Photosynthesis Research

, Volume 110, Issue 3, pp 153–168 | Cite as

Comparison of Chloroflexus aurantiacus strain J-10-fl proteomes of cells grown chemoheterotrophically and photoheterotrophically

  • Li Cao
  • Donald A. Bryant
  • Athena A. Schepmoes
  • Kajetan Vogl
  • Richard D. Smith
  • Mary S. Lipton
  • Stephen J. Callister
Regular Paper


Chloroflexus aurantiacus J-10-fl is a thermophilic green bacterium, a filamentous anoxygenic phototroph, and the model organism of the phylum Chloroflexi. We applied high-throughput, liquid chromatography–mass spectrometry in a global quantitative proteomics investigation of C. aurantiacus cells grown under oxic (chemoorganoheterotrophically) and anoxic (photoorganoheterotrophically) redox states. Our global analysis identified 13,524 high-confidence peptides that matched to 1,286 annotated proteins, 242 of which were either uniquely identified or significantly increased in abundance under photoheterotrophic culture condition. Fifty-four of the 242 proteins are previously characterized photosynthesis-related proteins, including chlorosome proteins, proteins involved in the bacteriochlorophyll biosynthesis, 3-hydroxypropionate (3-OHP) CO2 fixation pathway, and components of electron transport chains. The remaining 188 proteins have not previously been reported. Of these, five proteins were found to be encoded by genes from a novel operon and observed only in photoheterotrophically grown cells. These proteins candidates may prove useful in further deciphering the phototrophic physiology of C. aurantiacus and other filamentous anoxygenic phototrophs.


Chloroflexus aurantiacus J-10-fl Comparative proteomics Photosynthesis Liquid chromatography–mass spectrometry 



Filamentous anoxygenic phototrophic






Alternative complex III


Liquid chromatography–mass spectrometry


High pressure liquid chromatography


Clusters of orthologous groups



The research described in this article was funded by the Genomic Science Program sponsored by the U. S. Department of Energy Office of Biological and Environmental Research (DOE/BER) and performed in the Environmental Molecular Sciences Laboratory, a DOE/BER national scientific user facility located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multi-program national laboratory operated by Battelle for the DOE under Contract DE-ACO5-76RLO 1830. D. A. B. additionally acknowledges support from DOE Office of Basic Energy Sciences (DE-FG02-94ER20137). The authors wish to acknowledge Dr. Yusuke Tsukatani for helpful discussion. Mass spectrometry data used in this study can be requested at

Supplementary material

11120_2011_9711_MOESM1_ESM.doc (1.5 mb)
Supplementary material 1 (DOC 1548 kb)
11120_2011_9711_MOESM2_ESM.xlsx (137 kb)
Supplementary material 2 (XLSX 136 kb)
11120_2011_9711_MOESM3_ESM.xlsx (26 kb)
Supplementary material 3 (XLSX 25 kb)


  1. Adkins JN, Monroe ME, Auberry KJ, Shen YF, Jacobs JM, Camp DG, Vitzthum F, Rodland KD, Zangar RC, Smith RD, Pounds JG (2005) A proteomic study of the HUPO Plasma Proteome Project’s pilot samples using an accurate mass and time tag strategy. Proteomics 5(13):3454–3466. doi: 10.1002/pmic.200401333 PubMedCrossRefGoogle Scholar
  2. Alber BE, Fuchs G (2002) Propionyl-coenzyme A synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J Biol Chem 277(14):12137–12143. doi: 10.1074/jbc.M110802200 PubMedCrossRefGoogle Scholar
  3. Bryant DA, Klatt CG, Frigaard N-U, Liu Z, Li T, Zhao F, Garcia Costas AM, Overmann J, Ward DM (2011) Comparative and functional genomics of anoxygenic green bacteria from the taxa Chlorobi, Chloroflexi, and Acidobacteria. In: Burnap RL, Vermaas W (eds) Advances in photosynthesis and respiration, vol 33. Functional genomics and evolution of photosynthetic systems, vol 33. Springer, Dordrecht, pp 17–102Google Scholar
  4. Callister SJ, Barry RC, Adkins JN, Johnson ET, Qian WJ, Webb-Robertson BJM, Smith RD, Lipton MS (2006a) Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J Proteome Res 5(2):277–286. doi: 10.1021/pr050300l PubMedCrossRefGoogle Scholar
  5. Callister SJ, Dominguez MA, Nicora CD, Zeng XH, Tavano CL, Kaplan S, Donohue TJ, Smith RD, Lipton MS (2006b) Application of the accurate mass and time tag approach to the proteome analysis of sub-cellular fractions obtained from Rhodobacter sphaeroides 2.4.1. Aerobic and photosynthetic cell cultures. J Proteome Res 5(8):1940–1947. doi: 10.1021/pr060050o PubMedCrossRefGoogle Scholar
  6. Callister SJ, Nicora CD, Zeng XH, Roh JH, Dominguez MA, Tavano CL, Monroe ME, Kaplan S, Donohue TJ, Smith RD, Lipton MS (2006c) Comparison of aerobic and photosynthetic Rhodobacter sphaeroides 2.4.1 proteomes. J Microbiol Methods 67(3):424–436. doi: 10.1016/j.mimet.2006.04.021 PubMedCrossRefGoogle Scholar
  7. Chew AGM, Bryant DA (2007) Characterization of a plant-like protochlorophyllide a divinyl reductase in green sulfur bacteria. J Biol Chem 282(5):2967–2975. doi: 10.1074/jbc.M609730200 PubMedCrossRefGoogle Scholar
  8. Chew AGM, Frigaard NU, Bryant DA (2008) Identification of the bchP gene, encoding geranylgeranyl reductase in Chlorobaculum tepidum. J Bacteriol 190(2):747–749. doi: 10.1128/jb.01430-07 CrossRefGoogle Scholar
  9. Dam P, Olman V, Harris K, Su ZC, Xu Y (2007) Operon prediction using both genome-specific and general genomic information. Nucl Acids Res 35(1):288–298. doi: 10.1093/Nar/Gkl1018 PubMedCrossRefGoogle Scholar
  10. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989CrossRefGoogle Scholar
  11. Feick RG, Fuller RC (1984) Topography of the photosynthetic apparatus of Chloroflexus aurantiacus. Biochemistry 23(16):3693–3700CrossRefGoogle Scholar
  12. Foidl M, Golecki JR, Oelze J (1998) Chlorosome development in Chloroflexus aurantiacus. Photosynth Res 55(1):109–114. doi: 10.1023/a:1005901318614 CrossRefGoogle Scholar
  13. Foster JM, Redlinger TE, Blankenship RE, Fuller RC (1986) Oxygen regulation of development of the photosynthetic membrane system in Chloroflexus aurantiacus. J Bacteriol 167(2):655–659PubMedGoogle Scholar
  14. Friedmann S, Steindorf A, Alber BE, Fuchs G (2006) Properties of succinyl-coenzyme A: l-Malate coenzyme A transferase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus. J Bacteriol 188(7):2646–2655. doi: 10.1128/jb.188.7.2646-2655.2006 PubMedCrossRefGoogle Scholar
  15. Frigaard NU, Bryant D (2004) Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol 182(4):265–276. doi: 10.1007/s00203-004-0718-9 PubMedCrossRefGoogle Scholar
  16. Frigaard NU, Vassilieva EV, Li H, Milks KJ, Zhao J, Bryant D (2002) The remarkable chlorosome. Paper presented at the PS2001 Proceedings. Proceedings of the 12th international congress on photosynthesis, Brisbane, AustraliaGoogle Scholar
  17. Frigaard NU, Maresca JA, Yunker CE, Jones AD, Bryant DA (2004) Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 186(16):5210–5220. doi: 10.1128/jb.186.16.5210-5220.2004 PubMedCrossRefGoogle Scholar
  18. Frigaard NU, Chew AGM, Maresca JA, Bryant D (2006) Bacteriochlorophyll biosynthesis in green bacteria. In: Grimm B, Porra RJ, Rudiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Berlin, pp 201–221Google Scholar
  19. Hanada S, Pierson B (2006) The Family Chloroflexaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 815–842. doi: 10.1007/0-387-30747-8_33 CrossRefGoogle Scholar
  20. Hanada S, Takaichi S, Matsuura K, Nakamura K (2002) Roseiflexus castenholzii gen. nov., sp nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193PubMedCrossRefGoogle Scholar
  21. Hugler M, Menendez C, Schagger H, Fuchs G (2002) Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J Bacteriol 184(9):2404–2410. doi: 10.1128/jb.184.9.2404-2410.2002 PubMedCrossRefGoogle Scholar
  22. Jaitly N, Mayampurath A, Littlefield K, Adkins JN, Anderson GA, Smith RD (2009) Decon2LS: An open-source software package for automated processing and visualization of high resolution mass spectrometry data. BMC Bioinf 10. doi: 10.1186/1471-2105-10-87
  23. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucl Acids Res 28(1):27–30PubMedCrossRefGoogle Scholar
  24. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucl Acids Res 34:D354–D357. doi: 10.1093/Nar/Gkj102 PubMedCrossRefGoogle Scholar
  25. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucl Acids Res 38:D355–D360. doi: 10.1093/Nar/Gkp896 PubMedCrossRefGoogle Scholar
  26. Kelly RT, Page JS, Luo QZ, Moore RJ, Orton DJ, Tang KQ, Smith RD (2006) Chemically etched open tubular and monolithic emitters for nanoelectrospray ionization mass spectrometry. Anal Chem 78(22):7796–7801. doi: 10.1021/ac061133r PubMedCrossRefGoogle Scholar
  27. Klatt CG, Bryant DA, Ward DM (2007) Comparative genomics provides evidence for the 3-hydroxypropionate autotrophic pathway in filamentous anoxygenic phototrophic bacteria and in hot spring microbial mats. Env Microbiol 9(8):2067–2078. doi: 10.1111/j.1462-2920.2007.01323.x CrossRefGoogle Scholar
  28. Klatt CG, Wood JM, Rusch DB, Bateson MM, Heidelberg JF, Bryant DA, Ward DW (2011) Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME J (in press)Google Scholar
  29. Lee M, del Rosario MC, Harris HH, Blankenship RE, Guss JM, Freeman HC (2009) The crystal structure of auracyanin A at 1.85 Å resolution: the structures and functions of auracyanins A and B, two almost identical “blue” copper proteins, in the photosynthetic bacterium Chloroflexus aurantiacus. J Biol Inorg Chem 14(3):329–345. doi: 10.1007/s00775-009-0473-0 PubMedCrossRefGoogle Scholar
  30. Li SJ, Cronan JE (1992) The genes encoding the 2 carboxsyltransferase subunits of Eschierichia coli acetyl-CoA carboxylase. J Biol Chem 267(24):16841–16847PubMedGoogle Scholar
  31. Lipton MS, Pasa-Tolic L, Anderson GA, Anderson DJ, Auberry DL, Battista KR, Daly MJ, Fredrickson J, Hixson KK, Kostandarithes H, Masselon C, Markillie LM, Moore RJ, Romine MF, Shen YF, Stritmatter E, Tolic N, Udseth HR, Venkateswaran A, Wong LK, Zhao R, Smith RD (2002) Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc Natl Acad Sci USA 99(17):11049–11054. doi: 10.1073/pnas.172170199 PubMedCrossRefGoogle Scholar
  32. Lopez JC, Ryan S, Blankenship RE (1996) Sequence of the bchG gene from Chloroflexus aurantiacus: Relationship between chlorophyll synthase and other polyprenyltransferases. J Bacteriol 178(11):3369–3373PubMedGoogle Scholar
  33. Marini P, Li SJ, Gardiol D, Cronan JE, Demendoza D (1995) The genes encoding the biotin carboxyl carrier protein and biotin carboxylase subunits of Bacillus subtilis acetyl coenzyme A carboxylase, the first enzyme of fatty acid synthesis. J Bacteriol 177(23):7003–7006PubMedGoogle Scholar
  34. McManus JD, Brune DC, Han J, Sandersloehr J, Meyer TE, Cusanovich MA, Tollin G, Blankenship RE (1992) Isolation, characterization, and amino-acid sequences of Auracyanins, blue copper proteins from the green photosynthetic bacterium Chloroflexus aurantiacus. J Biol Chem 267(10):6531–6540PubMedGoogle Scholar
  35. Meissner J, Krauss JH, Jurgens UJ, Weckesser J (1988) Absence of a characteristic cell-wall lipopolysaccharide in the phototrophic bacterium Chloroflexus aurantiacus. J Bacteriol 170(7):3213–3216PubMedGoogle Scholar
  36. Monroe ME, Tolic N, Jaitly N, Shaw JL, Adkins JN, Smith RD (2007) VIPER: an advanced software package to support high-throughput LC-MS peptide identification. Bioinformatics 23(15):2021–2023. doi: 10.1093/bioinformatics/btm281 PubMedCrossRefGoogle Scholar
  37. Oelze J (1992) Light and oxygen regulation of the synthesis of bacteriochlorophylls-a and bacteriochlorophylls-c in Chloroflexus aurantiacus. J Bacteriol 174(15):5021–5026PubMedGoogle Scholar
  38. Pierson BK (2001) Chloroflexaceae. In: Bergey’s Manual of Systematic Bacteriology, vol 1. 2nd Ed. edn. Springer, Berlin, pp 427-437Google Scholar
  39. Pierson BK, Castenholz RW (1974) Phototropic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100(1):5–24PubMedCrossRefGoogle Scholar
  40. Polpitiya AD, Qian WJ, Jaitly N, Petyuk VA, Adkins JN, Camp DG, Anderson GA, Smith RD (2008) DAnTE: a statistical tool for quantitative analysis of -omics data. Bioinformatics 24(13):1556–1558. doi: 10.1093/bioinformatics/btn217 PubMedCrossRefGoogle Scholar
  41. Price MN, Huang KH, Alm EJ, Arkin AP (2005) A novel method for accurate operon predictions in all sequenced prokaryotes. Nucl Acids Res 33(3):880–892. doi: 10.1093/Nar/Gki232 PubMedCrossRefGoogle Scholar
  42. Qian WJ, Liu T, Monroe ME, Strittmatter EF, Jacobs JM, Kangas LJ, Petritis K, Camp DG, Smith RD (2005) Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: The human proteome. J Proteome Res 4(1):53–62. doi: 10.1021/pr0498638 PubMedCrossRefGoogle Scholar
  43. Sawicki A, Willows RD (2010) BchJ and BchM interact in a 1:1 ratio with the magnesium chelatase BchH subunit of Rhodobacter capsulatus. FEBS J 277(22):4709–4721. doi: 10.1111/j.1742-4658.2010.07877.x PubMedCrossRefGoogle Scholar
  44. Shiozawa JA, Lottspeich F, Feick R (1987) The photochemical-reaction center of Chloroflexus aurantiacus is composed of 2 structurally similar polypeptides. Eur J Biochem 167(3):595–600PubMedCrossRefGoogle Scholar
  45. Shiozawa JA, Lottspeich F, Oesterhelt D, Feick R (1989) The primary structure of the Chloroflexus aurantiacus reaction-center polypeptides. Eur J Biochem 180(1):75–84PubMedCrossRefGoogle Scholar
  46. Smith RD, Anderson GA, Lipton MS, Pasa-Tolic L, Shen YF, Conrads TP, Veenstra TD, Udseth HR (2002) An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics 2(5):513–523PubMedCrossRefGoogle Scholar
  47. Sutcliffe IC (2011) Cell envelope architecture in the Chloroflexi: a shifting frontline in a phylogenetic turf war. Env Microbiol 13(2):279–282. doi: 10.1111/j.1462-2920.2010.02339.x CrossRefGoogle Scholar
  48. Tang KH, Barry K, Chertkov O, Dalin E, Han CS, Hauser LJ, Honchak BM, Karbach LE, Land ML, Lapidus A, Larimer FW, Mikhailova N, Pitluck S, Pierson BK, Blankenship RE (2011) Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. Bmc Genomics 12Google Scholar
  49. Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278(5338):631–637PubMedCrossRefGoogle Scholar
  50. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. Bmc Bioinformatics 4:41.Google Scholar
  51. Vassilieva EV, Stirewalt VL, Jakobs CU, Frigaard NU, Inoue-Sakamoto K, Baker MA, Sotak A, Bryant DA (2002) Subcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsrnH, and CsmX. Biochemistry 41(13):4358–4370. doi: 10.1021/bi012051u PubMedCrossRefGoogle Scholar
  52. VerBerkmoes NC, Lankford P, Strader MB, Tabb DL, Hauser L, Pelletier D, Hurst GB, Tabita RF, Hettich RL, Larimer FW (2004) Baseline proteome analysis of the anoxygenic phototrophic bacterium Rhodopseudomonas palustris under all major metabolic states. Protein Sci 13:126Google Scholar
  53. Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19(3):242–247PubMedCrossRefGoogle Scholar
  54. Wechsler T, Brunisholz R, Suter F, Fuller RC, Zuber H (1985a) The complete amino-acid sequence of a bacteriochlorophyll α-binding polypeptide isolated from the cytoplasmic membrane of the green photosynthetic bacterium Chloroflexus aurantiacus. FEBS Lett 191(1):34–38CrossRefGoogle Scholar
  55. Wechsler T, Suter F, Fuller RC, Zuber H (1985b) The complete amino-acid sequence of the bacteriochlorophyll-C binding polypeptide from chlorosome of the green photosynthetic bacterium Chloroflexus aurantiacus. FEBS Lett 181(1):173–178CrossRefGoogle Scholar
  56. Wechsler TD, Brunisholz RA, Frank G, Suter F, Zuber H (1987) The complete amino-acid-sequence of the antenna polypeptide B806–866-β from the cytoplasmic membrane of the green bacterium Chloroflexus aurantiacus. FEBS Lett 210(2):189–194CrossRefGoogle Scholar
  57. Xin Y, Lu YK, Fromme R, Fromme P, Blankenship RE (2009) Purification, characterization and crystallization of menaquinol:fumarate oxidoreductase from the green filamentous photosynthetic bacterium Chloroflexus aurantiacus. Biochimica Et Biophysica Acta-Bioenergetics 1787(2):86–96. doi: 10.1016/j.bbabio.2008.11.010 CrossRefGoogle Scholar
  58. Yanyushin MF, del Rosario MC, Bruno DC, Blankenship RE (2005) New class of bacterial membrane oxidoreductases. Biochemistry 44(30):10037–10045. doi: 10.1021/bi047267l PubMedCrossRefGoogle Scholar
  59. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FSL (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26(13):1608–1615. doi: 10.1093/bioinformatics/btq249 PubMedCrossRefGoogle Scholar
  60. Zarzycki J, Schlichting A, Strychalsky N, Muller M, Alber BE, Fuchs G (2008) Mesaconyl-coenzyme A hydratase, a new enzyme of two central carbon metabolic pathways in bacteria. J Bacteriol 190(4):1366–1374. doi: 10.1128/jb.01621-07 PubMedCrossRefGoogle Scholar
  61. Zarzycki J, Brecht V, Muller M, Fuchs G (2009) Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proc Natl Acad Sci USA 106(50):21317–21322. doi: 10.1073/pnas.0908356106 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Li Cao
    • 1
  • Donald A. Bryant
    • 2
  • Athena A. Schepmoes
    • 1
  • Kajetan Vogl
    • 2
  • Richard D. Smith
    • 1
  • Mary S. Lipton
    • 1
  • Stephen J. Callister
    • 1
  1. 1.Biological Separations and Mass SpectrometryPacific Northwest National LaboratoryRichlandUSA
  2. 2.Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations