Photosynthesis Research

, Volume 107, Issue 3, pp 257–268 | Cite as

An alphaproteobacterium capable of both aerobic and anaerobic anoxygenic photosynthesis but incapable of photoautotrophy: Charonomicrobium ambiphototrophicum, gen. nov., sp. nov.

  • J. T. Csotonyi
  • E. Stackebrandt
  • J. Swiderski
  • P. Schumann
  • V. YurkovEmail author
Regular Paper


A facultatively aerobic deep brown coccoid to ovoid bacterium, strain EG17T, was isolated from a saline effluent stream in the NaCl-dominated brine spring system known as East German Creek in the province of Manitoba, Canada. The strain produced BChl a incorporated into a functional reaction center and two light-harvesting complexes with absorption peaks at 802, 850, and 879 nm. EG17T is the first reported anoxygenic phototroph capable of photoheterotrophic growth under both oxic and anoxic conditions. It yielded proportionally the greatest aerobic photosynthetic biomass under oligotrophic conditions. The results of 16S rRNA gene sequence comparisons revealed that EG17T was related most closely to the aerobic anoxygenic phototrophs Roseibacterium elongatum (98.3%) and quite distantly to both Dinoroseobacter shibae (95.2%) and Roseicyclus mahoneyensis (94.7%). The DNA G + C content was 65.6 mol%. On the basis of the unique dual aerobic/anaerobic photosynthetic capability, the distinctive spectrophotometric absorption of the photosynthetic apparatus, diagnostic physiological and biochemical traits, and the moderate phylogenetic separation between EG17T and its nearest relatives, it is concluded that this microorganism should be classified as a novel genus and species, Charonomicrobium ambiphototrophicum gen. nov., sp. nov., with EG17T as the type strain.


Charonomicrobium ambiphototrophicum AAP Aerobic anoxygenic phototorphs Anoxygenic photosynthesis Purple nonsulfur bacteria Photoautotrophy Bacteriochlorophyll a 



This research was supported by a grant from the Natural Science and Engineering Research Council (NSERC, Canada) to V. Yurkov.


  1. Bauer CE, Setterdahl A, Wu J, Robinson BR (2009) Regulation of gene expression in response to oxygen tension. In: Hunter N, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer Science + Business Media B. V, New York, pp 707–725CrossRefGoogle Scholar
  2. Beatty JT (2002) On the natural selection and evolution of the aerobic phototrophic bacteria. Photosynth Res 73:109–114PubMedCrossRefGoogle Scholar
  3. Bhargava P, Mishra Y, Srivastava AK, Narayan OP, Rai LC (2008) Excess copper induces anoxygenic photosynthesis in Anabaena doliolum: a homology based proteomic assessment of its survival strategy. Photosynth Res 96:61–74PubMedCrossRefGoogle Scholar
  4. Biebl H, Wagner-Döbler I (2006) Growth and bacteriochlorophyll a formation in taxonomically diverse aerobic anoxygenic phototrophic bacteria in chemostat culture: influence of light regimen and starvation. Proc Biochem 41:2153–2159CrossRefGoogle Scholar
  5. Biebl H, Allgaier M, Tindall BJ, Koblížek M, Lünsdorf H, Pukall R, Wagner-Döbler I (2005) Dinoroseobacter shibae gen nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 55:1089–1096PubMedCrossRefGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  7. Csotonyi JT, Swiderski J, Stackebrandt E, Yurkov V (2008) Novel halophilic aerobic anoxygenic phototrophs from a Canadian hypersaline spring system. Extremophiles 12:529–539PubMedCrossRefGoogle Scholar
  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 30:783–791CrossRefGoogle Scholar
  9. Felsenstein J (1993) PHYLIP (phylogenetic inference package) version 3.5.1. Department of Genetics. University of Washington, SeattleGoogle Scholar
  10. Fuchs BM, Spring S, Teeling H, Quast C, Wulf J, Schattenhofer M, Yan S, Ferriera S, Johnson J, Glöckner FO, Amann R (2007) Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc Natl Acad Sci USA 104:2891–2896PubMedCrossRefGoogle Scholar
  11. Gosink JJ, Herwig RP, Staley JT (1997) Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus, sp. nov., nonpigmented, psychrophilic gas vacuolated bacteria from polar sea ice and water. Syst Appl Microbiol 20:356–365Google Scholar
  12. Grasby SE (2000) Saline spring geochemistry, west-central Manitoba. In: Report of activities 2000. Manitoba Industry, Trade and Mines, Manitoba Geological Survey, Winnipeg, pp 214–216Google Scholar
  13. Jiao N, Zhang R, Zheng Q (2010) Coexistence of two different photosynthetic operons in Citromicrobium bathyomarinum JL354 as revealed by whole-genome sequencing. J Bacteriol 192:1169–1170PubMedCrossRefGoogle Scholar
  14. Juty NS, Moshiri F, Merrick M, Anthony C, Hill S (1997) The Klebsiella pneumoniae cytochrome bd’ terminal oxidase complex and its role in microaerobic nitrogen fixation. Microbiology 143:2673–2683PubMedCrossRefGoogle Scholar
  15. Madigan MT (2006) The family Heliobacteriaceae. In: Dworkin M, Falkow S (eds) The prokaryotes, vol 4. Springer, Berlin, pp 951–964CrossRefGoogle Scholar
  16. Maidak BL, Cole JR, Parker CT Jr, Garrity GM, Larsen N, Li B, Lilburn TG, McCaughey MJ, Olsen GJ, Overbeek R, Pramanik S, Schmidt TM, Tiedje JM, Woese CR (1999) A new version of the RDP (ribosomal database project). Nucleic Acids Res 27:171–173PubMedCrossRefGoogle Scholar
  17. Masuda S, Berleman J, Hasselbring BM, Bauer CE (2008) Regulation of aerobic photosystem synthesis in the purple bacterium Rhodospirillum centenum by CrtJ and AerR. Photochem Photobiol Sci 7:1267–1272PubMedCrossRefGoogle Scholar
  18. McKillop WB, Patterson RT, Delorme LD, Nogrady T (1992) The origin, physico-chemistry and biotics of sodium chloride dominated saline waters on the western shore of Lake Winnipegosis, Manitoba. Can Field-Nat 106:454–473Google Scholar
  19. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  20. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E (1996) The genus Nocardiopus represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092PubMedCrossRefGoogle Scholar
  21. Rathgeber C, Beatty JT, Yurkov V (2004) Aerobic phototrophic bacteria: new evidence for the diversity, ecological importance and applied potential of this previously overlooked group. Photosynth Res 81:113–128CrossRefGoogle Scholar
  22. Rathgeber C, Yurkova N, Stackebrandt E, Schumann P, Beatty JT, Yurkov V (2005) Roseicyclus mahoneyensis gen nov., sp. nov., an aerobic phototrophic bacterium isolated from a meromictic lake. Int J Syst Evol Microbiol 55:1597–1603PubMedCrossRefGoogle Scholar
  23. Rathgeber C, Yurkova N, Stackebrandt E, Schumann P, Humphrey E, Beatty JT, Yurkov V (2007) Porphyrobacter meromictius sp. nov., an appendaged bacterium, that produces bacteriochlorophyll a. Cur Microbiol 55:356–361CrossRefGoogle Scholar
  24. Shioi Y, Doi M (1988) Control of bacteriochlorophyll accumulation by light in an aerobic photosynthetic bacterium, Erythrobacter sp. OCh 114. Arch Biochem Biophys 266:470–477PubMedCrossRefGoogle Scholar
  25. Shneour EA (1962) Carotenoid pigment conversion in Rhodopseudomonas spheroides. Biochim et Biophys Acta 62:534–540CrossRefGoogle Scholar
  26. Sorokin DY, Tourova TP, Kuznetsov BB, Bryantseva IA, Gorlenko VM (2000) Roseinatronobacter thiooxidans gen. nov., sp. nov., a new alkaliphilic aerobic bacteriochlorophyll a-containing bacterium isolated from a soda lake. Mikrobiologiya 69:75–82Google Scholar
  27. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kämpfor P, Maiden MCJ, Nesme X, Roselló-Mora R, Swings J, Trüper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047PubMedCrossRefGoogle Scholar
  28. Stadtwald-Demchick R, Turner RF, Gest H (1990) Rhodopseudomonas cryptolactis, sp. nov., a new thermotolerant species of budding phototrophic purple bacteria. FEMS Microbiol Lett 71:117–122CrossRefGoogle Scholar
  29. Suyama T, Shigematsu T, Suzuki T, Tokiwa Y, Kanagawa T, Nagashima KVP, Hanada S (2002) Photosynthetic apparatus in Roseateles depolymerans 61A is transcriptionally induced by carbon limitation. Appl Environ Microbiol 68:1665–1673PubMedCrossRefGoogle Scholar
  30. Suzuki T, Mori Y, Nishimura Y (2006) Roseibacterium elongatum gen. nov., sp. nov., an aerobic, bacteriochlorophyll-containing bacterium isolated from the west coast of Australia. Int J Syst Evol Microbiol 56:417–421PubMedCrossRefGoogle Scholar
  31. Swingley WD, Sadekar S, Mastrian SD, Matthies HJ, Hao J, Ramos H, Acharya CR, Conrad AL, Taylor HL, Dejesa LC, Shah MK, O’Huallachain ME, Lince MT, Blankenship RE, Beatty JT, Touchman JW (2007) The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic as opposed to photosynthetic metabolism. J Bacteriol 189:683–690PubMedCrossRefGoogle Scholar
  32. van Dorssen RJ, Hunter CN, van Grondelle R, Korenhof AH, Amesz J (1987) Spectroscopic properties of antenna complexes of Rhodobacter sphaeroides in vivo. Biochim et Biophys Acta 932:179–188Google Scholar
  33. Winstedt L, Yoshida K, Fujita Y, Wachenfeldt C (1998) Cytochrome bd biosynthesis in Bacillus subtilis: characterization of the cydABCD operon. J Bacteriol 180:6571–6580PubMedGoogle Scholar
  34. Yildiz FH, Gest H, Bauer CE (1991) Attenuated effect of oxygen on photopigment synthesis in Rhodospirillum centenum. J Bacteriol 173:5502–5506PubMedGoogle Scholar
  35. Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724PubMedGoogle Scholar
  36. Yurkov VV, Csotonyi JT (2003) Aerobic anoxygenic phototrophs and heavy metalloid reducers from extreme environments. In: Pandalai SG (ed) Recent research developments in bacteriology, vol 1. Transworld Research Network, Trivandrum, pp 247–300Google Scholar
  37. Yurkov V, Csotonyi JT (2009) New light on aerobic anoxygenic phototrophs. In: Hunter N, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer Science + Business Media B.V, New York, pp 31–55CrossRefGoogle Scholar
  38. Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P, Golecki J, Gad’on N, Gorlenko VM, Kompantseva EI, Drews G (1994) Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44:427–434PubMedCrossRefGoogle Scholar
  39. Yurkova N, Rathgeber C, Swiderski J, Stackebrandt E, Beatty JT, Hall KJ, Yurkov V (2002) Diversity, distribution and physiology of the aerobic phototrophic bacteria in the mixolimnion of a meromictic lake. FEMS Microbiol Ecol 40:191–204PubMedCrossRefGoogle Scholar
  40. Züllig H (1986) Carotenoids from plankton and photosynthetic bacteria in sediments as indicators of trophic changes in Lake Lobsigen during the last 14000 years. Hydrobiologia 143:315–319CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • J. T. Csotonyi
    • 1
  • E. Stackebrandt
    • 2
  • J. Swiderski
    • 2
  • P. Schumann
    • 2
  • V. Yurkov
    • 1
    Email author
  1. 1.Department of MicrobiologyUniversity of ManitobaWinnipegCanada
  2. 2.DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHBraunschweigGermany

Personalised recommendations