi: 10.1007/BF00386231 CrossRefGoogle Scholar
  25. Flexas J, Díaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbo M (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30:1284–1298. doi: 10.1111/j.1365-3040.2007.01700.x PubMedCrossRefGoogle Scholar
  26. García-Sánchez F, Syvertsen JP (2006) Salinity tolerance of Cleopatra mandarin and Carrizo citrange citrus rootstock seedlings is affected by CO2 enrichment during growth. J Am Soc Hortic Sci 131:24–31Google Scholar
  27. Geissler N, Hussin S, Koyro HW (2009a) Elevated atmospheric CO2 concentration ameliorates effects of NaCl salinity on photosynthesis and leaf structure of Aster tripolium L. J Exp Bot 60:137–151. doi: 10.1093/jxb/ern271 PubMedCrossRefGoogle Scholar
  28. Geissler N, Hussin S, Koyro HW (2009b) Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environ Exp Bot 65:220–231. doi: 10.1016/j.envexpbot.2008.11.001 CrossRefGoogle Scholar
  29. González-Moro B, Loureiro-Beldarrain I, Estavillo JM, Duñabeitia MK, Muñoz-Rueda A, González- Murua C (2003) Effect of photorespiratory C2 acids on CO2 assimilation, PS2 photochemistry and the xanthophyll cycle in maize. Photosynth Res 78:161–173. doi: 10.1023/B:PRES.0000004349.44736.ab PubMedCrossRefGoogle Scholar
  30. Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 28:834–849. doi: 10.1111/j.1365-3040.2005.01333.x CrossRefGoogle Scholar
  31. Harley PC, Tenhunen JD (1991) Modeling the photosynthetic response of C3 leaves to environmental factors. In: Boote KJ (ed) Modelling crop photosynthesis: from biochemistry to canopy. American Society of Agronomy and Crop Science Society of America, Madison, pp 17–39Google Scholar
  32. Harley PC, Loreto F, Di Marco G, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by the analysis of the response of photosynthesis to CO2. Plant Physiol 98:1429–1436PubMedCrossRefGoogle Scholar
  33. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linde PJ, Xiaosu D (eds) (2001) Intergovernmental Panel on Climate Change. In: Climate change 2001: the scientific basis. Cambridge University Press, CambridgeGoogle Scholar
  34. Hymus GJ, Baker NR, Long SP (2001) Growth in elevated CO2 can both increase and decrease photochemistry and photoinhibition of photosynthesis in a predictable manner. Dactylis glomerata grown in two levels of nitrogen nutrition. Plant Physiol 127:1204–1211. doi: 10.1104/pp.010248 PubMedCrossRefGoogle Scholar
  35. IPCC (2007) Summary of policymakers of the synthesis report of the IPCC fourth assessment report. Accessed 28 Oct 2008
  36. James RA, Munns R, von Caemmerer S, Trejo C, Miller C, Condon T (2006) Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl in salt-affected barley and durum wheat. Plant Cell Environ 29:2185–2197. doi: 10.1111/j.1365-3040.2006.01592.x PubMedCrossRefGoogle Scholar
  37. Kao WY, Tsai TT, Shih CN (2003) Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to NaCl treatments. Photosynthetica 41:415–419. doi: 10.1023/B:PHOT.0000015466.22288.23 CrossRefGoogle Scholar
  38. Körner C, Peláez-Riedl S, van Bel AJE (1995) CO2 responsiveness of plants: a possible link to phloem loading. Plant Cell Environ 18:595–600. doi: 10.1111/j.1365-3040.1995.tb00560.x CrossRefGoogle Scholar
  39. Krall JP, Edwards GE (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant 86:180–187. doi: 10.1111/j.1399-3054.1992.tb01328.x CrossRefGoogle Scholar
  40. Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294. doi: 10.1046/j.0016-8025.2001.00814.x PubMedCrossRefGoogle Scholar
  41. Lawlor DW, Keys AJ (1993) Understanding photosynthetic adaptation to change climate. In: Fowden L, Mansfield T, Stoddart J (eds) Plant adaptation to environment stress. Chapman and Hall, London, pp 85–106Google Scholar
  42. Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103:561–579. doi: 10.1093/aob/mcn244 PubMedCrossRefGoogle Scholar
  43. Li JH, Gale J, Novoplansky A, Barak S, Volokita M (1999) Response of tomato plants to saline water as affected by carbon dioxide supplementation. II. Physiological responses. J Hortic Sci Biotechnol 74:238–242Google Scholar
  44. Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbón dioxide: plant face the future. Annu Rev Plant Biol 55:591–628. doi: 10.1146/annurev.arplant.55.031903.141610 PubMedCrossRefGoogle Scholar
  45. Loreto F, Centritto M, Chartzoulakis K (2003) Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. Plant Cell Environ 26:595–601. doi: 10.1046/j.1365-3040.2003.00994.x CrossRefGoogle Scholar
  46. Mateos-Naranjo E, Redondo-Gómez S, Alvarez R, Cambrollé J, Gandullo J, Figueroa ME (2010) Synergic effect of salinity and CO2 enrichment on growth and photosynthetic responses of the invasive cordgrass Spartina densiflora. J Exp Bot 61:1643–1654. doi: 10.1093/jxb/erq029 PubMedCrossRefGoogle Scholar
  47. Mavrogianopoulos GN, Spanakin J, Tsikalas P (1999) Effect of carbon dioxide enrichment and salinity on photosynthesis and yield in melon. Sci Hortic 79:51–63. doi: 10.1016/S0304-4238(98)00178-2 CrossRefGoogle Scholar
  48. Medrano H, Escalona JM, Bota J, Gulias J, Flexas J (2002) Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot 89:895–905. doi: 10.1093/aob/mcf079 PubMedCrossRefGoogle Scholar
  49. Melgar JC, Syvertsen JP, García-Sánchez F (2008) Can elevated CO2 improve salt tolerance in olive trees? J Plant Physiol 165:631–640. doi: 10.1016/j.jplph.2007.01.015 PubMedCrossRefGoogle Scholar
  50. Miyake C, Yokota A (2000) Determination of the rate of photoreduction of O2 in the water–water cycle in watermelon leaves and enhancement of the rate by limitation of photosynthesis. Plant Cell Physiol 41:335–343. doi: 10.1093/pcp/41.3.335 PubMedGoogle Scholar
  51. Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99:1161–1173. doi: 10.1093/aob/mcm052 PubMedCrossRefGoogle Scholar
  52. Moya JL, Gómez-Cadenas A, Primo-Millo E, Talon M (2003) Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use. J Exp Bot 54:825–833. doi: 10.1093/jxb/erg064 PubMedCrossRefGoogle Scholar
  53. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663. doi: 10.1111/j.1469-8137.2005.01487.x PubMedCrossRefGoogle Scholar
  54. Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043. doi: 10.1093/jxb/erj100 PubMedCrossRefGoogle Scholar
  55. Nakano H, Muramatsu S, Makino A, Mae T (2000) Relationship between the suppression of photosynthesis and starch accumulation in the pod-removed bean. Aust J Plant Physiol 27:167–173Google Scholar
  56. Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811CrossRefGoogle Scholar
  57. Niinemets U, Cescatti A, Rodeghiero M, Tosens T (2006) Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. Plant Cell Environ 298:1159–1178. doi: 10.1111/j.1365-3040.2006.01499.x CrossRefGoogle Scholar
  58. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349. doi: 10.1016/j.ecoenv.2004.06.010 PubMedCrossRefGoogle Scholar
  59. Parida AK, Das AB, Mittra B (2004) Effects of salt on growth, íon accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees-Struct Funct 18:167–174. doi: 10.1007/s00468-003-0293-8 CrossRefGoogle Scholar
  60. Parry MAJ, Andralojc PJ, Khan S, Lea P, Keys AJ (2002) Rubisco activity: effects of drought stress. Ann Bot 89:833–839. doi: 10.1093/aob/mcf103 PubMedCrossRefGoogle Scholar
  61. Pereda LKRR, Mansfield TA, Malloch AJC (1994) Stomatal responses to sodium ions in Aster tripolium: a new hypothesis to explain salinity regulation in above-ground tissues. Plant Cell Environ 17:335–340CrossRefGoogle Scholar
  62. Pérez-López U, Robredo A, Lacuesta M, Mena-Petite A, Muñoz-Rueda A (2008) Does elevated CO2 mitigate the salt effect on photosynthesis in barley cultivars? In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis. Energy from the sun: 14th International Congress on Photosynthesis. Springer, Dordrecht, pp 1529–1533. doi: 10.1007/978-1-4020-6709-9_328 CrossRefGoogle Scholar
  63. Pérez-López U, Robredo A, Lacuesta M, Mena-Petite A, Muñoz-Rueda A (2009a) The impact of salt stress on the water status of barley plants is partially mitigated by elevated CO2. Environ Exp Bot 66:463–470. doi: 10.1016/j.envexpbot.2009.03.007 CrossRefGoogle Scholar
  64. Pérez-López U, Robredo A, Lacuesta M, Sgherri C, Muñoz-Rueda A, Navari-Izzo F, Mena-Petite A (2009b) The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiol Plant 135:29–42. doi: 10.1111/j.1399-3054.2008.01174.x PubMedCrossRefGoogle Scholar
  65. Pérez-López U, Robredo A, Lacuesta M, Muñoz-Rueda A, Mena-Petite A (2010a) Atmospheric CO2 concentration influences the contribution of osmolyte accumulation and cell wall elasticity to salt tolerance in barley cultivars. J Plant Physiol 167:15–22. doi: 10.1016/j.jplph.2009.06.019 PubMedCrossRefGoogle Scholar
  66. Pérez-López U, Robredo A, Lacuesta M, Sgherri C, Mena-Petite A, Navari-Izzo F, Muñoz-Rueda A (2010b) Lipoic acid and redox status in barley plants subjected to salinity and elevated CO2. Physiol Plant 139:256–268. doi: 10.1111/j.1399-3054.2010.01361.x PubMedGoogle Scholar
  67. Plaut Z, Grieve CM, Maas EV (1990) Salinity effects on CO2 assimilation and diffusive conductance of cowpea leaves. Physiol Plant 79:31–38CrossRefGoogle Scholar
  68. Possell M, Hewitt N (2009) Gas exchange and photosynthetic performance of the tropical tree Acacia nigrescens when grown in different CO2 concentrations. Planta 229:837–846. doi: 10.1007/s00425-008-0883-1 PubMedCrossRefGoogle Scholar
  69. Ranjbarfordoei A, Samson R, Van Damme P (2006) Chlorophyll fluorescence performance of sweet almond [Prunus dulcis (Miller) D. Webb] in response to salinity stress induced by NaCl. Photosynthetica 44:513–522. doi: 10.1007/s11099-006-0064-z CrossRefGoogle Scholar
  70. Reddy MP, Sanish S, Iyengar ERR (1992) Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata Roxb. under saline conditions. Photosynthetica 26:173–179Google Scholar
  71. Redondo-Gómez S, Wharmby C, Castillo JM, Mateos-Naranjo E, Luque CJ, de Cires A, Luque T, Davy AJ, Figueroa ME (2006) Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiol Plant 128:116–124. doi: 10.1111/j.1399-3054.2006.00719.x CrossRefGoogle Scholar
  72. Redondo-Gómez S, Mateos-Naranjo E, Davy AJ, Fernández-Muñoz F, Castellanos E, Luque T, Figueroa ME (2007) Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Ann Bot 100:555–563. doi: 10.1093/aob/mcm119 PubMedCrossRefGoogle Scholar
  73. Rivelli AR, James RA, Munns R, Condon AG (2002) Effect of salinity on water relations and growth of wheat genotypes with contrasting sodium uptake. Funct Plant Biol 20:1065–1074CrossRefGoogle Scholar
  74. Robredo A, Pérez-López U, Sainz de la Maza H, González-Moro B, Lacuesta M, Mena-Petite A, Muñoz-Rueda A (2007) Elevated CO2 alleviates the impact of the drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environ Exp Bot 59:252–263. doi: 10.1016/j.envexpbot.2006.01.001 CrossRefGoogle Scholar
  75. Robredo A, Pérez-López U, Lacuesta M, Mena-Petite A, Muñoz-Rueda A (2010) Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations. Biol Plant 54:285–292. doi: 10.1007/s10535-010-0050-y CrossRefGoogle Scholar
  76. Robredo A, Pérez-López U, Miranda-Apodaca J, Lacuesta M, Mena-Petite A, Muñoz-Rueda A (2011) Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery. Environ Exp Bot 71:399–408. doi: 10.1016/j.envexpot.2011.02.011 Google Scholar
  77. Rodríguez P, Torrecillas A, Morales MA, Ortuño MF, Sánchez-Blanco MJ (2005) Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimus plants. Environ Exp Bot 53:113–123. doi: 10.1016/j.envexpbot.2004.03.005 CrossRefGoogle Scholar
  78. Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant-water uptake and plant–water relationships under saline growth conditions. Plant Sci 160:265–272PubMedCrossRefGoogle Scholar
  79. Royo A, Aragües R (1999) Salinity-yield response functions of barley genotypes assessed with a triple line source sprinkler system. Plant Soil 209:9–20. doi: 10.1023/A:1004549927123 CrossRefGoogle Scholar
  80. Sánchez-Díaz M, García JL, Antolín MC, Araus JL (2002) Effects of soil drought and atmospheric humidity on yield, gas exchange, and stable isotope composition of barley. Photosynthetica 40:415–421. doi: 10.1023/A:1022683210334 CrossRefGoogle Scholar
  81. Schindler C, Lichtenthaler HK (1996) Photosynthetic CO2-assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and a cloudy day. J Plant Physiol 148:399–412CrossRefGoogle Scholar
  82. Seemann JR, Critchley C (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt sensitive species, Phaseolus vulgaris L. Planta 164:151–162. doi: 10.1007/BF00396077 CrossRefGoogle Scholar
  83. Seemann JR, Sharkey TD (1986) Salinity and nitrogen effects on photosynthesis, ribulose-1,5-bisphosphate carboxylase and metabolite pool size in Phaseolus vulgaris L. Plant Physiol 82:550–560CrossRefGoogle Scholar
  84. Stepien P, Klobus G (2006) Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol Plant 50:610–616. doi: 10.1007/s10535-006-0096-z CrossRefGoogle Scholar
  85. Takagi M, El-Shemy HA, Sasaki S, Toyama S, Kanai S, Saneoka H, Fujita K (2009) Elevated CO2 concentration alleviates salinity stress in tomato plant. Acta Agric Scand B-S P 59:87–96. doi: 10.1080/09064710801932425 CrossRefGoogle Scholar
  86. Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917. doi: 10.1038/44842 CrossRefGoogle Scholar
  87. Tezara W, Mitchell V, Driscoll SP, Lawlor DW (2002) Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. J Exp Bot 53:1781–1791. doi: 10.1093/jxb/erf021 PubMedCrossRefGoogle Scholar
  88. Tezara W, Martínez D, Rengifo E, Herrera A (2003) Photosynthetic responses of the tropical spiny shrub Lycium nodosum (Solanaceae) to drought, soil salinity and saline spray. Ann Bot 92:757–765. doi: 10.1093/aob/mcg199 PubMedCrossRefGoogle Scholar
  89. Tezara W, Driscoll S, Lawlor DW (2008) Partitioning of photosynthetic electron flow between CO2 assimilation and O2 reduction in sunflower plants under water deficit. Photosynthetica 46:127–134. doi: 10.1007/s11099-008-0020-1 CrossRefGoogle Scholar
  90. Villadsen D, Rung JH, Nielsen TH (2005) Osmotic stress changes carbohydrate partitioning and fructose-2,6-bisphophate metabolism in barley leaves. Funct Plant Biol 32:1033–1043. doi: 10.1071/FP05102 CrossRefGoogle Scholar
  91. von Caemmerer S, Farquhar GD (1981) Some relationships between biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387. doi: 10.1007/BF00384257 CrossRefGoogle Scholar
  92. Warren CR, Dreyer E (2006) Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches. J Exp Bot 57:3057–3067. doi: 10.1093/jxb/erl067 PubMedCrossRefGoogle Scholar
  93. Yin YG, Kobayashi Y, Sanuki A, Kondo S, Fukuda N, Ezura H, Sugaya S, Matsukura C (2010) Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. Micro-Tom) fruits in an ABA- and osmotic stress-independent manner. J Exp Bot 61:563–574. doi: 10.1093/jxb/erp333 PubMedCrossRefGoogle Scholar
  94. Zhou Y, Lau HM, Zhang J (2007) Inhibition of photosynthesis and energy dissipation induced by water and high light in rice. J Exp Bot 58:1207–1217. doi: 10.1093/jxb/erl291 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Usue Pérez-López
    • 1
    Email author
  • Anabel Robredo
    • 1
  • Maite Lacuesta
    • 2
  • Amaia Mena-Petite
    • 1
  • Alberto Muñoz-Rueda
    • 1
  1. 1.Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y TecnologíaUniversidad del País Vasco, UPV/EHUBilbaoSpain
  2. 2.Departamento de Biología Vegetal y Ecología, Facultad de FarmaciaUniversidad del País Vasco, UPV/EHUVitoria-GasteizSpain

Personalised recommendations