Photosynthesis Research

, Volume 106, Issue 1–2, pp 155–177 | Cite as

Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress

  • Yves Lemoine
  • Benoît SchoefsEmail author


Under stressful environments, many green algae such as Haematococcus pluvialis accumulate secondary ketocarotenoids such as canthaxanthin and astaxanthin. The carotenogenesis, responsible for natural phenomena such as red snows, generally accompanies larger metabolic changes as well as morphological modifications, i.e., the conversion of the green flagellated macrozoids into large red cysts. Astaxanthin accumulation constitutes a convenient way to store energy and carbon, which will be used for further synthesis under less stressful conditions. Besides this, the presence of high amount of astaxanthin enhances the cell resistance to oxidative stress generated by unfavorable environmental conditions including excess light, UV-B irradiation, and nutrition stress and, therefore, confers a higher survival capacity to the cells. This better resistance results from the quenching of oxygen atoms for the synthesis itself as well as from the antioxidant properties of the astaxanthin molecules. Therefore, astaxanthin synthesis corresponds to a multifunctional response to stress. In this contribution, the various biochemical, genetic, and molecular data related to the biosynthesis of ketocarotenoids by Haematococcus pluvialis and other taxa are reviewed and compared. A tentative regulatory model of the biochemical network driving astaxanthin production is proposed.


Astaxanthin Cytochrome P450 hydroxylase Encystment Haematococcus pluvialis Stress 















Lycopene β-cyclase


Dimethylallyl pyrophosphate




Geranylgeranyl pyrophosphate






Isopentenylpyrophosphate isomerase


Light-harvesting complexes






Polyacrylamide gel electrophoresis


Phytoene desaturase






Phytoene synthase


Plastid terminal oxidase of chlororespiration


Reactive oxygen species


Secondary carotenoid


Superoxide dismutase




ζ-Carotene desaturase


  1. Abe K, Takizawa H, Kimura S, Hirano M (2004) Characteristics of chlorophyll formation of the aerial microalga Coelastrella striolata var. multistriata and its application for environmental biomonitoring. J Biosci Bioeng 98:34–39PubMedGoogle Scholar
  2. Abe K, Hattori H, Hirano M (2007) Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food Chem 100:656–661CrossRefGoogle Scholar
  3. Allen JF (1993) Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J Theor Biol 165:609–631PubMedCrossRefGoogle Scholar
  4. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefGoogle Scholar
  5. Apostol I, Heinstein PF, Low PS (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Role in defense and signal transduction. Plant Physiol 90:109–116PubMedCrossRefGoogle Scholar
  6. Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC, Boca Raton, pp 77–104Google Scholar
  7. Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639PubMedCrossRefGoogle Scholar
  8. Bar E, Rise M, Vishkautsan M, Arad SM (1995) Pigments and structural changes in Chlorella zofingiensis upon light and nitrogen stress. J Plant Physiol 146:527–534Google Scholar
  9. Barr J, White WS, Chen L, Bae S, Rodermel S (2004) The GHOST terminal oxidase regulates developmental programming in tomato fruit. Plant Cell Environ 27:840–852CrossRefGoogle Scholar
  10. Beck CF (2005) Signaling pathways from the chloroplast to the nucleus. Planta 222:743–756PubMedCrossRefGoogle Scholar
  11. Ben-Amotz A, Avron M (1983) On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol 72:593–597PubMedCrossRefGoogle Scholar
  12. Ben-Amotz A, Shaish A, Avron M (1989) Mode of action of the massively accumulated β-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation. Plant Physiol 91:1040–1043PubMedCrossRefGoogle Scholar
  13. Bidigare RR, Ondrusek ME, Kennicutt MC, Iturriaga R, Harvey HR, Haham RW, Macko SA (1993) Evidence for a photo-protective function for secondary carotenoids of snow algae. J Phycol 29:427–434CrossRefGoogle Scholar
  14. Bjerkeng B (1997) Chromatographic analysis of synthesized astaxanthin—a handy tool for the ecologist and the forensic chemist? Prog Fish Cult 59:129–140CrossRefGoogle Scholar
  15. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194PubMedCrossRefGoogle Scholar
  16. Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117CrossRefGoogle Scholar
  17. Boussiba S, Fan L, Vonshak A (1992) Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis. Methods Enzymol 213:386–391CrossRefGoogle Scholar
  18. Boussiba S, Bing W, Yuan JP, Zarka A, Chen F (1999) Changes in pigment profiles of Haematococcus pluvialis during response to environmental stress. Biotechnol Lett 21:601–604CrossRefGoogle Scholar
  19. Breitenbach J, Misawa N, Kajiwara S, Sandmann G (1996) Expression in Escherichia coli and properties of the carotene ketolase from Haematococcus pluvialis. FEMS Microbiol Lett 140:241–246PubMedCrossRefGoogle Scholar
  20. Breitenbach J, Zhu CF, Sandmann G (2001) Bleaching norflurazon inhibits phytoene desaturase by competition with the cofactors. J Agric Food Chem 49:5270–5272PubMedCrossRefGoogle Scholar
  21. Brinda BR, Sarada R, Kamath BS, Ravishankar GA (2004) Accumulation of astaxanthin in flagellated cells of Haematococcus pluvialis—cultural and regulatory aspects. Curr Sci 87:1290–1295Google Scholar
  22. Britton G, Liaaen-Jensen S, Pfander H (2008) Carotenoids. Handbook. Birkhäuser Verlag, BaselCrossRefGoogle Scholar
  23. Brown TE, Richardson FL, Vaughn ML (1967) Development of red pigmentation in Chlorococcum wimmeri (Chlorophyta: Chlorococcales). Phycologia 6:167–184Google Scholar
  24. Burzyk J (1987) Cell wall carotenoids in green algae which form sporopollenins. Phytochem 26:121–128CrossRefGoogle Scholar
  25. Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2:202–207PubMedCrossRefGoogle Scholar
  26. Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M (1999) Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell 11:57–68PubMedCrossRefGoogle Scholar
  27. Ceron MC, García-Malea MC, Rivas J, Acien FG, Fernandez JM, Del Río E, Guerrero MG, Molina E (2007) Antioxidant activity of Haematococcus pluvialis cells grown in continuous culture as a function of their carotenoid and fatty acid content. Appl Microbiol Biotechnol 74:1112–1119PubMedCrossRefGoogle Scholar
  28. Chamovitz D, Pecker I, Hirschberg J (1993) Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate limiting step in carotenoids biosynthesis. J Biol Chem 268:17348–17353PubMedGoogle Scholar
  29. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 95:11715–11720PubMedCrossRefGoogle Scholar
  30. Coesel SN, Baumgartner AC, Teles LM, Ramos AA, Henriques NM, Cancela L, Varela JCS (2008) Nutrient limitation is the main regulatory factor for carotenoid accumulation and for psy and pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Mar Biotechnol 10:602–611PubMedCrossRefGoogle Scholar
  31. Cui B, Zhong F (2008) Effects of plant growth regulators on growth and astaxanthin content in green alga Haematoccus pluvialis. Fisheries Sci 27:478–482Google Scholar
  32. Cunningham F, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583PubMedCrossRefGoogle Scholar
  33. Cunningham F, Gantt E (2005) A study in scarlet: enzymes of ketocarotenoid biosynthesis in the flowers of Adonis aestivalis. Plant J 41:478–492PubMedCrossRefGoogle Scholar
  34. Czerpak R, Piotrowska A, Szulecka K (2006) Jasmonic acid affects changes in the growth and some components content in alga Chlorella vulgaris. Acta Physiol Plant 28:195–203CrossRefGoogle Scholar
  35. Del Campo JAD, Moreno J, Rodrıguez H, Angeles Vergas M, Rivas J, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76:51–59PubMedCrossRefGoogle Scholar
  36. Del Río E, Acién FG, García-Malea MC, Rivas J, Molina-Grima E, Guerrero MG (2005) Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Biotechnol Bioeng 91:808–815PubMedCrossRefGoogle Scholar
  37. Diversé-Pierluissi M, Krogmann DW (1988) A zeaxanthin protein from Anacystis nidulans. Biochim Biophys Acta 933:372–377CrossRefGoogle Scholar
  38. Dong QL, Zao XM, Xing XY, Hu JZ, Gong JX (2007) Mechanism of salt stress inducing astaxanthin synthesis in Haematococcus pluvialis. Huaxue Gong Cheng 35:45–47Google Scholar
  39. Droop MR (1955a) Carotenogenesis in Haematococcus pluvialis. Nature 175:42–43CrossRefGoogle Scholar
  40. Droop MR (1955b) Some factors governing encystment in Haematocccus pluvialis. Arch Mikrobiol 21:267–272PubMedCrossRefGoogle Scholar
  41. Escoubas J-M, Lomas M, LaRoche J, Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92:10237–10241PubMedCrossRefGoogle Scholar
  42. Fan L, Vonshak A, Boussiba S (1994) Effect of temperature and irradiance on growth of Haematococcus pluvialis (Chlorophyceae). J Phycol 30:829–833CrossRefGoogle Scholar
  43. Fan L, Vonshak A, Zarka A, Boussiba S (1998) Does astaxanthin protect Haematococcus against light damage? Z Naturforsch 53c:93–100Google Scholar
  44. Fassett RG, Coombes JS (2009) Astaxanthin, oxidative stress, inflammation and cardiovascular disease. Future Cardiol 5:333–342PubMedCrossRefGoogle Scholar
  45. Foyer CH, Mullineaux PM (1994) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca RatonGoogle Scholar
  46. Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265PubMedCrossRefGoogle Scholar
  47. Fraser PD, Miura Y, Misawa N (1997) In vitro characterization of astaxanthin biosynthetic enzymes. J Biol Chem 272:6128–6135PubMedCrossRefGoogle Scholar
  48. Fraser PD, Shimada H, Misawa N (1998) Enzymic confirmation of reactions involved in routes to astaxanthin formation, elucidated using a direct substrate in vitro assay. Eur J Biochem 252:229–236PubMedCrossRefGoogle Scholar
  49. Green J (1963) The occurrence of astaxanthin in the euglenoid Trachelomonas volvocina. Comp Biochem Physiol 9:313–316CrossRefGoogle Scholar
  50. Grünewald K, Hagen C (2000) Extrusion of secondary carotenoid containing vesicles from flagellates of Haematococcus pluvialis (Volvocales; Chlorophyceae). J Appl Bot 74:141–144Google Scholar
  51. Grünewald K, Hagen C (2001) β-carotene is the intermediate exported from the chloroplast during accumulation of secondary carotenoid in Haematococcus pluvialis. J Appl Phycol 13:89–93CrossRefGoogle Scholar
  52. Grünewald K, Hagen C, Braune K (1997) Secondary carotenoid accumulation in flagellates of the green alga Haematococcus lacustris. Eur J Phycol 32:387–392Google Scholar
  53. Grünewald K, Eckert M, Hirschberg J, Hagen C (2000) Phytoene desaturase is localized exclusively in the chloroplast and up-regulated at the mRNA level during accumulation of secondary carotenoids in Haematococcus pluvialis (Volvocales, Chlorophyceae). Plant Physiol 122:1261–1268PubMedCrossRefGoogle Scholar
  54. Grünewald K, Hirschberg J, Hagen C (2001) Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. J Biol Chem 276:6023–6029PubMedCrossRefGoogle Scholar
  55. Grung M, Metzger P, Liaaen-jensen S (1989) Algal carotenoids 42. Secondary carotenoids of algae. 1. Primary and secondary carotenoids in two races of the green alga Botryococcus braunii. Biochem Syst Ecol 17:263–269CrossRefGoogle Scholar
  56. Grung M, D’Souza FML, Borowitzka M, Liaaen-Jensen S (1992) Algal carotenoids. 51. Secondary carotenoids. 2. Haematococcus pluvialis aplanospores as a source of (3S, 3′S)-astaxanthin esters. J Appl Phycol 4:165–171CrossRefGoogle Scholar
  57. Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biochem Sci 21:210–216Google Scholar
  58. Hagen C, Braune W, Birckner E, Nüske J (1993a) Functional aspects of secondary carotenoids in Haematococcus lacustris (Girod) Rostafinski (Volvocales). I. The accumulation period as an active metabolic process. New Phytol 125:625–633CrossRefGoogle Scholar
  59. Hagen C, Braune W, Greulich F (1993b) Functional aspects of secondary carotenoids in Haematococcus lacustris [Girod] Rostafinski (Volvocales). IV. Protection from photodynamic damage. J Photochem Photobiol B 20:153–160CrossRefGoogle Scholar
  60. Hagen C, Grünewald K, Schmidt S, Muller J (2000) Accumulation of secondary carotenoids in flagellates of Haematococcus pluvialis (Chlorophyta) is accompanied by an increase in per unit chlorophyll productivity of photosynthesis. Eur J Phycol 35:75–82CrossRefGoogle Scholar
  61. Hanagata N, Dubinsky Z (1999) Secondary carotenoid accumulation in Scenedesmus komarekii (Chlorophyceae, Chlorophyta). J Phycol 35:960–966CrossRefGoogle Scholar
  62. Hanagata N, Karube I, Chihara M (1996) Bark-inhabiting green algae in Japan (1). Scenedesmus komarekii and Coelastrella multistriata var. multistriata (Scotiellocysteideae, Chlorellaceae, Chlorophyceae). J Jpn Bot 71:87–97Google Scholar
  63. Harker M, Hirschberg J (1997) Biosynthesis of ketocarotenoids in transgenic cyanobacteria expressing algal gene for β-C-4-oxygenase, crtO. FEBS Lett 404:129–134PubMedCrossRefGoogle Scholar
  64. Harker M, Young AJ (1995) Inhibition of astaxanthin synthesis in the green alga Haematococcus. Eur J Phycol 30:179–187CrossRefGoogle Scholar
  65. Hasunuma T, Miyasawa S-I, Yoshimura S, Shinzaki Y, Tomizawa K-I, Shindo K, Choi S-K, Misawa N, Miyake C (2008) Hyperproduction of astaxanthin in plant leaves by transplastomic engineering. Plant J 55:857–868PubMedCrossRefGoogle Scholar
  66. Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196PubMedCrossRefGoogle Scholar
  67. Hirschberg J (1998) Molecular biology of carotenoid biosynthesis. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids vol 3: biosynthesis and metabolism. Birkäuser, Basel, pp 149–194Google Scholar
  68. Hoham RW, Mullet (1977) The life history and ecology of the snow alga Chloromonas cryophila sp. Nov. (Chlorophyta, Volvocales). Phycologia 16:53–68Google Scholar
  69. Hu Z, Li Y, Sommerfeld M, Chen F, Hu Q (2008a) Enhanced protection against oxidative stress in an astaxanthin-overproduction Haematococcus mutant (Chlorophyceae). Eur J Phycol 43:365–376CrossRefGoogle Scholar
  70. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008b) Microalgal triacylglycerols as feedstocks for biofuel production : perspectives and advances. Plant J 54:621–639PubMedCrossRefGoogle Scholar
  71. Huang JC, Chen F, Sandmann G (2006a) Stress-related differential expression of multiple β-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis. J Biotechnol 122:176–185PubMedCrossRefGoogle Scholar
  72. Huang JC, Wang Y, Sandmann G, Chen F (2006b) Isolation and characterization of a carotenoid oxygenase gene for Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 71:473–479PubMedCrossRefGoogle Scholar
  73. Hui B, Pei L (2005) An overview of carotenoid production and consumption in China. Carotenoid Sci 9:48Google Scholar
  74. Hui Z, Gongshi X, Xuli D (2005) Advance of natural lutein and astaxanthin in China. Carotenoid Sci 9:49Google Scholar
  75. Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser J, Ramachandran C (1997) Mechanism of inhibition of protein-tyrosine phosphatase by vanadate and pervanadate. J Biol Chem 272:843–851PubMedCrossRefGoogle Scholar
  76. Imamoglu E, Dalay MC, Sukan FV (2009) Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis. New Biotechnol 26:199–204CrossRefGoogle Scholar
  77. Inoue K (2004) Carotenoid hydroxylation—P450 finally! Trends Plant Sci 9:515–517PubMedCrossRefGoogle Scholar
  78. Ip PF, Chen F (2005a) Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem 40:3491–3496CrossRefGoogle Scholar
  79. Ip PF, Chen F (2005b) Production of astaxanthin by the green alga Chlorella zofingiensis in the dark. Process Biochem 40:733–738CrossRefGoogle Scholar
  80. Ip PF, Wong KH, Chen F (2004) Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem 39:1761–1766CrossRefGoogle Scholar
  81. Jang JC, Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6:1665–1679PubMedCrossRefGoogle Scholar
  82. Jayaraj J, Devlin R, Punja Z (2008) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 17:489–501PubMedCrossRefGoogle Scholar
  83. Jin E, Lee CG, Polle JEW (2006) Secondary carotenoid accumulation in Haematococcus (Chlorophyceae): biosynthesis, regulation, and biotechnology. J Microbiol Biotechnol 16:821–831Google Scholar
  84. Johnson EA, An GH (1991) Astaxanthin from microbial sources. Crit Rev Biotechnol 11:297–326CrossRefGoogle Scholar
  85. Josse EM, Simkin AJ, Gaffé J, Labouré A-M, Kuntz M, Carol P (2000) A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol 123:1427–1436PubMedCrossRefGoogle Scholar
  86. Jyonouchi H, Sun S, Tomita Y, Gross MD (1995) Astaxanthin, a carotenoid without vitamin A activity, augments antibody responses in cultures including T-helper cell clones and suboptimal doses of antigen. J Nutr 125:2483–2492PubMedGoogle Scholar
  87. Kajiwara S, Kakizono T, Saito T, Kondo K, Ohtani T, Nishio N, Nagai S, Misawa N (1995) Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis from Haematococcus pluvialis and astaxanthin synthesis in Escherichia coli. Plant Mol Biol 29:343–352PubMedCrossRefGoogle Scholar
  88. Kajiwara S, Fraser PD, Kondo K, Misawa N (1997) Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem J 324:421–426PubMedGoogle Scholar
  89. Kakizono T, Kobayashi M, Nagai S (1992) Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green alga, Haematococcus pluvialis. J Ferment Bioeng 74:403–405CrossRefGoogle Scholar
  90. Kathiresan S, Chandrashekar A, Ravishankar GA, Sarada R (2009) Agrobacterium-mediated transformation in the green alga Haematococcus pluvialis (Chlorophyceae, Volvocales). J Phycol 45:642–649CrossRefGoogle Scholar
  91. Klotz LO (2002) Oxidant-induced signaling: effects of peroxynitrite and singlet oxygen. Biol Chem 383:443–456PubMedCrossRefGoogle Scholar
  92. Kobayashi M (2003) Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis. Biotechnol Bioprocess Eng 8:322–330CrossRefGoogle Scholar
  93. Kobayashi M, Sakamoto Y (1999) Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis. Biotechnol Lett 21:265–269CrossRefGoogle Scholar
  94. Kobayashi M, Kakizono T, Nishio N, Nagai S (1992) Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. J Ferment Bioeng 74:61–63CrossRefGoogle Scholar
  95. Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microbiol 59:867–873PubMedGoogle Scholar
  96. Kobayashi M, Kakizono T, Nishio N, Nagai S, Kurimura Y, Tsuji Y (1997a) Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol 48:351–356CrossRefGoogle Scholar
  97. Kobayashi M, Kurimura Y, Kakizono T, Nishio N, Tsuji Y (1997b) Morphological changes in the life cycle of the green alga Haematococcus pluvialis. J Ferment Bioeng 84:94–97CrossRefGoogle Scholar
  98. Kobayashi M, Todoroki Y, Hirai N, Kurimura Y, Ohigashi H, Tsuji Y (1998) Biological activities of abscisic acid analogs in the morphological change of the green alga Haematococcus pluvialis. J Ferment Bioeng 85:529–531CrossRefGoogle Scholar
  99. Komor E, Tanner W (1974) The hexose-proton symport system of Chlorella vulgaris. Specificity, stoichiometry and energetics of sugar-induced proton uptake. Eur J Biochem 44:219–223PubMedCrossRefGoogle Scholar
  100. Kopecky J, Schoefs B, Stys D, Loest K, Pulz O (2000) Microalgae as a source for secondary carotenoid production. A screening study. Arch Hydrobiol 98:153–167Google Scholar
  101. Ladygin VG (2000) Biosynthesis of carotenoids in the chloroplasts of the green alga Haematococcus pluvialis. Russ J Plant Physiol 47:796–814CrossRefGoogle Scholar
  102. Lemaire P, Livingstone DR (1995) Effects of the inhibitor ellipticine on cytochrome P450 reductase and cytochrome P450 (1A1) function in hepatic microsomes of flounder (Platichtys flesus). Mar Environ Res 39:73–77CrossRefGoogle Scholar
  103. Lemoine Y, Rmiki N-E, Créach A, Rachidi J, Schoefs B (2008) Cytoplasmic accumulation of astaxanthin by the green alga Haematococcus pluvialis (Flotow). In: Schoefs B (ed) Plant cell compartments—selected topics. Research Signpost, Trivandrum, pp 251–284Google Scholar
  104. Lers A, Levy H, Zamir A (1991) Co-regulation of a gene homologous to early light-induced genes in higher plants and beta-carotene biosynthesis in the alga Dunaliella bardawil. J Biol Chem 266:13698–13705PubMedGoogle Scholar
  105. Levy H, Gokhman I, Zamir A (1992) Regulation and light-harvesting complex II association of a Dunaliella protein homologous to early light-induced proteins in higher plants. J Biol Chem 267:18831–18836PubMedGoogle Scholar
  106. Levy H, Tal T, Shaish A, Zamir A (1993) Cbr, an algal homolog of plant early light-induced proteins, is a putative zeaxanthin binding protein. J Biol Chem 268:20892–20896PubMedGoogle Scholar
  107. Leya T, Rahn A, Lütz C, Remias D (2009) Response of artic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiol Ecol 67:432–443PubMedCrossRefGoogle Scholar
  108. Li Y, Sommerfeld M, Chen F, Hu Q (2008a) Consumption of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae). J Plant Physiol 165:1783–1797PubMedCrossRefGoogle Scholar
  109. Li Y, Huang JL, Sandmann G, Chen F (2008b) Glucose sensing and the mitochondria alternative pathway are involved in the regulation of astaxanthin biosynthesis in the dark-grown Chlorella zofingiensis (Chlorophyceae). Planta 228:735–743PubMedCrossRefGoogle Scholar
  110. Li Y, Huang J, Sandmann G, Chen F (2009) High-light and sodium chloride stress differentially regulate the biosynthesis of astaxanthin in Chlorella zofingiensis (Chlorophyceae). J Phycol 45:635–641CrossRefGoogle Scholar
  111. Li Y, Sommerfeld M, Chen F, Hu Q (2010) Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J Appl Phycol 22:253–263CrossRefGoogle Scholar
  112. Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65PubMedCrossRefGoogle Scholar
  113. Linden H (1999) Carotenoid hydroxylase from Haematococcus pluvialis: cDNA sequence, regulation and functional complementation. Biochim Biophys Acta 1446:203–212PubMedGoogle Scholar
  114. Liu BH, Lee YK (2000) Secondary carotenoids formation by the green alga Chlorococcum sp. J Appl Phycol 12:301–307CrossRefGoogle Scholar
  115. Liu JG, Liu W, Yin MY, Sun YN, Zhang Z, Li YY, Wang ZF, Lin W, Zhang JP, Shi PJ, Zhang XL, Sun YH, Xue YB, Cui XJ (2005) Some scientific and technical approaches to culture Haematococcus pluvialis from laboratory to pilot scale for natural astaxanthin. Carotenoid Sci 9:50Google Scholar
  116. Liu J, Zhong Y, Sun Z, Huang J, Sandmann G, Chen F (2010) One amino acid substitution in phytoene desaturase makes Chlorella zofingiensis resistant to norflurazon and enhances the biosynthesis of astaxanthin. Planta 232:61–67PubMedCrossRefGoogle Scholar
  117. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167PubMedCrossRefGoogle Scholar
  118. Lotan T, Hirschberg J (1995) Cloning and expression in Escherichia coli of the gene encoding β-C-4-oxygenase, that converts β-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett 364:125–128PubMedCrossRefGoogle Scholar
  119. Lu Y, Jiang P, Liu S, Gan Q, Cui H, Qin S (2010) Methyl jasmonate- or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of β-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis. Bioresour Technol 101:6468–6474PubMedCrossRefGoogle Scholar
  120. Ma RY-N, Chen F (2001) Enhanced production of free trans-astaxanthin by oxidative stress in the cultures of the green microalga. Chlorococcum sp. Process Biochem 36:1175–1179CrossRefGoogle Scholar
  121. Mann V, Harker M, Pecker I, Hirschberg J (2000) Metabolic engineering of astaxanthin production in tobacco flowers. Nat Biotechnol 18:888–892PubMedCrossRefGoogle Scholar
  122. Margalith PZ (1999) Production of ketocarotenoids by microalgae. Appl Microbiol Biotechnol 51:431–438PubMedCrossRefGoogle Scholar
  123. Martin JF, Gudina E, Barredo JL (2008) Conversion of β-carotene into astaxanthin: two separate enzymes or a bifunctional hydroxylase-ketolase protein? Microb Cell Fact 7:3PubMedCrossRefGoogle Scholar
  124. Maxwell DP, Nickels R, McIntosh L (2002) Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J 29:269–279PubMedCrossRefGoogle Scholar
  125. Meng CX, Teng CY, Jiang P, Qin S, Tseng C (2005) Cloning and characterization of β-carotene ketolase gene promoter in Haematococcus pluvialis. Acta Biochim Biophys Sinica 37:270–275CrossRefGoogle Scholar
  126. Miao F, Dayan L, Li Y, Zeng M (2006) Characterization of astaxanthin esters in Haematococcus pluvialis by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Anal Biochem 352:176–181PubMedCrossRefGoogle Scholar
  127. Misawa N (2009) Pathway engineering of plants toward astaxanthin production. Plant Biotechnol 26:93–99Google Scholar
  128. Misawa N, Satomi Y, Kondo K, Yokoyama Y, Kajiwara S, Saito T, Ohtani T, Miki W (1995) Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol 177:6575–6584PubMedGoogle Scholar
  129. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedCrossRefGoogle Scholar
  130. Miura Y, Kondo K, Saito T, Shimada H, Fraser PD, Misawa N (1998) Production of the carotenoids lycopene, beta-carotene, and astaxanthin in the food yeast Candida utilis. Appl Environ Microbiol 64:1226–1229PubMedGoogle Scholar
  131. Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591PubMedCrossRefGoogle Scholar
  132. Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336PubMedCrossRefGoogle Scholar
  133. Morris WL, Ducreux LJM, Fraser PD, Millam S, Taylor MA (1986) Engineering of ketocarotenoids in potato tubers. Metab Eng 8:253–263CrossRefGoogle Scholar
  134. Moulin P, Lemoine Y, Schoefs B (2010) Modifications of the carotenoid metabolism in plastids: a response to stress conditions. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York; 3rd edn, Taylor and Francis, New York, pp 407–433Google Scholar
  135. Müller T, Bluβ W, Martin CD, Rogaschewski S, Fuhr G (1998) Snow from Northwest Svalbard: their identification, distribution, pigment and nutrient content? Polar Biol 20:14–32CrossRefGoogle Scholar
  136. Nebdalova L, Kocianova M, Lukavsky J (2008) Ecology of snow algae in the Giant Mts. Opera Corcon 45:59–68Google Scholar
  137. Niyogi KK (2000) Safety valves for photosynthesis. Curr Opin Plant Biol 3:455–460PubMedCrossRefGoogle Scholar
  138. Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506CrossRefGoogle Scholar
  139. Olaizola M, Huntley ME (2003) Recent advances in commercial production of astaxanthin from microalgae. In: Fingerman M, Nagabhushanam R (eds) Recent advances in marine biotechnology. Vol. 9: biomaterials and bioprocessing. Science Publishers, Enfield, NH, pp 143–164Google Scholar
  140. Orosa M, Torres E, Fidalgo P, Abalde J (2000) Production and analysis of secondary carotenoids in green algae. J Appl Phycol 12:553–556CrossRefGoogle Scholar
  141. Orosa M, Valero JF, Herrero C, Abalde J (2001) Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnol Lett 23:1079–1085CrossRefGoogle Scholar
  142. Palozza P, Krinsky NI (1992) Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch Biochem Biophys 297:291–295PubMedCrossRefGoogle Scholar
  143. Park EK, Lee CG (2001) Astaxanthin production by Haematococcus pluvialis under various light intensities and wavelengths. J Microbiol Biotechnol 11:1024–1030Google Scholar
  144. Park J-K, Tran PN, Kim J-D, Hong S-J, Lee CG (2009) Carotenogenesis in Haematococcus lacustris: role of protein tyrosine phosphatases. J Microbiol Biotechnol 19:918–921PubMedCrossRefGoogle Scholar
  145. Pelah D, Sintov A, Cohen E (2004) The effect of salt stress on the production of canthaxanthin and astaxanthin by Chlorella zofingiensis grown under limited light intensity. World J Microbiol Biotechnol 20:483–486CrossRefGoogle Scholar
  146. Pfannschmidt T, Nilsson A, Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397:625–628CrossRefGoogle Scholar
  147. Phillips LG, Cowan AK, Rose PD, Logie MRR (1995) Operation of the xanthophyll cycle of non-stressed and stressed cells of Dunaliella salina Teod. in response to diurnal changes in incident irradiation: a correlation with intracellular beta-carotene content. J Plant Physiol 146:547–553Google Scholar
  148. Qin S, Liu G-X, Hu Z-Y (2008) The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (Chlorophyceae). Process Biochem 43:795–802CrossRefGoogle Scholar
  149. Qiu B, Li Y (2006) Photosynthetic acclimation and photoprotective mechanism in Haematococcus pluvialis (Chlorophyceae) during the accumulation of secondary carotenoids at elevated irradiation. Phycologia 45:117–126CrossRefGoogle Scholar
  150. Rabbani S, Beyer P, Lintig JV, Hugheney P, Kleinig H (1998) Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116:1239–1248PubMedCrossRefGoogle Scholar
  151. Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40:259–268CrossRefGoogle Scholar
  152. Remias D, Holzinger A, Lütz C (2009) Physiology, ultrastructure and habitat of the ice alga Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from glaciers in the European Alps. Phycologia 48:302–312CrossRefGoogle Scholar
  153. Remias D, Karsten U, Lütz C, Leya T (2010) Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma. doi: 10:1007/s00709-010-0123-y
  154. Renstrom B, Liaaen-Jensen S (1981) Fatty acid composition of some esterified carotenols. Comp Biochem Physiol 69(Part B):625–627Google Scholar
  155. Renstrom B, Berger H, Liaaen-Jensen S (1981a) Esterified, optical pure (3S, 3′S)-astaxanthin from flowers of Adonis annua. Biochem Syst Ecol 9:249–250CrossRefGoogle Scholar
  156. Renstrom B, Borch G, Skulberg OM, Liaaen-Jensen S (1981b) Optical purity of (3S, 3′S)-astaxanthin from Haematococcus pluvialis. Phytochemistry 20:2561–2564CrossRefGoogle Scholar
  157. Rezenka T, Nedbalova L, Sigler K, Cepak V (2008) Identification of astaxanthin diglucoside diesters from snow alga Chlamydomonas nivalis by liquid chromatography-atmospheric pressure chemical mass spectrometry. Phytochemistry 69:479–490CrossRefGoogle Scholar
  158. Rise M, Cohen E, Vishkautsan M, Cojocaru M, Gottlieb HE, Arad SM (1994) Accumulation of secondary carotenoids in Chlorella zofingiensis. J Plant Physiol 144:287–292Google Scholar
  159. Rmiki NE, Schoefs B, Juricik B, Lemoine Y (1996) Astaxanthin biosynthesis and encystment induced by light stress in a green unicellular alga. In: Schoefs B, Franck F, Aghion J (eds) Biology, biochemistry and molecular biology of photosynthesis. Bull Soc Roy Sci Liège 35:367–368Google Scholar
  160. Rmiki NE, Schoefs B, Lemoine Y (1999) Carotenoids and stress in higher plants and algae. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 465–482CrossRefGoogle Scholar
  161. Rohmer M (2010) Methylerythritol phosphate pathway. In: Mander L, Lui H-W (eds) Comprehensive natural products II chemistry and biology, vol 1. Elsevier, Oxford, pp 517–555CrossRefGoogle Scholar
  162. Rolland F, Moore B, Sheen J (2002a) Sugar sensing and signaling in plants. Plant Cell 14:S185–S205PubMedGoogle Scholar
  163. Rolland F, Winderickx J, Thevelein JM (2002b) Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci 26:310–317CrossRefGoogle Scholar
  164. Ryu JY, Song JY, Lee JM, Jeong SW, Chow WS, Choi SB, Pogson BJ, Park YI (2004) Glucose-induced expression of carotenoid biosynthesis genes in the dark is mediated by cytosolic pH in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 279:25320–25325PubMedCrossRefGoogle Scholar
  165. Salgado APF, Pereira C, Seica RM, Fernandes AP, Flatt PR, Santos RM, Rosario LM, Ramasamy R (1999) Modulation of glucose-induced insulin secretion by cytosolic redox state in clonal beta-cells. Mol Cell Endocrinol 154:79–88PubMedCrossRefGoogle Scholar
  166. Sandmann G (1994) Carotenoid biosynthesis in microorganisms and plants. Eur J Biochem 223:7–24PubMedCrossRefGoogle Scholar
  167. Sandmann G, Kuhn M, Böger P (1993) Carotenoids in photosynthesis: protection of D1 degradation in the light. Photosynth Res 35:185–190CrossRefGoogle Scholar
  168. Santos MF, Mesquita JF (1984) Ultrastructural study of Haematococcus lacustris (Girod.) Rostafinski (Volvocales): some aspects of carotenogenesis. Cytologia 49:215–228Google Scholar
  169. Sauer N, Tanner W (1989) The hexose carrier from Chlorella. cDNA cloning of a eucaryotic H+-cotransporter. FEBS Lett 259:43–46PubMedCrossRefGoogle Scholar
  170. Sayed OH, Hegazy AK (1992) Inhibition of secondary carotenoid biosynthesis during degreening of Chlorella fusca (Chlorococcales, Chlorophyta) and implications for growth and survival. Cryptogam Algol 13:181–186Google Scholar
  171. Schoefs B (2003) Chlorophyll and carotenoid analysis in food products. A practical case-by-case view. Trends Analyt Chem 22:335–339CrossRefGoogle Scholar
  172. Schoefs B, Rmiki NE, Rachidi J, Lemoine Y (2001) Astaxanthin accumulation in Haematococcus requires a cytochrome P450 hydroxylase and an active synthesis of fatty acids. FEBS Lett 500:125–128PubMedCrossRefGoogle Scholar
  173. Schroeder WA, Johnson EA (1995) Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma. J Biol Chem 270:18374–18379PubMedCrossRefGoogle Scholar
  174. Seddas P, Gianinazzi-Pearson P, Schoefs B, Küster H, Wipf D (2009) Communication and signaling in the plant-fungus symbiosis: the mycorrhiza. In: Baluska F (ed) Plant-environment interactions from behavioral perspective. Springer Verlag, Berlin, pp 45–71Google Scholar
  175. Semenza GL (1999) Perspectives on oxygen sensing. Cell 98:281–284PubMedCrossRefGoogle Scholar
  176. Sestak Z, Baslerova M (1963) Changes in chlorophylls and carotenoids in ageing culture of green algae as studied by paper chromatography. In: Studies of microalgae and photosynthetic bacteria, Japan. Soc. Plant Physiol. (ed), University of Tokyo, pp 423–429Google Scholar
  177. Seybold A, Goodwin TW (1959) Occurence of astaxanthin in the flower petals of Adonis annua L. Nature 184:1714–1715PubMedCrossRefGoogle Scholar
  178. Shimada H, Kondo K, Fraser PD, Miura Y, Saito T, Misawa N (1998) Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl Environ Microbiol 64:2676–2680PubMedGoogle Scholar
  179. Somanchi A, Mayfield SP (1999) Nuclear-chloroplast signalling. Curr Opin Plant Biol 2:404–409PubMedCrossRefGoogle Scholar
  180. Stadler R, Wolf K, Hilgarth C, Tanner W, Sauer N (1995) Subcellular localization of the inducible Chlorella HUP1 monosaccharide-H+ symporter and cloning of a coinduced galactose-H+ symporter. Plant Physiol 107:33–41PubMedCrossRefGoogle Scholar
  181. Staehelin LA, Arntzen CJ (1983) Regulation of chloroplast membrane function: protein phosphorylation changes the spatial organization of membrane components. J Cell Biol 97:1327–1337PubMedCrossRefGoogle Scholar
  182. Stalberg K, Lindgren O, Ek B, Höglund AS (2003) Synthesis of ketocarotenoids in the seeds of Arabidopsis thaliana. Plant J 36:771–779PubMedCrossRefGoogle Scholar
  183. Steinbrenner J, Linden H (2001) Regulation of two carotenoid biosynthetic genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol 125:810–817PubMedCrossRefGoogle Scholar
  184. Steinbrenner J, Linden H (2003) Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol Biol 52:343–356PubMedCrossRefGoogle Scholar
  185. Steinbrenner J, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol 72:7477–7484PubMedCrossRefGoogle Scholar
  186. Sun Z, Cunningham FX, Gantt E (1998) Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular Chlorophyte. Proc Natl Acad Sci USA 95:11482–11488PubMedCrossRefGoogle Scholar
  187. Sun N, Wang Y, Li Y-T, Huang J-C, Chen F (2008) Sugar-based growth, astaxanthin accumulation and carotenogenesis transcription of heterotrophic Chlorella zofingiensis (Chlorophyceae). Process Biochem 43:1288–1292CrossRefGoogle Scholar
  188. Susek RE, Chory J (1992) A tale of two genomes: role of a chloroplast signal coordinating nuclear and plastid genome expression. Aust J Plant Physiol 19:387–401CrossRefGoogle Scholar
  189. Tan S, Cunningham FX, Youmans M, Grabowski B, Sun Z, Gantt E (1995) Cytochrome f loss in astaxanthin-accumulating red cells of Haematococcus pluvialis (Chlorophyceae): comparison of photosynthetic activity, photosynthetic enzymes, and thylakoid membrane polypeptides in red and green cells. J Phycol 31:897–905CrossRefGoogle Scholar
  190. Tanaka T, Morishita Y, Suzui M, Kojima T, Okumura A, Mori H (1994) Chemoprevention of mouse urinary bladder carcinogenesis by the naturally occurring carotenoid astaxanthin. Carcinogenesis 15:15–19PubMedCrossRefGoogle Scholar
  191. Tanner W (1969) Light-driven active uptake of 3-O-methylglucose via an inducible hexose uptake system of Chlorella. Biochem Biophys Res Commun 36:278–283PubMedCrossRefGoogle Scholar
  192. Terao J (1989) Antioxidant activity of β-carotene-related carotenoids in solution. Lipids 24:659–661PubMedCrossRefGoogle Scholar
  193. Tian L, DellaPenna D (2004) Progress in understanding the origin and functions of carotenoid hydroxylases in plants. Arch Biochem Biophys 430:22–29PubMedCrossRefGoogle Scholar
  194. Tischer J (1936) Uber das Euglenarhodon und andere Carotinoide einer roten Euglene. (Carotinoide der Süβwasseralgen, I.Teil). Hoppe-Seylers Z Physiol Chem 239:257–269Google Scholar
  195. Tjahjono AE, Hayama Y, Kakizono T, Terada Y, Nishio N, Nagai S (1994) Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechnol Lett 16:133–138 CrossRefGoogle Scholar
  196. Tracey AS, Gresser MJ (1986) Interaction of vanadate with phenol and tyrosine: implications for the effects of vanadate on systems regulated by tyrosine phosphorylation. Proc Natl Acad Sci USA 83:609–613PubMedCrossRefGoogle Scholar
  197. Tran N-P, Park J-K, Lee C-G (2009) Proteomic analysis of proteins in green alga Haematococcus pluvialis (Chlorophyceae) expressed under combined stress of nitrogen starvation and high irradiance. Enzyme Microb Technol 45:241–246CrossRefGoogle Scholar
  198. Vanlerberghe GC, McIntosh L (1997) Alternative oxidase: from gene to function. Annu Rev Plant Physiol Plant Mol Biol 48:703–734PubMedCrossRefGoogle Scholar
  199. Vechtel B, Eichenberger W, Ruppel G (1992a) Lipid bodies in Eremosphaera viridis De Bary (Chlorophyceae). Plant Cell Physiol 33:41–48Google Scholar
  200. Vechtel B, Pistorius EK, Ruppel HG (1992b) Occurence of secondary carotenoids in PS I complexes isolated from Eremosphaera viridis De Bary (Chlorophyceae). Z Naturforsch 47c:51–56Google Scholar
  201. Vidhyavathi R, Venkatachalam L, Sarada R, Ravishankar GA (2008) Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J Exp Bot 59:1409–1418PubMedCrossRefGoogle Scholar
  202. Vidhyavathi R, Sarada R, Rhavishankar GA (2009) Expression of carotenogenic genes and carotenoid production in Haematococcus pluvialis under the influence of carotenoid and fatty acid synthesis inhibitors. Enzyme Microb Technol 45:88–93CrossRefGoogle Scholar
  203. von Flotow J (1844) Uber Haematococcus pluvialis. Verh Kais Leopold-Carol Akad Naturf. Nova Acta Acad Caes Leopold-Carolin Nat Curios 20:411–606Google Scholar
  204. Wang Y, Peng J (2008) Growth-associated biosynthesis of astaxanthin in heterotrophic Chlorella zofingiensis (Chlorophyta). World J Microbiol Biotechnol 24:1915–1922CrossRefGoogle Scholar
  205. Wang X, Willen R, Wadström T, Andersen LP (2000) Astaxanthin-rich algal meal and vitamin C inhibit Helicobacter pylori infection in BALB/cA mice. Antimicrob Agents Chemother 44:2452–2457PubMedCrossRefGoogle Scholar
  206. Wang B, Zarka A, Trebst A, Boussiba S (2003) Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process during high irradiance. J Phycol 39:1116–1124CrossRefGoogle Scholar
  207. Wang SB, Chen F, Sommerfeld M, Hu Q (2004) Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta 220:17–29PubMedCrossRefGoogle Scholar
  208. Wang JX, Sommerfeld M, Hu Q (2009) Occurence and environmental stress responses of two plastid terminal oxidases in Haematococcus pluvialis (Chlorophyceae). Planta 230:191–203PubMedCrossRefGoogle Scholar
  209. Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1:1–9CrossRefGoogle Scholar
  210. Wu DY, Wright DA, Wetzel C, Voytas DF, Rodermel S (1999) The immutans variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell 11:43–55PubMedCrossRefGoogle Scholar
  211. Xiong F, Komenda J, Kopecky J, Nedbal LV (1997) Strategies of ultraviolet-B protection in microscopic algae. Physiol Plant 100:378–388CrossRefGoogle Scholar
  212. Yong YYR, Lee YK (1991) Do carotenoids play a photoprotective role in the cytoplasm of Haematococcus lacustris (Chlorophyta)? Phycologia 30:257–261Google Scholar
  213. Young AJ, Britton G (1990) Carotenoids and Stress. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, New York, pp 87–112Google Scholar
  214. Zhang DH, Lee YK (2001) Two-step process for ketocarotenoid production by a green alga, Chlorococcum sp. Strain MA-1. Appl Microbiol Biotechnol 55:537–540PubMedCrossRefGoogle Scholar
  215. Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z (2002) Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J Phycol 38:325–331CrossRefGoogle Scholar
  216. Zhekisheva M, Zarka A, Khozin-Goldberg I, Cohen Z, Boussiba S (2005) Inhibition of astaxanthin synthesis under high irradiance does not abolish triacylglycerol accumulation in the green alga Haematococcus pluvialis (Chlorophyceae). J Phycol 41:819–826CrossRefGoogle Scholar
  217. Zhu JK (2001) Plant cell tolerance. Trends Plant Sci 6:66–71PubMedCrossRefGoogle Scholar
  218. Zhu C, Naqvi S, Capell T, Christou P (2009) Metabolic engineering of ketocarotenoid biosynthesis in higher plants. Arch Biochem Biophys 483:182–190PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.University Lille Nord de France, UMR 8187 LOG CNRS/University Lille 1Villeneuve d’Ascq CedexFrance
  2. 2.Plante-Microbe-Environnement, UMR CNRS/INRA/University of BurgundyDijonFrance

Personalised recommendations