Advertisement

Photosynthesis Research

, Volume 106, Issue 1–2, pp 89–102 | Cite as

Carotenoid biosynthesis in diatoms

  • Martine BertrandEmail author
Review

Abstract

Diatoms are ubiquitous and constitute an important group of the phytoplankton community having a major contribution to the total marine primary production. These microalgae exhibit a characteristic golden-brown colour due to a high amount of the xanthophyll fucoxanthin that plays a major role in the light-harvesting complex of photosystems. In the water column, diatoms are exposed to light intensities that vary quickly from lower to higher values. Xanthophyll cycles prevent photodestruction of the cells in excessive light intensities. In diatoms, the diadinoxanthin–diatoxanthin cycle is the most important short-term photoprotective mechanism. If the biosynthetic pathways of chloroplast pigments have been extensively studied in higher plants and green algae, the research on carotenoid biosynthesis in diatoms is still in its infancy. In this study, the data on the biosynthetic pathway of diatom carotenoids are reviewed. The early steps occur through the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Then a hypothetical pathway is suggested from dimethylallyl diphosphate (DMAPP) and isopentenyl pyrophosphate (IPP). Most of the enzymes of the pathway have not been so far isolated from diatoms, but candidate genes for each of them were identified using protein similarity searches of genomic data.

Keywords

Carotenoids Diadinoxanthin Diatoms Diatoxanthin MEP pathway Xanthophylls 

Abbreviations

Car

Carotenoid

CDMDE

4-(Cytidine 5′-diphospho)-2-C-methyl-d-erythritol

CEC

2-C-methyl-d-erythritol 2,4-cyclodiphosphate

Chl

Chlorophyll

CHYB

Nonheme β-carotene hydroxylase

CMK

4-(Cytidine 5′-diphospho)-2-C-methyl-d-erythritol kinase

CMS

4-Diphosphocytidyl-2-C-methyl-d-erythritol synthase

CRTISO

Carotenoid isomerase

CytP450

Cytochrome P450

DDE

Diadinoxanthin de-epoxidase

Ddx

Diadinoxanthin

DEP

Diatoxanthin epoxidase

DMAPP

Dimethylallyl diphosphate

DME

4-Diphosphocytidyl-2-C-methyl-d-erythritol 2-phosphate

DOXP

1-Deoxy-d-xylulose 5-phosphate

Dtx

Diatoxanthin

DXR

1-Deoxy-d-xylulose 5-phosphate reductoisomerase

DXS

1-Deoxy-d-xylulose 5-phosphate synthase

FCP

Fucoxanthin–chlorophyll complex

GGPP

Geranylgeranyl pyrophosphate

GGPPS

Geranylgeranyl pyrophosphate synthase

HD

(E)-4-hydroxy-3-methylbut-2-enyl diphosphate

HDS

(E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase

HDR

(E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase

HMED

4-Hydroxy-3-methylbut-2-enyl diphosphate

IDI

Isopentenyl diphosphate:dimethylallyl diphosphate isomerase

IPP

Isopentenyl pyrophosphate

LCYB

Lycopene β-cyclase

LCYE

Lycopene ε-cyclase

LHC

Light-harvesting complex

LTL

ε-Ring hydroxylase-like gene

LUT1

ε-Ring hydroxylase

MCS

2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase

MEP

2-C-methyl-d-erythritol 4-phosphate

MEV

Mevalonate pathway

MGDG

Monogalactosyldiacylglycerol

NDH

NADPH dehydrogenases

NPQ

Non-photochemical quenching

PDS

Phytoene desaturase

PG

Phosphatidylglycerol

PS

Photosystem

PsbS

Subunit S of the photosystem II

PSY

Phytoene synthase

SQDG

Sulfoquinovosyldiacylglycerol

VDE

Violaxanthin de-epoxidase

Vio

Violaxanthin

Z-ISO

15-cis-ζ-carotene isomerase

ZDS

ζ-Carotene desaturase

Zea

Zeaxanthin

ZEP

Zeaxanthin epoxidase

References

  1. Ahn TK, Avenson TJ, Ballottari M, Cheng YC, Niyogi KK, Bassi R, Fleming GR (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320:794–797PubMedCrossRefGoogle Scholar
  2. Allen AE, LaRoche J, Maheswari U, Lommer M, Schauer N, Lopez PJ, Finazzi G, Fernie AR, Bowler C (2008) Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc Natl Acad USA 105:10438–10443CrossRefGoogle Scholar
  3. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kroger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86PubMedCrossRefGoogle Scholar
  4. Arsalane W, Rousseau B, Duval JC (1994) Influence of the pool size of the xanthophyll cycle on the effects of light stress in a diatom: competition between photoprotection and photoinhibition. Photochem Photobiol 60:237–243CrossRefGoogle Scholar
  5. Avenson TS, Ahn TK, Zigmantas D, Niyogi KK, Li Z, Ballottari M, Bassi R, Fleming GR (2008) Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna. J Biol Chem 283:3550–3558PubMedCrossRefGoogle Scholar
  6. Avenson JT, Ahn TK, Niyogi KK, Ballottari M, Bassi R, Fleming GR (2009) Lutein can act as a switchable charge transfer quencher in the CP26 light-harvesting complex. J Biol Chem 284:2830–2835PubMedCrossRefGoogle Scholar
  7. Bassi R, Caffarri S (2000) LHC proteins and the regulation of photosynthetic light harvesting function by xanthophylls. Photosynth Res 64:243–256PubMedCrossRefGoogle Scholar
  8. Bedoshvili YD, Popkova TP, Likhoshway YV (2009) Chloroplast structure of diatoms of different classes. Cell Tissue Biol 3:297–310CrossRefGoogle Scholar
  9. Beer A, Gundermann K, Beckman J, Büchel C (2006) Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. Biochemistry 45:13046–13053PubMedCrossRefGoogle Scholar
  10. Behrenfeld MJ, Worthington K, Sherrell RM, Chavez FP, Strutton P, McPhaden M, Shea DM (2006) Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics. Nature 442:1025–1028PubMedCrossRefGoogle Scholar
  11. Bertrand M, Poirier I (2005) Photosynthetic organisms and excess of metals. Photosynthetica 43:345–353CrossRefGoogle Scholar
  12. Bertrand M, Schoefs B, Siffel P, Rohacek K, Molnar I (2001) Cadmium inhibits epoxidation of diatoxanthin to diadinoxanthin in the xanthophyll cycle of the marine diatom Phaeodactylum tricornutum. FEBS Lett 508:153–156PubMedCrossRefGoogle Scholar
  13. Beyer P, mayer M, Kleinig K (1989) Molecular oxygen and the state of geometric isomerism of intermediates are essential in the carotenoid desaturation and cyclizations in daffodil chromoplasts. Eur J Biochem 184:141–150PubMedCrossRefGoogle Scholar
  14. Bhattacharya D, Medlin L (1998) Algal phylogeny and the origin of land plants. Plant Physiol 116:9–15CrossRefGoogle Scholar
  15. Bhaya D, Grossmann AG (1993) Characterization of gene clusters encoding the fucoxanthin chlorophyll proteins of the diatom Phaeodactylum tricornutum. Nucleic Acids Res 21:4458–4466PubMedCrossRefGoogle Scholar
  16. Bisanz C, Botté C, Saïdani N, Bastien O, Cesbron-Delauw MF, Maréchal E (2008) Structure, function and biogenesis of the secondary plastid of apicomplexan parasites. In: Schoefs B (ed) Plant cell compartments—selected topics. Research Signpost, Trivandrum, Kerala, India, pp 393–423Google Scholar
  17. Boore JL (2008) Detecting evolutionary transfer of genes using PhIGs. J Phycol 44:19–22CrossRefGoogle Scholar
  18. Bouvier F, d’Harlingue A, Hugueney P, Marin E, Marion-Poll A, Camara B (1996) Xanthophyll biosynthesis. Cloning, expression, functional reconstitution, and regulation of beta-cyclohexenyl carotenoid epoxidase from pepper (Capsicum annuum). J Biol Chem 271:28861–28867PubMedCrossRefGoogle Scholar
  19. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kroger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jezequel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq MP, Napoli C, Obornik M, Parker MS, Petit JL, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van De Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244PubMedCrossRefGoogle Scholar
  20. Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH, Cullen JJ, de Baar HJW, Follows M, Harvey M, Lancelot C, Levasseur M, Owens NPJ, Pollard R, Rivkin RB, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson AJ (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–617PubMedCrossRefGoogle Scholar
  21. Braun EL, Phillips N (2008) Phylogenomics and secondary plastids: a look back and a look ahead. J Phycol 44:2–6CrossRefGoogle Scholar
  22. Breitenbach J, Sandmann G (2005) ζ-carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway ot lycopene. Planta 220:785–793PubMedCrossRefGoogle Scholar
  23. Breitenbach J, Kuntz M, Takaichi S, Sandmann G (1999) Catalytic properties of an expressed and purified higher plant type ζ-carotene desaturase from Capsicum annuum. Eur J Biochem 265:376–383 PubMedCrossRefGoogle Scholar
  24. Britton G, Liaanen-Jensen S, Pfander H (2004) Carotenoid handbook. Birkhaüser Verlag, BaselGoogle Scholar
  25. Büchel C (2003) Fucoxanthin-chlorophyll proteins in diatoms: the 18 kDa and 19 kDa subunits assemble into different oligomeric states. Biochemistry 42:13027–13034PubMedCrossRefGoogle Scholar
  26. Bugos RC, Yamamoto HY (1996) Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli. Proc Natl Acad Sci USA 93:6320–6325PubMedCrossRefGoogle Scholar
  27. Charron JB, Ouellet F, Pelletier M, Danyluk J, Chauve C, Sarhan F (2005) Identification, expression, and evolutionary analyses of plant lipocalins. Plant Physiol 139:2017–2028PubMedCrossRefGoogle Scholar
  28. Chen Q, Jian JG, Wang F (2007) Molecular phylogenies and evolution of ctr genes in algae. Crit Rev Biotechnol 27:77–91PubMedCrossRefGoogle Scholar
  29. Chen Y, Li F, Wurtzel ET (2010) Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants. Plant Physiol 153:66–79PubMedCrossRefGoogle Scholar
  30. Choi HG, Joo HM, Jung W, Hong SS, Kang J-S, Kang S-H (2008) Morphology and phylogenetic relationship of some psychrophilic polar diatoms (Bacillariophyta). Nova Hedwig Beih 133:7–30Google Scholar
  31. Coesel S, Obornik M, Varela J, Falciatore A, Bowler C (2008) Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms. Plos ONE 3(8):e2896PubMedCrossRefGoogle Scholar
  32. Crouchman S, Ruban A, Horton P (2006) PsbS enhances nonphotochemical fluorescence quenching in the absence of zeaxanthin. FEBS Lett 580:2053–2058PubMedCrossRefGoogle Scholar
  33. Cunningham FX Jr, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583PubMedCrossRefGoogle Scholar
  34. DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738PubMedCrossRefGoogle Scholar
  35. Doan JM, Schoefs B, Ruban AV, Etienne AL (2003) Changes in the LHCI aggregation state during iron repletion in the unicellular red alga Rhodella violacea. FEBS Lett 533:59–62PubMedCrossRefGoogle Scholar
  36. Eppard M, Krumbein WE, von Haeseler A, Rhiel E (2000) Characterization of fcp4 and fcp12, two additional genes encoding light harvesting proteins of Cyclotella cryptica (Bacillariophyceae) and phylogenetic analysis of this complex gene family. Plant Biol 2:283–289CrossRefGoogle Scholar
  37. Falkowski PG, Barke RT, Smetacek V (1998) Biochemical control and feedbacks on ocean production. Science 281:200–205PubMedCrossRefGoogle Scholar
  38. Färber A, Jahns P (1998) The xanthophyll cycle of higher plants: influence of antenna size and membrane organization. Biochim Biophys Acta 1363:47–58PubMedCrossRefGoogle Scholar
  39. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240PubMedCrossRefGoogle Scholar
  40. Flower DR, North ACT, Sansom CE (2000) The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta 1482:9–24PubMedGoogle Scholar
  41. Foyer CHF, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717CrossRefGoogle Scholar
  42. Fraser PD, Misawa N, Linden H, Yamano S, Kobayashi K, Sandmann G (1992) Expression in Escherichia coli, purification and reactivation of the recombinant Erwinia urealovora phytoene desaturase. J Biol Chem 267:19891–19895PubMedGoogle Scholar
  43. Frommholt R, Werner S, Paulsen H, Goss R, Wilhelm C, Zauner S, Maier UG, Grossman AR, Bhattacharya D, Lohr M (2008) Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Mol Biol Evol 25:2653–2667CrossRefGoogle Scholar
  44. Gagne G, Guertin M (1992) The early genetic response to light in the green unicellular alga Chlamydomonas eugametos grown under light dark cycles involves genes that represent direct responses to light and photosynthesis. Plant Mol Biol 18:429–445PubMedCrossRefGoogle Scholar
  45. Ganfornina MD, Gutierrez G, Bastiani M, Sanchez D (2000) A phylogenetic analysis of the lipocalin protein family. Mol Biol Evol 17:114–126PubMedGoogle Scholar
  46. Gilmore AM (1997) Mechanistics aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99:197–209CrossRefGoogle Scholar
  47. Giuliano G, Giliberto L, Rosati C (2002) Carotenoid isomerase: a tale of light and isomers. Trends Plant Sci 7:427–429PubMedCrossRefGoogle Scholar
  48. Goericke R, Welschmeyer NA (1992) Pigment turnover in the marine diatom Thalassiosira weissflogii. II. The 14CO2-labeling kinetics of carotenoids. J Phycol 28:507–517CrossRefGoogle Scholar
  49. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JD, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194PubMedCrossRefGoogle Scholar
  50. Goss R (2003) Substrate specificity of the violaxanthin de-epoxidase of the primitive green alga Mantoniella squamata (Prasinophyceae). Planta 217:801–812PubMedCrossRefGoogle Scholar
  51. Goss R, Pinto EA, Wilhelm C, Richter M (2005a) The importance of a highly active and ΔpH-regulated diatoxanthin epoxidase for the regulation of the PSII antenna function in diadinoxanthin cycle containing algae. J Plant Physiol 163:1008–1021PubMedCrossRefGoogle Scholar
  52. Goss R, Lohr M, Latowski D, Grzyb J, Vieler A, Wilhelm C, Strzalka K (2005b) Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation. Biochemistry 44:4028–4036PubMedCrossRefGoogle Scholar
  53. Goss R, Lepetit B, Wilhelm C (2006) Evidence for a rebinding of antheraxanthin to the light-harvesting complex during the epoxidation reaction of the violaxanthin cycle. J Plant Physiol 163:585–590PubMedCrossRefGoogle Scholar
  54. Goss R, Latowski D, Grzyb J, Vieter A, Lohr M, Wilhelm C, Strzalka K (2007) Lipid dependence of diadinoxanthin solubilization and de-epoxidation in artificial membrane systems resembling the lipid composition of the natural thylakoid membrane. Biochim Biophys Acta 1768:67–75PubMedCrossRefGoogle Scholar
  55. Goss R, Nerlich J, Lepetit B, Schaller S, Vieler A, Wilhlem C (2009) The lipid dependance of diadinoxanthin de-epoxidation presents new evidence for a macrodomain organization of the diatom thylakoid membrane. J Plant Physiol 166:1839–1854PubMedCrossRefGoogle Scholar
  56. Grouneva I, Jakob T, Wilhelm C, Goss R (2006) Influence of ascorbate and pH on the activity of the diatom xanthophyll cycle-enzyme diadinoxanthin de-epoxidase. Physiol Plant 126:205–211CrossRefGoogle Scholar
  57. Grouneva I, Jakob T, Wilhelm C, Goss R (2008) A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana. Plant Cell Physiol 49:1217–1225PubMedCrossRefGoogle Scholar
  58. Grouneva I, Jakob T, Wilhelm C, Goss R (2009) The regulation of xanthophyll cycle activity and of non-photochemiocal fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana. Biochim Biophys Acta 1787:929–938PubMedCrossRefGoogle Scholar
  59. Gruszecki WI, Strzalka K (1991) Does the xanthophyll cycle take part in the regulation of fluidity of the thylakoid membrane? Biochim Biophys Acta 1060:310–314CrossRefGoogle Scholar
  60. Grzyb J, Latowski D, Strzalka K (2006) Lipocalins—a family portrait. J Plant Physiol 163:895–915PubMedCrossRefGoogle Scholar
  61. Guglielmi G, Lavaud J, Rousseau B, Etienne AL, Houmard J, Ruban AV (2005) The light-harvesting antenna of the diatom Phaeodactylum tricornutum. Evidence for a diadinoxanthin-binding subcomplex. FEBS J 272:4339–4348PubMedCrossRefGoogle Scholar
  62. Gundermann K, Büchel C (2008) The fluorescence yield of the trimeric fucoxanthin-chlorophyll-protein FCPa in the diatom Cyclotella meneghiana is dependent on the amount of bound diatoxanthin. Photosynth Res 95:229–235PubMedCrossRefGoogle Scholar
  63. Hackett JD, Yoon HS, Soaares MB, Casavant TL, Scheetz TE, Nosenko T, Bhattacharya D (2004) Migration of the plastid genome to the nucleus in a peridinin Dinoflagellate. Curr Biol 14:213–218PubMedGoogle Scholar
  64. Hager A (1969) Lichtbedingte pH-Erniedrigung in einem Chloroplasten-Kompartiment als Ursache der enzymatische Violaxanthin- zu Zeaxanthin Umwandlung; Beziehungen zur Photophosphorylierung. Planta 89:224–243CrossRefGoogle Scholar
  65. Hager A, Holocher K (1994) Localization of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease. Planta 192:581–589CrossRefGoogle Scholar
  66. Han H, Gao S, Li B, Dong XC, Feng HL, Meng QW (2009) Overexpression of violaxantin de-epoxidase gene alleviates photoinhibition of PSII and PSI in tomato during high light and chilling stress. J Plant Physiol 158:1403–1413CrossRefGoogle Scholar
  67. Havaux M, Niyogi K (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Nat Acad Sci 96:8762–8767PubMedCrossRefGoogle Scholar
  68. Holden HM, Rypniewski WR, Law JH, Rayment I (1987) The molecular structure of insecticyanin from the tobacco hornworm Manduca sexta L. at 2.6 A resolution. EMBO J 6:1565–1570PubMedGoogle Scholar
  69. Holt NE, Zigmantas D, Valkunas L, Li X-P, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436PubMedCrossRefGoogle Scholar
  70. Horton P, Ruban AV, Rees D, Noctor G, Pascal AA, Young A (1991) Control of the light-harvesting function in chloroplast membranes by aggregation of the LHC II chlorophyll protein complex. FEBS Lett 292:1–4PubMedCrossRefGoogle Scholar
  71. Horton P, Ruban AV, Walters RG (1996) Regulation of light-harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684PubMedCrossRefGoogle Scholar
  72. Horton P, Johnson MP, Perez-Bueno ML, Kiss AZ, Ruban AV (2008) Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J 275:1069–1079PubMedCrossRefGoogle Scholar
  73. Huguenez P, Römer S, Kuntz M, Camara B (1992) Characterization and molecular cloning of a flavoprotein catalyzing the synthesis of phytofluene and zeta-carotene in Capsicum chromoplast. Eur J Biochem 209:399–407CrossRefGoogle Scholar
  74. Hwang Y, Jung G, Jin E (2008) Transcriptome analysis of acclimatory responses to thermal stress in Antartic algae. Biochem Biophys Res Commun 367:635–641PubMedCrossRefGoogle Scholar
  75. Isaacson T, Ohad I, Beyer P, Hirschberg J (2004) Analysis in vitro of the enzyme CRTISO pathway establishes a poly-cis-carotenoid biosynthetic pathway in plants. Plant Physiol 136:4246–4255PubMedCrossRefGoogle Scholar
  76. Ishikawa M, Fujiwara M, Sonoike K, Sato N (2009) Orthogenomics of photosynthetic organisms: bioinformatics and experimental analysis of chloroplast proteins of endosymbiont origin in Arabidopsis and their counterparts in Synechocystis. Plant Cell Physiol 50:773–788PubMedCrossRefGoogle Scholar
  77. Jakob T, Goss R, Wilhelm C (1999) Activation of diadinoxanthin de-epoxidase due to a chlororespiratory proton gradient in the dark in the diatom Phaeodactylum tricornutum. Plant Biol 1:76–82CrossRefGoogle Scholar
  78. Jakob T, Goss R, Wilhelm C (2001) Unusual pH-dependence of diadinoxanthin de-epoxidase activation causes chlororespiratory induced accumulation of diatoxanthin in the diatom Phaeodactylum tricornutum. J Plant Physiol 158:383–390CrossRefGoogle Scholar
  79. Jeffrey SW, Vesk M (1997) Introduction to marine phytoplankton and their pigment signatures. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography. Guidelines to modern methods. Monographs on oceanographic methodology. 10. UNESCO, Paris, pp 37–84Google Scholar
  80. Kashino Y, Fukimoto K, Akamatsu A, Koike H, Satoh K, Kudoh S (1998) Photosynthetic pigment composition of ice algal and phytoplankton assemblages in early spring in Saroma Ko lagoon, Hokkaido, Japan. Proc NIPR Symp Polar Biol 11:22–32Google Scholar
  81. Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91:1481–1493CrossRefGoogle Scholar
  82. Kim J, DellaPenna D (2006) Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3. Proc Natl Acad Sci USA 103:3474–3479PubMedCrossRefGoogle Scholar
  83. Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355PubMedCrossRefGoogle Scholar
  84. Kiss AZ, Ruban AV, Horton P (2008) PsbS protein controls the organisation of the photosystem II antenna in higher plant thylakoid membranes. J Biol Chem 283:2978–3972Google Scholar
  85. Kooistra WH, De Stefano M, Mann DG, Medlin LK (2003) The phylogeny of the diatoms. Prog Mol Subcell Biol 33:59–97PubMedGoogle Scholar
  86. Kröger N, Poulsen N (2008) Diatoms—from cell wall biogenesis to nanotechnology. Annu Rev Genet 42:83–107PubMedCrossRefGoogle Scholar
  87. Kuzuyama T (2002) Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem 66:1619–1627PubMedCrossRefGoogle Scholar
  88. Lamote M, Schoefs B, Darko E, Lemoine Y (2003) Biogenesis of the photosynthetic apparatus in embryos of Fucus serratus. Photosynth Res 77:49–52CrossRefGoogle Scholar
  89. Latowski D, Kruk J, Burda K, Skrynecka-Jaskier M, Kostecka-Gugala A, Strzalka K (2002) Kinetics of violaxanthin de-epoxidation by violaxanthin de-epoxidase, a xanthophyyll cycle enzyme, is regulated by membrane fluidity in model lipid bilayers. Eur J Biochem 269:4656–4665PubMedCrossRefGoogle Scholar
  90. Lavaud J, Kroth P (2006) In diatoms, the transthylakoid proton gradient regulates the photoprotective non-photochemical fluorescence quenching beyond its control on the xanthophyll cycle. Plant Cell Physiol 47:1010–1016PubMedCrossRefGoogle Scholar
  91. Lavaud J, Rousseau B, van Gorkom HJ, Etienne AL (2002a) Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiol 129:1398–1406PubMedCrossRefGoogle Scholar
  92. Lavaud J, Rousseau B, Etienne AL (2002b) In diatoms, a transthylakoid proton gradient alone is not sufficient to induce a non-photochemical fluorescence quenching. FEBS Lett 523:163–166PubMedCrossRefGoogle Scholar
  93. Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395PubMedCrossRefGoogle Scholar
  94. Li XP, Gilmore AM, Niyogi KK (2002) Molecular and global time-resolved analysis of a psbS gene dosage effect on pH- and xanthophyll cycle-dependent nonphotochemical quenching in photosystem II. J Biol Chem 277:33590–33597PubMedCrossRefGoogle Scholar
  95. Li XP, Gilmore AM, Caffani S, Bassi R, Golan T, Kramer D, Niyogi KK (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279:22866–22874PubMedCrossRefGoogle Scholar
  96. Li S, Nosenko T, Hackett JD, Bhattacharya D (2006) Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates. Mol Biol Evol 23:663–674PubMedCrossRefGoogle Scholar
  97. Li F, Murillo C, Wurtzel ET (2007) Maize y9 encodes a product essential for 15-cis zetacarotene isomerization. Plant Physiol 144:1181–1189PubMedCrossRefGoogle Scholar
  98. Li F, Vallabhaneni R, Wurtzel ET (2008) PSY3, a new member of the phytoene synthase gene family conserved in Poaceae and a key regulator of abiotic-stress-induced root carotenogenesis. Plant Physiol 146:1333–1345PubMedCrossRefGoogle Scholar
  99. Lichtenthaler HK (1999) The 1-Deoxy-d-Xylulose-5-Phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65PubMedCrossRefGoogle Scholar
  100. Lichtenthaler HK (2007) Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth Res 92:163–179PubMedCrossRefGoogle Scholar
  101. Linden H, Misawa N, Chamowitz D, Pecker J, Hirschberg J, Sandmann G (1991) Functional complementation in Escherichia coli of different desaturase genes and analysis of accumulated carotenoids. Z Naturforsch 46c:1045–1051Google Scholar
  102. Lindgren LO, Stålberg KG, Höglund AS (2003) Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiol 132:779–785PubMedCrossRefGoogle Scholar
  103. Lohr M, Wilhelm C (1999) Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc Nat Acad Sci 96:8784–8789PubMedCrossRefGoogle Scholar
  104. Lohr M, Wilhelm C (2001) Xanthophyll synthesis in diatoms: quantification of putative intermediates and comparison of pigment conversion kinetics with rate constants derived from a model. Planta 212:382–391PubMedCrossRefGoogle Scholar
  105. Maheswari U, Montsant A, Goll J, Krishnasamy S, Rajyashri KR, Patell VM, Bowler C (2005) The diatom EST database. Nucleic Acids Res 33:D344–D347PubMedCrossRefGoogle Scholar
  106. Martín JF, Gudiñal E, Barredo JL (2008) Conversion of β-carotene into astaxanthin: Two separate enzymes or a bifunctional hydroxylase-ketolase protein? Microb Cell Fact 7:1–10CrossRefGoogle Scholar
  107. Massé G, Belt ST, Rowland SJ, Rohmer M (2004) Isoprenoid biosynthesis in the diatoms Rhizosolenia setigera (Brightwell) and Haslea ostrearia (Simonsen). Proc Natl Acad Sci USA 101:4413–4418PubMedCrossRefGoogle Scholar
  108. Matthews PD, Luo R, Wurtzel ET (2003) Maize phytoene desaturase and zetacarotene desaturase catalyze a poly-Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops. J Exp Bot 54:2215–2230PubMedCrossRefGoogle Scholar
  109. McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37:951–959CrossRefGoogle Scholar
  110. Mereschkowsky C (1905) Uber Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604Google Scholar
  111. Mewes H, Richter M (2002) Supplementary ultraviolet-B radiation induces a rapid reversal of the diadinoxanthin in the strong light-exposed diatom Phaeodactylum tricornutum. Plant Physiol 130:1527–1535PubMedCrossRefGoogle Scholar
  112. Meyer MP, Nievelstein V, Beyer P (1992) Purification and characterization of a NADPH dependent oxidoreductase form chromoplasts of Narcissus pseudonarcissus: a redox mediator possibly involved in carotene desaturation. Plant Physiol Biochem 30:389–398Google Scholar
  113. Montsant A, Allen AE, Coesel S, De Martino A, Falciatore A, Mangogna M, Siaut M, Heijde M, Jabbari K, Maheswari U, Rayko E, Vardi A, Apt KE, Berges JA, Chiovitti A, Davis AK, Thamatrakoln K, Hadi MZ, Lane TW, Lippmeier JC, Martinez D, Parker MS, Pazour GJ, Saito MA, Rokhsar DS, Armbrust EV, Bowler C (2007) Identification and comparative genomic analysis of signaling and regulatory components in the diatom Thalassiosira pseudonana. J Phycol 43:585–604CrossRefGoogle Scholar
  114. Morgan-Kiss RM, Priscu JL, Pocock T, Gudynaite-Savitch L, Huner NM (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environment. Microbiol Mol Biol Rev 70:222–252PubMedCrossRefGoogle Scholar
  115. Morosinotto T, Caffarri S, Dall L, Osto R, Bassi R (2003) Mechanistics aspects of the xanthophyll dynamics in higher plants thylakoids. Physiol Plant 119:347–354CrossRefGoogle Scholar
  116. Moulin P, Lemoine Y, Schoefs B (2010) Modifications of the carotenoid metabolism in plastids : a response to stress conditions. In: Pessarakli M (ed) Handbook of plant and crop stress, 3rd edn. CRC Press, Boca Raton (under press)Google Scholar
  117. Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566PubMedCrossRefGoogle Scholar
  118. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185PubMedCrossRefGoogle Scholar
  119. Nelson DM, Tréguer P, Brzezinski MA, Leynaert B, Quéguiner B (1995) Production and dissolution of biogenic silica in the ocean. Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem Cycles 9:359–372CrossRefGoogle Scholar
  120. Newcomer ME, Jones TA, Aqvist J, Sundelin J, Eriksson U, Rask L, Peterson PA (1984) The three-dimensional structure of retinol-binding protein. EMBO J 3:1451–1454PubMedGoogle Scholar
  121. Norris SR, Barrette TR, DellaPenna D (1995) Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell 7:2139–2149PubMedCrossRefGoogle Scholar
  122. Nymark M, Valle KC, Brembu T, Hancke K, Winge P, Andressen K, Johnsen G, Bones AM (2009) An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum. PloS ONE 4(11):e7743PubMedCrossRefGoogle Scholar
  123. Park S, Jung G, Hwang Y, Jin ES (2010) Dynamic response of the transcriptome of a psychrophilic diatom Chaetoceros neogracile, to high irradiance. Planta 231:349–360PubMedCrossRefGoogle Scholar
  124. Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban A (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137PubMedCrossRefGoogle Scholar
  125. Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53:523–550PubMedCrossRefGoogle Scholar
  126. Perry MJ, Talbot MC, Alberte RS (1981) Photoadaptation in marine phytoplankton, response of the photosynthetic unit. Mar Biol 62:91–101CrossRefGoogle Scholar
  127. Pfündel EE, Renganathan M, Gilmore AM, Yamamoto HY, Dilley RA (1994) Intrathylakoid pH in isolated pea chloroplasts as probed by violaxanthin de-epoxidation. Plant Physiol 106:1647–1658PubMedGoogle Scholar
  128. Poirier I, Jean N, Bertrand M (2008) Plastids and metals. In: Schoefs B (ed) Plant cell compartments—selected topics. Research Signpost, Trivandrum, Kerala, India, pp 285–307Google Scholar
  129. Premvardhan L, Bordes L, Beer A, Büchel C, Robert B (2009) Carotenoid structures environments in trimeric and oligomeric fucoxanthin chlorophyll a/c2 proteins (FCP) from resonance Raman spectroscopy. J Phys Chem B 113:12565–12574PubMedCrossRefGoogle Scholar
  130. Premvardhan L, Robert B, Büchel C (2010) Pigment organization in fucoxanthin chlorophyll a/c2 protein (FCP) based on resonance Raman spectroscopy and sequence analysis. Biochim Biophys Acta 1797:1647–1656PubMedCrossRefGoogle Scholar
  131. Pyszniak AM, Gibbs SP (1992) Immunocytochemical localization of photosystem I and the fucoxanthin-chlorophyll a/c light-harvesting complex in the diatom Phaeodactylum tricornutum. Protoplasma 166:208–217CrossRefGoogle Scholar
  132. Quick WP, Stitt M (1989) An examination of the factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. Biochim Biophys Acta 977:287–296CrossRefGoogle Scholar
  133. Ragueneau O, Treguer P, Leynaert A, Anderson RF, Brzezinski MA, DeMaster DJ, Dugdale RC, Dymond J, Fischer G, Francois R, Heinze C, Maier-Reimer E, Martin-Jezequel V, Nelson DM, Quéguiner B (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global Planet Change 26:317–365CrossRefGoogle Scholar
  134. Rohmer M (2010) Methylerythritol phosphate pathway. In: Mander L, Lui H-W (eds) Comprehensive natural products II: chemistry and biology, vol 1. Elsevier, Oxford, pp 517–555CrossRefGoogle Scholar
  135. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria—a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524PubMedGoogle Scholar
  136. Rohmer M, Seemann M, Horbach S, Bringer-Meyer S, Sahm H (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118:2564–2566CrossRefGoogle Scholar
  137. Ruban A, Lavaud J, Rousseau B, Guglielmi G, Horton P, Etienne AL (2004) The super-excess energy dissipation in diatom algae: comparative analysis with higher plants. Photosynth Res 82:165–175PubMedCrossRefGoogle Scholar
  138. Salier JP (2000) Chromosomal location, exon/intron organization and evolution of lipocalin genes. Biochim Biophys Acta 1482:25–34PubMedGoogle Scholar
  139. Sandmann G (2002) Molecular evolution of carotenoid biosynthesis from bacteria to plants. Physiol Plant 116:431–440CrossRefGoogle Scholar
  140. Sandmann G (2009) Evolution of carotene desaturation: the complication of a single pathway. Arch Biochem Biophys 483:169–174PubMedCrossRefGoogle Scholar
  141. Savard F, Richard C, Guertin M (1996) The Chlamydomonas reinhardtii LI818 gene represents a distant relative of the cabI/II genes that is regulated during the cell cycle and in response to illumination. Plant Mol Biol 32:461–473PubMedCrossRefGoogle Scholar
  142. Seddas P, Gianinazzi-Pearson V, Schoefs B, Küster H, Wipf D (2009) Communication and signaling in the plant-fungus symbiosis: the mycorrhiza. In: Baluska F (ed) Plant-environment interactions. Springer-Verlag, Berlin, Heidelberg, pp 45–71CrossRefGoogle Scholar
  143. Stauber JL, Jeffrey SW (1988) Photosynthetic pigments in fifty-one species of marine diatoms. J Phycol 24:158–172Google Scholar
  144. Strain HH, Manning WM, Hardin G (1944) Xanthophylls and carotenes of diatoms, brown algae, dinoflagellates, and sea-anemones. Biol Bull 86:169–191CrossRefGoogle Scholar
  145. Stransky H, Hager A (1970a) The carotenoid pattern and the occurrence of the light-induced xanthophyll cycle in various classes of algae. VI. Chemosystematic study. Arch Mikrobiol 73:315–323PubMedCrossRefGoogle Scholar
  146. Stransky H, Hager A (1970b) The carotenoid pattern and the occurrence of the light-induced xanthophyll cycle in various classes of algae. Arch Mikrobiol 71:164–190PubMedCrossRefGoogle Scholar
  147. Swift IE, Milborrow BV (1981) Stereochemistry of allene biosynthesis and the formation of the acetylenic carotenoid diadinoxanthin and peridinin (C-37) from neoxanthin. Biochem J 199:69–74PubMedGoogle Scholar
  148. Tian L, DellaPenna D (2004) Progress in understanding the origin and functions of carotenoid hydroxylases in plants. Arch Biochem Biophys 430:22–29PubMedCrossRefGoogle Scholar
  149. Tian L, Musetti V, Kim J, Magallanes-Lundback M, DellaPenna D (2004) The Arabidopsis LUT1 locus encodes a member of the cytochrome P450 family that is required for carotenoid epsilon-ring hydroxylation activity. Proc Natl Acad Sci USA 101:402–407PubMedCrossRefGoogle Scholar
  150. Tran D, Haven J, Qiu W-G, Polle JEW (2009) An update on carotenoid biosynthesis in algae: phylogenetic evidence for the existence of two classes of phytoene synthase. Planta 229:723–729PubMedCrossRefGoogle Scholar
  151. Tsuda A, Takeda S, Saito H, Nishioka J, Nojiri Y, Kudo I, Kiyosawa H, Shiomoto A, Imai K, Ono T, Shimamoto A, Tsumune D, Yoshimura T, Aono T, Hinuma A, Kinugasa M, Suzuki K, Sohrin Y, Noiri Y, Tani H, Deguchi Y, Tsurushima N, Ogawa H, Fukami K, Kuma K, Saino T (2003) A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom. Science 300:958–961PubMedCrossRefGoogle Scholar
  152. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200PubMedCrossRefGoogle Scholar
  153. van de Poll WH, van Leeuwe MA, Roggeveld J, Buma AGJ (2005) Nutrient limitation and high irradiance acclimation reduce PAR and UV-induced viability loss in the Antarctic diatom Chaetoceros brevis (Bacillariophyceae). J Phycol 41:840–850CrossRefGoogle Scholar
  154. Walters RG, Horton P (1991) Resolution of components of non-photochemical chlorophyll fluorescence quenching in barley leaves. Photosynth Res 27:121–133CrossRefGoogle Scholar
  155. Whatley JM, Whatley FR (1981) Chloroplast evolution. New Phytol 87:233–247CrossRefGoogle Scholar
  156. Wilhelm C, Büchel C, Fisahn J, Goss R, Jakob T, LaRoche J, Lavaud J, Lohr M, Riebesell U, Stehfest K, Valentin K, Kroth PG (2006) The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae. Protist 157:91–124PubMedCrossRefGoogle Scholar
  157. Yamamoto HY, Higashi RM (1978) Violaxanthin de-epoxidase. Arch Biochem Biophys 190:514–522PubMedCrossRefGoogle Scholar
  158. Yamano T, Miura K, Fukuzawa H (2008) Expression analysis of genes associated with the induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 147:340–354PubMedCrossRefGoogle Scholar
  159. Zhang Z, Sachs JP, Marchetti A (2009) Hydrogen isotope fractionation in freshwater and marine algae: II. Temperature and nitrogen limited growth rate effects. Organ Geochem 40:428–443CrossRefGoogle Scholar
  160. Zhu S-H, Green BR (2008) Light-harvesting and photoprotection in diatoms: identification and expression of L818-like proteins. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Energy from the sun: 14th international congress on photosynthesis. Springer, The Netherlands, pp 261–264CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.MiMeTox, National Institute for Marine Sciences and Techniques, CNAMCherbourg-Octeville CedexFrance

Personalised recommendations