Photosynthesis Research

, Volume 109, Issue 1–3, pp 223–229 | Cite as

High-throughput pyrosequencing of the chloroplast genome of a highly neutral-lipid-producing marine pennate diatom, Fistulifera sp. strain JPCC DA0580

  • Tsuyoshi TanakaEmail author
  • Yorikane Fukuda
  • Tomoko Yoshino
  • Yoshiaki Maeda
  • Masaki Muto
  • Mitsufumi Matsumoto
  • Shigeki Mayama
  • Tadashi Matsunaga
Regular Paper


The chloroplast genome of the highly neutral-lipid-producing marine pennate diatom Fistulifera sp. strain JPCC DA0580 was fully sequenced using high-throughput pyrosequencing. The general features and gene content were compared with three other complete diatom chloroplast genomes. The chloroplast genome is 134,918 bp with an inverted repeat of 13,330 bp and is slightly larger than the other diatom chloroplast genomes due to several low gene-density regions lacking similarity to the other diatom chloroplast genomes. Protein-coding genes were nearly identical to those from Phaeodactylum tricornutum. On the other hand, we found unique sequence variations in genes of photosystem II which differ from the consensus in other diatom chloroplasts. Furthermore, five functional unknown ORFs and a putative serine recombinase gene, serC2, are located in the low gene-density regions. SerC2 was also identified in the plasmids of another pennate diatom, Cylindrotheca fusiformis, and in the plastid genome of the diatom endosymbiont of Kryptoperidinium foliaceum. Exogenous plasmids might have been incorporated into the chloroplast genome of Fistulifera sp. by lateral gene transfer. Chloroplast genome sequencing analysis of this novel diatom provides many important insights into diatom evolution.


Diatom Chloroplast genome Next-generation DNA sequencing Lateral gene transfer Endosymbiosis 



This work was supported by JST, CREST.

Supplementary material

11120_2011_9622_MOESM1_ESM.xlsx (17 kb)
Supplementary Table S-1 Comparative analysis of basal gene expression apparatus in the chloroplast among Fistulifera sp. JPCC DA0580 and other chromalveolates (XLSX 16 kb)
11120_2011_9622_MOESM2_ESM.xlsx (18 kb)
Supplementary Table S-2 Comparative analysis of basal photosynthetic apparatus in the chloroplast among Fistulifera sp. JPCC DA0580 and other chromalveolates (XLSX 18 kb)
11120_2011_9622_MOESM3_ESM.xlsx (16 kb)
Supplementary Table S-3 Photosynthetic component including distinctive divergence of Fistulifera sp. JPCC DA0580 among plastids derived from diatoms (XLSX 16 kb)


  1. Ansorge WJ (2009) Next-generation DNA sequencing techniques. New Biotechnol 25(4):195–203CrossRefGoogle Scholar
  2. Argueso JL et al (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19(12):2258–2270PubMedCrossRefGoogle Scholar
  3. Armbrust EV et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306(5693):79–86PubMedCrossRefGoogle Scholar
  4. Bowler C et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456(7219):239–244PubMedCrossRefGoogle Scholar
  5. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) Blast+: architecture and applications. BMC Bioinformatics 10:421PubMedCrossRefGoogle Scholar
  6. Conant GC, Wolfe KH (2008) GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics 24(6):861–862PubMedCrossRefGoogle Scholar
  7. Courchesne NMD, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141(1–2):31–41PubMedCrossRefGoogle Scholar
  8. De La Rocha CL, Brzezinski MA, DeNiro MJ, Shemesh A (1998) Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395(6703):680–683CrossRefGoogle Scholar
  9. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 26–60Google Scholar
  10. Hert DG, Fredlake CP, Barron AE (2008) Advantages and limitations of next-generation sequencing technologies: a comparison of electrophoresis and non-electrophoresis methods. Electrophoresis 29(23):4618–4626PubMedCrossRefGoogle Scholar
  11. Hildebrand M, Hasegawa P, Ord RW, Thorpe VS, Glass CA, Volcani BE (1992) Nucleotide sequence of diatom plasmids: Identification of open reading frames with similarity to site-specific recombinases. Plant Mol Biol 19(5):759–770PubMedCrossRefGoogle Scholar
  12. Hongoh Y, Sharma VK, Prakash T, Noda S, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M (2008) Complete genome of the uncultured termite group 1 bacteria in a single host protist cell. Proc Natl Acad Sci USA 105(14):5555–5560PubMedCrossRefGoogle Scholar
  13. Imanian B, Pombert JF, Keeling PJ (2010) The complete plastid genomes of the two ‘dinotoms’ Durinskia baltica and Kryptoperidinium foliaceum. PLoS One 5(5):e10711PubMedCrossRefGoogle Scholar
  14. Kowallik KV, Stoebe B, Schaffran I, Kroth-Pancic P, Freier U (1995) The chloroplast genome of a chlorophyll a + c-containing alga, Odontella sinensis. Plant Mol Biol Rep 13(4):336–342CrossRefGoogle Scholar
  15. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964PubMedCrossRefGoogle Scholar
  16. Luo H, Eaton-Rye JJ (2008) Directed mutagenesis of the transmembrane domain of the PsbL subunit of photosystem II in Synechocystis sp. PCC 6803. Photosynth Res 98(1–3):337–347PubMedCrossRefGoogle Scholar
  17. Matsumoto M, Sugiyama H, Maeda Y, Sato R, Tanaka T, Matsunaga T (2010) Marine diatom, Navicula sp. strain JPCC DA0580 and marine green alga, Chlorella sp. strain NKG400014 as potential sources for biodiesel production. Appl Biochem Biotechnol 161:483–490PubMedCrossRefGoogle Scholar
  18. Oudot-Le Secq MP, Grimwood J, Shapiro H, Armbrust EV, Bowler C, Green BR (2007) Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage. Mol Genet Genomics 277(4):427–439PubMedCrossRefGoogle Scholar
  19. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112PubMedCrossRefGoogle Scholar
  20. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16(10):944–945PubMedCrossRefGoogle Scholar
  21. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1(1):20–43CrossRefGoogle Scholar
  22. Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5(1):16–18PubMedCrossRefGoogle Scholar
  23. Tangphatsornruang S, Sangsrakru D, Chanprasert J, Uthaipaisanwong P, Yoocha T, Jomchai N, Tragoonrung S (2010) The chloroplast genome sequence of mungbean (Vigna radiata) determined by high-throughput pyrosequencing: structural organization and phylogenetic relationships. DNA Res 17(1):11–22PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Tsuyoshi Tanaka
    • 1
    • 5
    Email author
  • Yorikane Fukuda
    • 2
  • Tomoko Yoshino
    • 1
  • Yoshiaki Maeda
    • 1
  • Masaki Muto
    • 2
  • Mitsufumi Matsumoto
    • 3
  • Shigeki Mayama
    • 4
  • Tadashi Matsunaga
    • 1
  1. 1.Department of Biotechnology, Faculty of EngineeringTokyo University of Agriculture & TechnologyTokyoJapan
  2. 2.The Graduate School of Bio-Applications and Systems EngineeringTokyo University of Agriculture & TechnologyTokyoJapan
  3. 3.Biotechnology Laboratory, Electric Power Development Co., LtdWakamatsu-ku, KitakyusyuJapan
  4. 4.Department of BiologyTokyo Gakugei UniversityTokyoJapan
  5. 5.JST, CRESTTokyoJapan

Personalised recommendations