Advertisement

Photosynthesis Research

, Volume 105, Issue 2, pp 143–166 | Cite as

Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms

  • Katalin SolymosiEmail author
  • Benoît Schoefs
Review

Abstract

Chloroplast development is usually regarded as proceeding from proplastids. However, direct or indirect conversion pathways have been described in the literature, the latter involving the etioplast or the etio-chloroplast stages. Etioplasts are characterized by the absence of chlorophylls (Chl-s) and the presence of a unique inner membrane network, the prolamellar body (PLB), whereas etio-chloroplasts contain Chl-s and small PLBs interconnected with chloroplast thylakoids. As etioplast development requires growth in darkness for several days, this stage is generally regarded as a nonnatural pathway of chloroplast development occurring only under laboratory conditions. In this article, we have reviewed the data in favor of the involvement of etioplasts and etio-chloroplasts as intermediary stage(s) in chloroplast formation under natural conditions, the molecular aspects of PLB formation and we propose a dynamic model for its regulation.

Keywords

Chlorophyll biosynthesis Chloroplast differentiation Etioplast Etioplast–chloroplast transition Prolamellar body Protochlorophyllide 

Abbreviations

5-ALA

5-Aminolevulinic acid

Chl

Chlorophyll

Chlide

Chlorophyllide

COP1

Constitutively photomorphogenic 1 gene, encoding the COP1 protein corresponding to E3-ubiquitin ligase

CRD1

Mg-protoporphyrin IX monomethyl cyclase

DPOR

Light-independent protochlorophyllide oxidoreductase

Fe-chelatase

PPIX:Fe-chelatase

FLU/TIGRINA D

A nuclear encoded protein that exerts negative feedback control on Chl biosynthesis

GLU-TR

Glutamyl t-RNA reductase

GUN5

The CHLH subunit of Mg-chelatase, the abbreviation comes from GENOME UNCOUPLED 5

HEMA1

The gene encoding GLU-TR

LDC

Light–dark cycles

LHCA and LHCB

Nuclear genes encoding major light-harvesting Chl a/b proteins associated to PSI and PSII, respectively

LPOR

Light-dependent NADPH:protochlorophyllide oxidoreductase

LPOR-A, LPOR-B, and LPOR-C

Different isoforms of LPOR

Mg-chelatase

PPIX:Mg-chelatase

Mg–PPIX

Magnesium PPIX

Mg–PPIX–MMe

Magnesium PPIX monomethyl ester

NTRC

NADPH:thioredoxin reductase C

Pchlide

Protochlorophyllide

PIF

Phytochrome Interacting Factor

PPIX

Protoporphyrin IX

PLB

Prolamellar body

PT

Prothylakoid

SCO

Snowy cotyledon 1 mutant, SCO encodes a chloroplast-localized elongation factor

SIG

Genes encoding SIGMA factors

Notes

Acknowledgments

The authors apologize in advance to all investigators whose contributions in this field could not be directly cited owing to space limitations. K. Solymosi thanks Prof. Béla Böddi (Eötvös University, Budapest, Hungary) for encouraging and supporting her work and the University of Burgundy for the temporary invitation as assistant lecturer. The authors also thank the anonymous reviewers for their helpful and constructive comments and corrections.

References

  1. Adamson H, Packer N, Gregory J (1985) Chloroplast development and the synthesis of chlorophyll and protochlorophyllide in Zostera transferred to darkness. Planta 165:469–476CrossRefGoogle Scholar
  2. Agnolucci L, Vecchia DF, Barbato R, Tassani V, Casadoro G, Rascio N (1996) Amitrole effects on chloroplasts of barley plants grown at different temperatures. J Plant Physiol 147:493–502Google Scholar
  3. Akkaya MS, Breitenberger CA (1992) Light regulation of protein synthesis factor EF-G in pea chloroplasts. Plant Mol Biol 20:791–800PubMedCrossRefGoogle Scholar
  4. Albrecht V, Ingenfeld A, Apel K (2006) Characterization of the snowy cotyledon 1 mutant in Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality. Plant Mol Biol 60:507–518PubMedCrossRefGoogle Scholar
  5. Allison LA (2000) The role of sigma factors in plastid transcription. Biochimie 82:537–548PubMedCrossRefGoogle Scholar
  6. Al-Sady B, Ni W, Kircher S, Schäfer E, Quail PH (2006) Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol Cell 23:439–446PubMedCrossRefGoogle Scholar
  7. Ankele E, Kindgren P, Pesquet E, Strand A (2007) In vivo visualization of Mg-protoporphyrin IX, a coordinator of photosynthetic gene expression in the nucleus and the chloroplast. Plant Cell 19:1964–1979PubMedCrossRefGoogle Scholar
  8. Antipova TV, Gapeeva TA, Volotovsky ID (2004) Photoregulation of protochlorophyllide oxidoreductase and Rubisco large subunit accumulation in phytochrome A-deficient transgenic tobacco plants. Russ J Plant Physiol 51:152–155CrossRefGoogle Scholar
  9. Apel K (1981) The protochlorophyllide holochrome in barley (Hordeum vulgare L.). Phytochrome-induced decrease of translatable mRNA coding for the NADPH:protochlorophyllide oxidoreductase. Eur J Biochem 120:89–93PubMedCrossRefGoogle Scholar
  10. Apel K, Kloppstech K (1980) The effect of light on the biosynthesis of light harvesting chlorophyll a/b protein. Evidence for the requirement of chlorophyll a for the stabilization of the apoprotein. Planta 150:426–430CrossRefGoogle Scholar
  11. Armstrong GA, Apel K, Rüdiger W (2000) Does a light-harvesting protochlorophyllide a/b-binding protein complex exist? Trends Plant Sci 5:40–44PubMedCrossRefGoogle Scholar
  12. Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134PubMedCrossRefGoogle Scholar
  13. Aronsson H, Jarvis P (2009) The chloroplast protein import apparatus, its components, and their roles. In: Sandelius AS, Aronsson H (eds) Plant cell monograph “Chloroplast-interactions with the environment”, vol 13. Springer, Berlin/Heidelberg, pp 89–123Google Scholar
  14. Aronsson H, Sohrt K, Soll J (2000) NADPH:protochlorophyllide oxidoreductase uses the general import route into chloroplasts. Biol Chem 381:1263–1267PubMedCrossRefGoogle Scholar
  15. Aronsson H, Sundqvist C, Dahlin C (2003a) POR-import and membrane association of a key element in chloroplast development. Physiol Plant 118:1–9PubMedCrossRefGoogle Scholar
  16. Aronsson H, Sundqvist C, Dahlin C (2003b) POR hits the road: import and assembly of a plastid protein. Plant Mol Biol 51:1–7PubMedCrossRefGoogle Scholar
  17. Aronsson A, Schöttler MA, Kelly AA, Sundqvist C, Dörmann P, Karim S, Jarvis P (2008) Monogalactosyldiacylglycerol deficiency in Arabidopsis affects pigment composition in the prolamellar body and impairs thylakoid membrane energization and photoprotection in leaves. Plant Physiol 148:580–592PubMedCrossRefGoogle Scholar
  18. Bae G, Choi G (2008) Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol 59:281–311PubMedCrossRefGoogle Scholar
  19. Bahl J (1977) Chlorophyll, carotenoid and lipid content in Triticum sativum L. Plastid envelopes, prolamellar bodies, stroma lamellae and grana. Planta 136:21–24CrossRefGoogle Scholar
  20. Barnes SA, Nishizawa NK, Quaggio RB, Whitelam GC, Chua NH (1996) Far-red light blocks greening of Arabidopsis seedlings via a phytochrome A-mediated change in plastid development. Plant Cell 8:601–615PubMedCrossRefGoogle Scholar
  21. Bartels F (1971) Strukturelle Veränderungen der Chloroplasten-thylakoide in Palisadenzellen von Peperomia metallica im Licht-Dunkelwechsel. Protoplasma 72:27–41Google Scholar
  22. Barthélemy X, Bouvier G, Radunz A, Docquier S, Schmid GH, Franck F (2000) Localization of NADPH-protochlorophyllide reductase in plastids of barley at different greening stages. Photosynth Res 64:63–76PubMedCrossRefGoogle Scholar
  23. Bartsch S, Monnet J, Selbach K, Quigley F, Grey J, von Wettstein D, Reinbothe S, Reinbothe C (2008) Three thioredoxin targets in the inner envelope membrane of chloroplasts function in protein import and chlorophyll metabolism. Proc Natl Acad Sci USA 105:4933–4938PubMedCrossRefGoogle Scholar
  24. Bauer S, Siegelman HW (1972) Photoconversion of chlorophyllide 684 to chlorophyllide 678. FEBS Lett 20:352–354PubMedCrossRefGoogle Scholar
  25. Bauer J, Chen K, Hiltbrunner A, Wehrli E, Eugster M, Schnell D, Kessler F (2000) The major protein import receptor of plastids is essential for chloroplast biogenesis. Nature 403:203–207PubMedCrossRefGoogle Scholar
  26. Bauer D, Viczián A, Kircher S, Nobis T, Nitschke R, Kunkel T, Panigrahi KCS, Ádám É, Fejes E, Schäfer E, Nagy F (2004) Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. Plant Cell 16:1433–1445PubMedCrossRefGoogle Scholar
  27. Beale SI, Gough SP, Granick S (1975) Biosynthesis of delta-aminolevulinic acid from intact carbon skeleton of glutamic acid in greening barley. Proc Natl Acad Sci USA 72:2719–2723PubMedCrossRefGoogle Scholar
  28. Beator J, Kloppstech K (1993) The circadian oscillator coordinates the synthesis of apoproteins and their pigments during chloroplast development. Plant Physiol 103:191–196PubMedGoogle Scholar
  29. Beck CF (2005) Signaling pathways from the chloroplast to the nucleus. Planta 222:743–756PubMedCrossRefGoogle Scholar
  30. Bei-Paraskevopoulou T, Anastassiou R, Argyroudi-Akoyunoglou J (1995) Circadian expression of the light-harvesting protein of photosystem II in etiolated bean leaves following a single red light pulse: coordination with the capacity of the plant to form chlorophyll and the thylakoid-bound protease. Photosynth Res 44:93–106CrossRefGoogle Scholar
  31. Bennett J, Schwender JR, Shaw EK, Tempel N, Ledbetter M, Williams RS (1987) Failure of corn leaves to acclimate to low irradiance. Role of protochlorophyllide reductase in regulating levels of five chlorophyll-binding proteins. Biochim Biophys Acta 892:118–129CrossRefGoogle Scholar
  32. Benning C (2009) Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu Rev Cell Dev Biol 25:71–91Google Scholar
  33. Blomqvist LA, Ryberg M, Sundqvist C (2006) Proteomic analysis of the etioplast inner membranes of wheat (Triticum aestivum) by two-dimensional electrophoresis and mass spectrometry. Physiol Plant 128:368–381CrossRefGoogle Scholar
  34. Blomqvist LA, Ryberg M, Sundqvist C (2008) Proteomic analysis of highly purified prolamellar bodies reveals their significance in chloroplast development. Photosynth Res 96:37–50PubMedCrossRefGoogle Scholar
  35. Böddi B, McEwen B, Ryberg M, Sundqvist C (1994) Protochlorophyllide forms in non-greening epicotyls of dark-grown pea (Pisum sativum). Physiol Plant 92:706–713CrossRefGoogle Scholar
  36. Böddi B, Evertsson I, Ryberg M, Sundqvist C (1996) Protochlorophyllide transformations and chlorophyll accumulation in epicotyls of pea (Pisum sativum). Physiol Plant 96:706–713CrossRefGoogle Scholar
  37. Böddi B, Loudèche R, Franck F (2005) Delayed chlorophyll accumulation and pigment photodestruction in the epicotyls of dark-grown pea (Pisum sativum). Physiol Plant 125:365–372CrossRefGoogle Scholar
  38. Bollenbach TJ, Schuster G, Stern DB (2004) Cooperation of endo- and exoribonucleases in chloroplast mRNA turnover. Prog Nucleic Acid Res Mol Biol 78:305–307PubMedCrossRefGoogle Scholar
  39. Bowler C, Fluhr R (2000) The role of calcium and activated oxygen as signals for controlling cross-tolerance. Trends Plant Sci 5:241–245PubMedCrossRefGoogle Scholar
  40. Boynton JE, Henningsen KW (1967) The physiology and chloroplast structure of mutants at loci controlling chlorophyll synthesis in barley. Stud Biophys 5:85–88Google Scholar
  41. Bräutigam A, Hoffmann-Benning S, Weber APM (2008) Comparative proteomics of chloroplast envelopes from C3 and C4 plants reveals specific adaptations of the plastid envelope to C4 photosynthesis and candidate proteins required for maintaining C4 metabolite fluxes. Plant Physiol 148:568–579PubMedCrossRefGoogle Scholar
  42. Brentel I, Selstam E, Lindblom G (1985) Phase equilibria of mixtures of plant galactolipids. The formation of a bicontinuous cubic phase. Biochim Biophys Acta 812:816–826CrossRefGoogle Scholar
  43. Brusslan JA, Peterson MP (2002) Tetrapyrrole regulation of nuclear gene expression. Photosynth Res 71:185–194PubMedCrossRefGoogle Scholar
  44. Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220PubMedCrossRefGoogle Scholar
  45. Buhr F, El Bakkouri M, Valdez O, Pollmann S, Lebedev N, Reinbothe S, Reinbothe C (2008) Photoprotective role of NADPH:protochlorophyllide oxidoreductase A. Proc Natl Acad Sci USA 105:12629–12634PubMedCrossRefGoogle Scholar
  46. Caliebe A, Grimm R, Kaiser G, Lübeck J, Soll J, Heins L (1997) The chloroplastic protein import machinery contains a Rieske-type iron-sulfur cluster and mononuclear iron-binding protein. EMBO J 16:7342–7350PubMedCrossRefGoogle Scholar
  47. Casadoro G, Rascio N (1987) Cotyledonal chloroplasts in the hypogeal seeds of clementine. Planta 170:300–307CrossRefGoogle Scholar
  48. Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182PubMedCrossRefGoogle Scholar
  49. Chai M, Chen Q, An R, Chen Y, Wang X (2005) NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection. Plant Mol Biol 59:553–564PubMedCrossRefGoogle Scholar
  50. Chen M, Choi Y, Voytas DF, Rodermel S (2000) Mutation in the Arabidopsis VAR2 locus causes leaf variegation due to the loss of a chloroplast FtsH protease. Plant J 22:303–313PubMedCrossRefGoogle Scholar
  51. Chigri F, Hürmann F, Stamp A, Stammers DK, Bölter B, Soll J, Vothknecht UC (2006) Calcium regulation of chloroplast protein translocation is mediated by calmodulin binding to Tic32. Proc Natl Acad Sci USA 103:16051–16056PubMedCrossRefGoogle Scholar
  52. Cornah JE, Roper JM, Pal Singh D, Smith AG (2002) Measurement of ferrochelatase activity using a novel assay suggests that plastids are the major site of haem biosynthesis in both photosynthetic and nonphotosynthetic cells of pea (Pisum sativum L.). Biochem J 362:423–432PubMedCrossRefGoogle Scholar
  53. Covello PS, Webber AN, Danko JS, Markwell JP, Baker NR (1987) Phosphorylation of thylakoid proteins during chloroplast biogenesis in greening etiolated and light-grown wheat leaves. Photosynth Res 12:243–254CrossRefGoogle Scholar
  54. Cran DG, Possingham JV (1973) The fine structure of avocado plastids. Ann Bot 37:993–997Google Scholar
  55. Dehesh K, Häuser I, Apel K, Kloppstech K (1983) The distribution of NADPH-protochlorophyllide oxidoreductase in relation to chlorophyll accumulation along the barley leaf gradient. Planta 158:134–139CrossRefGoogle Scholar
  56. Dehesh K, Cleve B, Ryberg M, Apel K (1986) Light-induced changes in the distribution of the 36000-Mr polypeptide of NADPH-protochlorophyllide oxidoreductase within different cellular compartments of barley (Hordeum vulgare L.). II. Localization by immunogold labelling in ultrathin sections. Planta 169:172–183CrossRefGoogle Scholar
  57. Di Baccio D, Quartacci MF, Moro I, Dalla Vecchia F, La Rocca F, Rascio FN, Navari-Izzo F (2002) Bleaching herbicide effects on plastids of dark-grown plants: lipid composition of etioplasts in amitrole and norflurazon-treated barley leaves. J Exp Bot 53:1857–1865PubMedCrossRefGoogle Scholar
  58. Dujardin E, Bertrand M, Radunz A, Schmid GH (1987) Immunological evidence for the presence of proteins of the photosynthetic membrane in etiolated leaves of Phaseolus vulgaris. J Plant Physiol 128:95–107Google Scholar
  59. Engdahl S, Aronsson H, Sundqvist C, Timko MP, Dahlin C (2001) Association of the NADPH:protochlorophyllide oxidoreductase (POR) with isolated etioplast inner membranes from wheat. Plant J 27:297–304PubMedCrossRefGoogle Scholar
  60. Erdei N, Barta C, Hideg É, Böddi B (2005) Light-induced wilting and its molecular mechanism in epicotyls of dark-germinated pea (Pisum sativum L.) seedlings. Plant Cell Physiol 46:185–191PubMedCrossRefGoogle Scholar
  61. Ferro M, Salvi D, Brugiere S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2:325–345PubMedGoogle Scholar
  62. Fester T (2008) Plastid reorganization in arbuscular mycorrhizal roots. In: Schoefs B (ed) Plant cell organelles—selected topics. Research Signpost, Trivandrum, pp 335–354Google Scholar
  63. Fitter DW, Martin DJ, Copley MJ, Scotland RW, Langdale JA (2002) GLK gene pairs regulate chloroplast development in diverse plant species. Plant J 31:713–727PubMedCrossRefGoogle Scholar
  64. Franck F, Inoue Y (1984) Light-driven reversible transformation of chlorophyllide P696, 682 into chlorophyllide P688, 678 in illuminated etiolated bean leaves. Photobiochem Photobiophys 8:85–96Google Scholar
  65. Franck F, Mathis P (1980) A short-lived intermediate in the photoenzymatic reduction of protochlorophyll(ide) into chlorophyll(ide) at a physiological temperature. Photochem Photobiol 32:799–803CrossRefGoogle Scholar
  66. Franck F, Schmid GH (1985) The role of NADPH in the reversible phototransformation of chlorophyllide P682 into chlorophyllide P678 in etioplasts of oat. Z Naturforsch 40c:832–838Google Scholar
  67. Franck F, Schoefs B, Barthélemy X, Myśliwa-Kurdziel B, Strzałka K, Popovic R (1995) Protection of native chlorophyll(ide) forms and of photosystem II against photodamage during the early stages of chloroplast differentiation. Acta Physiol Plant 17:123–132Google Scholar
  68. Franck F, Eullaffroy P, Popovic R (1997) Formation of long-wavelength chlorophyllide (Chlide695) is required for the assembly of photosystem II in etiolated barley leaves. Photosynth Res 51:107–118CrossRefGoogle Scholar
  69. Franck F, Sperling U, Frick G, Pochert B, van Cleve B, Apel K, Armstrong GA (2000) Regulation of etioplast pigment-protein complexes, inner membrane architecture, and protochlorophyllide a chemical heterogeneity by light-dependent NADPH: Protochlorophyllide oxidoreductase A and B. Plant Physiol 124:1678–1696PubMedCrossRefGoogle Scholar
  70. Frick G, Su QX, Apel K, Armstrong GA (2003) An Arabidopsis porB porC double mutant lacking light-dependent NADPH:protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrested. Plant J 35:141–153PubMedCrossRefGoogle Scholar
  71. Fusada N, Masuda T, Kuroda H, Shiraishi T, Shimada H, Ohta H, Takamiya K (2000) NADPH–protochlorophyllide oxidoreductase in cucumber is encoded by a single gene and its expression is transcriptionally enhanced by illumination. Photosynth Res 64:147–154PubMedCrossRefGoogle Scholar
  72. Gao H, Sage TL, Osteryoung KW (2006) FZL, an FZO-like protein in plants, is a determinant of thylakoid and chloroplast morphology. Proc Natl Acad Sci USA 103:6759–6764PubMedCrossRefGoogle Scholar
  73. Garab GyI, Sundqvist C, Mustárdy LA, Faludy-Dániel Á (1980) Orientation of short wavelength and long wavelength protochlorophyll species in greening chloroplasts. Photochem Photobiol 31:491–494CrossRefGoogle Scholar
  74. Gerola FM, Cristofori F, Dassu G (1960) Ricerche sullo sviluppo dei cloroplasti di pisello (Pisum sativum L.). I. Sviluppo dei cloroplasti in piantine cresciute in condizioni di normale alternarsi di luce e di buio. Caryologia 13:164–178Google Scholar
  75. Gibson LCD, Jensen PE, Hunter CN (1999) Magnesium chelatase from Rhodobacter sphaeroides: initial characterization of the enzyme using purified subunits and evidence for a BchI-BchD complex. Biochem J 337:243–251PubMedCrossRefGoogle Scholar
  76. Gollnik K (1968) Type II photooxygenation reaction in solutions. Adv Photochem 6:1–122CrossRefGoogle Scholar
  77. Goslings D, Meskauskiene R, Kim C, Lee KP, Nater M, Apel K (2004) Concurrent interactions of heme and FLU with glu-tRNA reductase (HEMA1), the target of metabolic feedback inhibition of tetrapyrrole biosynthesis in dark- and light-grown Arabidopsis plants. Plant J 40:957–967PubMedCrossRefGoogle Scholar
  78. Gough SP, Kannangara CG (1979) Biosynthesis of δ-aminolevulinate in greening barley leaves. III. The formation of δ-aminolevulinate in tigrina mutants of barley. Carlsberg Res Commun 44:403–416CrossRefGoogle Scholar
  79. Gounaris K, Sen A, Brain APR, Quinn PJ, Williams WP (1983) The formation of non-bilayer structures in total polar lipid extracts of chloroplast membranes. Biochim Biophys Acta 728:129–139CrossRefGoogle Scholar
  80. Griffiths WT, Kay SA, Oliver RP (1985) The presence of photoregulation of protochlorophyllide reductase in green tissues. Plant Mol Biol 4:13–22CrossRefGoogle Scholar
  81. Grimm B (1998) Novel insight in the control of tetrapyrrole metabolism of higher plants. Curr Opin Plant Biol 1:245–250PubMedCrossRefGoogle Scholar
  82. Gunning BES (2001) Membrane geometry of “open” prolamellar bodies. Protoplasma 215:4–15PubMedCrossRefGoogle Scholar
  83. Halloin JM, De Zoeten GA, Gaard G, Walker JC (1970) The effects of tentoxin on chlorophyll synthesis and plastid structure in cucumber and cabbage. Plant Physiol 45:310–314PubMedCrossRefGoogle Scholar
  84. Häuser I, Dehesh K, Apel K (1984) The proteolytic degradation in vitro of the NADPH:protochlorophyllide oxidoreductase of barley (Hordeum vulgare L.). Arch Biochem Biophys 228:577–586PubMedCrossRefGoogle Scholar
  85. Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147–151CrossRefGoogle Scholar
  86. Henningsen KW, Boynton JE (1970) Macromolecular physiology of plastids VIII. Pigment and membrane formation in plastids of barley greening under low light intensity. J Cell Biol 44:290–304PubMedCrossRefGoogle Scholar
  87. Henningsen KW, Boynton JE, von Wettstein D (1993) Mutants at xantha and albina loci in relation to chloroplast biogenesis in barley (Hordeum vulgare L.). Biol Skr Copenhagen Munksgaard 42:1–349Google Scholar
  88. Hideg É, Vitányi B, Kósa A, Solymosi K, Bóka K, Won S, Inoue Y, Ridge RW, Böddi B (2010) Reactive oxygen species from type-I photosensitized reactions contribute to the light-induced wilting of dark-grown pea (Pisum sativum) epicotyls. Physiol Plant 138:485–492PubMedCrossRefGoogle Scholar
  89. Holtorf H, Apel K (1996) The regulation of NADPH:protochlorophyllide oxidoreductases A and B in green barley plants kept under a diurnal light/dark cycle. Planta 199:289–295CrossRefGoogle Scholar
  90. Holtorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley. Proc Natl Acad Sci USA 92:3254–3258PubMedCrossRefGoogle Scholar
  91. Hyde S, Andersson S, Larsson K, Blum Z, Landh T, Lidin S, Ninham BW (1997) The language of shape. Elsevier, AmsterdamGoogle Scholar
  92. Ignatov NV, Krasnovskii AA Jr, Litvin FF, Belyaeva DB, Walter G (1983) Low-temperature (77 K) excitation spectra of fluorescence and phosphorescence of native forms of protochlorophyll(ide) in etiolated leaves of Phaseolus vulgaris and P. coccineus. Photosynthetica 17:352–360Google Scholar
  93. Ikeda T (1970) Changes in fine structure of prolamellar body in relation to the formation of the chloroplast. Bot Mag Tokyo 83:1–9Google Scholar
  94. Ikeda T (1971) Prolamellar body formation under different light and temperature conditions. Bot Mag Tokyo 84:363–375Google Scholar
  95. Ikegami A, Yoshimura N, Motohashi K, Takahashi S, Romano PG, Hisabori T, Takamiya K, Masuda T (2007) The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin. J Biol Chem 282:19282–19291PubMedCrossRefGoogle Scholar
  96. Ikeuchi M, Murakami S (1983) Separation and characterization of prolamellar bodies and prothylakoids from squash etioplasts. Plant Cell Physiol 24:71–80Google Scholar
  97. Ilag LL, Kumar AM, Söll D (1994) Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell 6:265–275PubMedCrossRefGoogle Scholar
  98. Ishizaki Y, Tsunoyama Y, Hatano K, Ando K, Kato K, Shinmyo A, Kobori M, Takeba G, Nakahira Y, Shiina T (2005) A nuclear-encoded sigma factor, Arabidopsis SIG6, recognizes sigma-70 chloroplast promoters and regulates early chloroplast development in cotyledons. Plant J 42:133–144PubMedCrossRefGoogle Scholar
  99. Jacobs JM, Jacobs NJ (1993) Porphyrin accumulation and export by isolated barley (Hordeum vulgare) plastids (effect of diphenyl ether herbicides). Plant Physiol 101:1181–1187PubMedGoogle Scholar
  100. Jahn D, Verkamp E, Söll D (1992) Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci 17:215–218PubMedCrossRefGoogle Scholar
  101. Jarvis P (2008) Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol 179:257–285PubMedCrossRefGoogle Scholar
  102. Jarvis P, Dörmann P, Peto CA, Lutes J, Benning C, Chory J (2000) Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc Natl Acad Sci USA 97:8175–8179PubMedCrossRefGoogle Scholar
  103. Jensen PE, Willows RD, Petersen BL, Vothknecht UC, Stummann BM, Kannangara CG, von Wettstein D, Henningsen KW (1996) Structural genes for Mg-chelatase subunits in barley: Xantha-f, -g and -h. Mol Gen Genet 250:383–394PubMedGoogle Scholar
  104. Johansson M, Walles B (1993) Functional anatomy of the ovule in broad bean, Vicia faba L. II. Ultrastructural development up to early embryogenesis. Int J Plant Sci 154:535–549CrossRefGoogle Scholar
  105. Johansson M, Walles B (1994) Functional anatomy of the ovule in broad bean (Vicia faba L.): ultrastructural seed development and nutrient pathways. Ann Bot 74:233–244CrossRefGoogle Scholar
  106. Jouy M, Sironval C (1979) Quenching of the fluorescence emitted by P695-682 at room temperature in etiolated illuminated leaves. Planta 147:127–133CrossRefGoogle Scholar
  107. Joyard J, Block M, Pineau B, Albrieux C, Douce R (1990) Envelope membranes from mature spinach chloroplasts contain a NADPH:protochlorophyllide reductase on the cytosolic side of the outer membrane. J Biol Chem 265:21820–21827PubMedGoogle Scholar
  108. Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N (2009) Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Mol Plant 2:1154–1180PubMedCrossRefGoogle Scholar
  109. Jung HS, Chory J (2010) Signaling between chloroplasts and the nucleus: can a systems biology approach bring clarity to a complex and highly regulated pathway? Plant Physiol 152:453–459PubMedCrossRefGoogle Scholar
  110. Kakizaki T, Matsumura H, Nakayama K, Che FS, Terauchi R, Inaba T (2009) Coordination of plastid protein import and nuclear gene expression by plastid-to-nucleus retrograde signaling. Plant Physiol 151:1339–1353PubMedCrossRefGoogle Scholar
  111. Kang Y-W, Lee J-Y, Jeon Y, Cheong G-W, Kim M, Pai H-S (2010) In vivo effects of NbSiR silencing on chloroplast development in Nicotiana benthamiana. Plant Mol Biol 72:569–583PubMedCrossRefGoogle Scholar
  112. Karpinski S, Reynolds H, Karpsinka B, Wingsle G, Creissen C, Mullineaux PM (1999) Systemic signalling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657PubMedCrossRefGoogle Scholar
  113. Kashina TK, Danilova MF (1993) Ultrastructure of glandular hair plastids and nictophylness of Perilla ocymoides L. Russ J Plant Physiol 40:785–790Google Scholar
  114. Keeling P (2004) A brief history of plastids and their hosts. Protist 155:3–7PubMedCrossRefGoogle Scholar
  115. Khandal D, Samol I, Buhr F, Pollmann S, Schmidt H, Clemens S, Reinbothe S, Reinbothe C (2009) Singlet oxygen-dependent translational control in the tigrina-d.12 mutant of barley. Proc Natl Sci USA 106:13112–13117CrossRefGoogle Scholar
  116. Kim C, Apel K (2004) Substrate-dependent and organ-specific chloroplast protein import in planta. Plant Cell 16:88–98PubMedCrossRefGoogle Scholar
  117. Kim ES, Mahlberg PG (1997) Plastid development in disc cells of glandular trichomes of Cannabis (Cannabaceae). Mol Cells 7:352–359PubMedGoogle Scholar
  118. Kim C, Ham H, Apel K (2005) Multiplicity of different cell- and organ-specific import routes for the NADPH-protochlorophyllide oxidoreductases A and B in plastids of Arabidopsis seedlings. Plant J 42:329–340PubMedCrossRefGoogle Scholar
  119. Kleffmann T, von Zychlinski A, Russenberger D, Hirsch-Hoffmann M, Gehrig P, Gruissem W, Baginsky S (2007) Proteome dynamics during plastid differentiation in rice. Plant Physiol 143:912–923PubMedCrossRefGoogle Scholar
  120. Klein S, Schiff JK (1972) The correlated appearance of prolamellar bodies, protochlorophyllide species, and the Shibata shift during development of bean etioplasts in the dark. Plant Physiol 49:619–626PubMedCrossRefGoogle Scholar
  121. Kleine T, Voigt C, Leister D (2009) Plastid signalling to the nucleus: messengers still lost in the mists? Trends Genet 25:185–192PubMedCrossRefGoogle Scholar
  122. Klement H, Helfrich M, Oster U, Schoch S, Rüdiger W (1999) Pigment free NADPH:protochlorophyllide oxidoreductase from Avena sativa L. Eur J Biochem 265:862–874PubMedCrossRefGoogle Scholar
  123. Klockare B, Axelsson L, Ryberg H, Sandelius AS, Widell KO (1981) The function of carotenoids during chloroplast development: I. Effect of the herbicide SAN 9789 on chlorophyll synthesis and plastid ultrastructure. In: Akoyunoglou G (ed) Photosynthesis. V. Chloroplast development. Balaban International Science Services, Philadelphia, pp 277–284Google Scholar
  124. Kochevar IE (2004) Singlet oxygen signaling: from intimate to global. Sci STKE 221:pe7Google Scholar
  125. Koussevitzky S, Nott A, Mocler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J (2007) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–719PubMedCrossRefGoogle Scholar
  126. Kovacevic D, Dewez D, Popovic R (2007) Irradiation-induced in vivo re-localization of NADPH-protochlorophyllide oxidoreductase from prolamellar body to stroma of barley etioplast. Photosynthetica 45:105–109CrossRefGoogle Scholar
  127. Kovacheva S, Ryberg M, Sundqvist C (2000) ADP/ATP and protein phosphorylation dependence of phototransformable protochlorophyllide in isolated etioplast membranes. Photosynth Res 64:127–136PubMedCrossRefGoogle Scholar
  128. Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346PubMedCrossRefGoogle Scholar
  129. Kruk J (2005) Occurrence of chlorophyll precursors in leaves of cabbage heads—the case of natural etiolation. J Photochem Photobiol B 80:187–194PubMedCrossRefGoogle Scholar
  130. Kuroda H, Masuda T, Fusada N, Ohta H, Takamiya K (2000) Expression of NADPH-protochlorophyllide oxidoreductase gene in fully green leaves of cucumber. Plant Cell Physiol 41:226–229PubMedGoogle Scholar
  131. La Rocca NL, Rascio N, Oster U, Rüdiger W (2001) Amitrole treatment of etiolated seedlings lead to a regulation of tetrapyrrole synthesis and to reduced expression of Lhc and RbcS genes. Planta 213:101–108PubMedCrossRefGoogle Scholar
  132. Ladygin VG (2007) Disturbed structure and function of chloroplasts during blocked biosynthesis of 5-aminolevulinic acid in the light. Biol Bull 34:248–258CrossRefGoogle Scholar
  133. Laetsch WM, Price I (1969) Development of the dimorphic chloroplasts of sugar cane. Am J Bot 56:77–87CrossRefGoogle Scholar
  134. Laloi C, Stachowiak M, Pers-Kamczyc E, Warzych E, Murgia I, Apel K (2007) Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proc Natl Sci USA 104:672–677CrossRefGoogle Scholar
  135. Lebedev N, van Cleve B, Armstrong G, Apel K (1995) Chlorophyll synthesis in a deetiolated-(det340) mutant of Arabidopsis without NADPH-protochlorophyllide (PChlide) oxidoreductase (POR) A and photoactive PChlide-F655. Plant Cell 7:2081–2090PubMedCrossRefGoogle Scholar
  136. Lee KP, Kim C, Ladgraf F, Apel K (2007) EXECUTER1- and EXECUTER2-dependent transport of stress-related signals from the plastids to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci USA 104:10270–10275PubMedCrossRefGoogle Scholar
  137. Leister D (2005) Genomics-based dissection of the cross-talk of chloroplasts with the nucleus and mitochondria in Arabidopsis. Gene 354:110–116PubMedCrossRefGoogle Scholar
  138. Lepistö A, Kangasjärvi S, Luomala E-M, Brader G, Sipari N, Keränen M, Keinänen M, Rintamäki E (2009) Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis. Plant Physiol 149:1261–1276PubMedCrossRefGoogle Scholar
  139. Link G (2003) Redox regulation of chloroplast transcription. Antioxid Redox Signal 5:79–87PubMedCrossRefGoogle Scholar
  140. Lopez-Juez E (2009) Steering the solar panel: plastids influence development. New Phytol 182:287–290PubMedCrossRefGoogle Scholar
  141. Lopez-Juez E, Pyke K (2005) Plastids unleashed: their development and their integration in plant development. Int J Dev Biol 49:557–577PubMedCrossRefGoogle Scholar
  142. Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C (2008) Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J 53:312–323PubMedCrossRefGoogle Scholar
  143. Loschelder H, Schweer J, Link B, Link G (2006) Dual temporal role of plastid sigma factor 6 in Arabidopsis development. Plant Physiol 142:642–650PubMedCrossRefGoogle Scholar
  144. Ludewig U, Dynowski M (2009) Plant aquaporin selectivity: where transport assays, computer simulations and physiology meet. Cell Mol Life Sci 66:3161–3175PubMedCrossRefGoogle Scholar
  145. Mandoli S, Briggs W (1984) Fiber optics in plants. Sci Am 251:90–99CrossRefGoogle Scholar
  146. Mapleston RE, Griffiths WT (1978) Effects of illumination of etiolated leaves on the redox state of NADP in the plastids. FEBS Lett 92:168–172CrossRefGoogle Scholar
  147. Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New HavenGoogle Scholar
  148. Mascia PN, Robertson DS (1978) Studies of chloroplast development in four maize mutants defective in chlorophyll biosynthesis. Planta 143:207–211Google Scholar
  149. Masuda T (2008) Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. Photosynth Res 96:121–143PubMedCrossRefGoogle Scholar
  150. Masuda T, Takamiya K (2004) Novel insights into the enzymology, regulation and physiological functions of light-dependent protochlorophyllide oxidoreductase in angiosperms. Photosynth Res 81:1–29PubMedCrossRefGoogle Scholar
  151. Masuda T, Fusada N, Shiraishi T, Kuroda H, Awai K, Shimada H, Ohta H, Takamiya K (2002) Identification of two differentially regulated isoforms of protochlorophyllide oxidoreductase (POR) from tobacco revealed a wide variety of light- and development-dependent regulations of POR gene expression among angiosperms. Photosynth Res 74:165–172PubMedCrossRefGoogle Scholar
  152. Masuda T, Fusada N, Oosawa N, Takamatsu K, Yamamoto YY, Ohto M, Nakamura K, Goto K, Shibata D, Shirano Y, Hayashi H, Kato T, Tabata S, Shimada H, Ohta H, Takamiya K (2003) Functional analysis of isoforms of NADPH:Protochlorophyllide oxidoreductase (POR), PORB and PORC, in Arabidopsis thaliana. Plant Cell Physiol 44:963–974PubMedCrossRefGoogle Scholar
  153. Matringe M, Camadro JM, Block MA, Joyard J, Scalla R, Labbe P, Douce R (1992) Localization within chloroplast of protoporphyrinogen IX oxidase, the target enzyme of diphenylether-like herbicides. J Biol Chem 267:4646–4655PubMedGoogle Scholar
  154. Matsumoto F, Obayashi T, Sasaki-Sekimoto Y, Ohta H, Takamiya K, Masuda T (2004) Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system. Plant Physiol 135:2379–2391PubMedCrossRefGoogle Scholar
  155. McCormac AC, Terry MJ (2002a) Light-signalling pathways leading to the co-ordinated expression of HEMA1 and Lhcb during chloroplast development in Arabidopsis thaliana. Plant J 32:549–559PubMedCrossRefGoogle Scholar
  156. McCormac AC, Terry MJ (2002b) Loss of nuclear gene expression during the phytochrome A-mediated far-red block of greening response. Plant Physiol 130:402–414PubMedCrossRefGoogle Scholar
  157. McCormac AC, Terry MJ (2004) The nuclear genes Lhcb and HEMA1 are differentially sensitive to plastid signals and suggest distinct roles for GUN1 and GUN5 plastid-signalling pathways during de-etiolation. Plant J 40:672–685PubMedCrossRefGoogle Scholar
  158. McCormac AC, Fisher A, Kumar AM, Söll D, Terry MJ (2001) Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana. Plant J 25:549–561PubMedCrossRefGoogle Scholar
  159. Meskauskiene R, Apel K (2002) Interaction of FLU, a negative regulator of tetrapyrrole biosynthesis, with the glutamyl-tRNA reductase requires the tetratricopeptide repeat domain of FLU. FEBS Lett 532:27–30PubMedCrossRefGoogle Scholar
  160. Meskauskiene R, Nata H, Goslings D, Kessler F, op den Camp R, Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:12826–12831PubMedCrossRefGoogle Scholar
  161. Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci USA 98:2053–2058PubMedCrossRefGoogle Scholar
  162. Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A (2008) The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proc Natl Acad Sci USA 105:15184–15189PubMedCrossRefGoogle Scholar
  163. Moller MG, Petersen BL, Kannangara CG, Stummann BM, Henningsen KW (1997) Chlorophyll biosynthetic enzymes and plastid membrane structures in mutants of barley (Hordeum vulgare L.). Hereditas 127:181–191CrossRefGoogle Scholar
  164. Moro I, Dalla Vecchia F, La Rocca F, Navari-Izzo F, Quartacci MF, Di-Baccio D, Rüdiger W, Rascio N (2004) Impaired carotenogenesis can affect organization and functionality of etioplast membranes. Physiol Plant 122:123–132CrossRefGoogle Scholar
  165. Moulin M, McCormac A, Terry M, Smith A (2008) Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX. Proc Natl Acad Sci USA 105:15178–15183PubMedCrossRefGoogle Scholar
  166. Müller B, Eichacker LA (1999) Assembly of the D1 precursor in monomeric photosystem II reaction center precomplexes precedes chlorophyll a-triggered accumulation of reaction center II in barley etioplasts. Plant Cell 11:2365–2377PubMedCrossRefGoogle Scholar
  167. Mullineaux PM, Karpinski S, Baker NR (2006) Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants. Plant Physiol 141:346–350PubMedCrossRefGoogle Scholar
  168. Naested H, Hoilm A, Jenkins T, Nielsen HB, Harris CA, Beale MH, Andersen M, Mant A, Scheler H, Camara B, Mattsson O, Mundy J (2004) Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development. J Cell Sci 117:4807–4818PubMedCrossRefGoogle Scholar
  169. Nagatani A (2004) Light-regulated nuclear localization of phytochromes. Curr Opin Plant Biol 7:708–711PubMedCrossRefGoogle Scholar
  170. Nakagawara E, Sakubara Y, Yamasato A, Tanaka R, Tanaka A (2007) Clp protease controls chlorophyll b synthesis by regulating the level of chlorophyllide a oxygenase. Plant J 49:800–809PubMedCrossRefGoogle Scholar
  171. Nakamaya M, Masuda T, Bando T, Yamagata H, Ohta H, Takamiya K (1998) Cloning and expression of the soybean chlH gene encoding a subunit of Mg-chelatase and localization of the Mg2+ concentration-dependent ChlH protein within the chloroplast. Plant Cell Physiol 39:275–284Google Scholar
  172. Ni M, Tepperman JM, Quail PH (1998) PIF3, a phytochrome-interacting transcription factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95:657–667PubMedCrossRefGoogle Scholar
  173. Nielsen OF (1974) Macromolecular physiology of plastids. XII. Tigrina mutants in barley: genetic, spectroscopic and ultrastructural characterization. Hereditas 76:269–304PubMedCrossRefGoogle Scholar
  174. Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759PubMedCrossRefGoogle Scholar
  175. Oosawa N, Masuda T, Awai K, Fusada N, Shimada H, Ohto H, Takamiya K (2000) Identification and light-induced expression of a novel gene of NADPH:protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FEBS Lett 474:113–136CrossRefGoogle Scholar
  176. Op den Camp RGL, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg É, Göbel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332PubMedCrossRefGoogle Scholar
  177. Oster U, Brünner H, Rüdiger W (1996) The greening process in cress seedlings. V. Possible interference of chlorophyll precursors, accumulated after thujaplicin treatment, with light-regulated expression of LHC genes. J Photochem Photobiol B 36:255–261CrossRefGoogle Scholar
  178. Ouazzani-Chahdi MA, Schoefs B, Franck F (1998) Isolation and characterisation of photoactive complexes of NADPH:protochlorophyllide oxidoreductase from wheat. Planta 206:673–680CrossRefGoogle Scholar
  179. Paddock TN, Mason ME, Lima DF, Armstrong GA (2010) Arabidopsis protochlorophyllide oxidoreductase A (PORA) restores bulk chlorophyll synthesis and normal development to a porB porC double mutant. Plant Mol Biol 72:445–457PubMedCrossRefGoogle Scholar
  180. Papenbrock J, Mock H-P, Kruse E, Grimm E (1999) Expression studies in tetrapyrrole biosynthesis—inverse maxima of magnesium chelatase and ferro chelatase. Planta 208:264–273CrossRefGoogle Scholar
  181. Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14:321–332PubMedCrossRefGoogle Scholar
  182. Park E, Kim J, Lee Y, Shin J, Oh E, Chung W-I, Liu JR, Choi G (2004) Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling. Plant Cell Physiol 45:968–975PubMedCrossRefGoogle Scholar
  183. Perez-Ruiz JM, Spinola MC, Kirchsteiger K, Moreno J, Sahrawy M, Cejudo FJ (2006) Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage. Plant Cell 18:2356–2368PubMedCrossRefGoogle Scholar
  184. Perner ES (1956) Die ontogenetische Entwicklung der Chloroplasten von Chlorophytum comosum. II. Das Verhalten der Proplastiden bei der Entwicklung zu Jungchloroplasten. Z Naturforsch 11b:567–573Google Scholar
  185. Pesaresi P, Varotto C, Meurer J, Jahns P, Salamini F, Leister D (2001) Knock-out of the plastid ribosomal protein L11 in Arabidopsis: effects on mRNA translation and photosynthesis. Plant J 27:179–189PubMedCrossRefGoogle Scholar
  186. Pesaresi P, Masiero S, Eubel H, Braun H-P, Bhushan S, Glaser E, Salamini F, Leister D (2006) Nuclear photosynthetic gene expression is synergistically modulated by rates of protein synthesis in chloroplasts and mitochondria. Plant Cell 18:970–991PubMedCrossRefGoogle Scholar
  187. Pesaresi P, Schneider A, Kleine T, Leister D (2007) Interorganellar communication. Curr Opin Plant Biol 10:600–606PubMedCrossRefGoogle Scholar
  188. Pineau B, Dubertret G, Joyard J, Douce R (1986) Fluorescence properties of the envelope membranes from spinach chloroplasts. Detection of protochlorophyllide. J Biol Chem 261:9210–9215PubMedGoogle Scholar
  189. Platt-Aloia KW, Thomson WW (1977) Chloroplast development in young sesame plants. New Phytol 78:599–605CrossRefGoogle Scholar
  190. Platt-Aloia KA, Thomson WW (1981) Ultrastructure of the mesocarp of mature acocado fruit and changes associated with ripening. Ann Bot 48:451–465Google Scholar
  191. Plumley FG, Schmidt (1995) Light-harvesting chlorophyll a/b complexes: interdependent pigment synthesis and protein assembly. Plant Cell 7:689–704PubMedCrossRefGoogle Scholar
  192. Pogson BJ, Woo NS, Forster B, Small ID (2008) Plastid signalling to the nucleus and beyond. Trends Plant Sci 13:602–609PubMedCrossRefGoogle Scholar
  193. Pollmann S, Springer A, Buhr F, Lahroussi A, Samol I, Bonneville J-M, Tichtinsky G, von Wettstein D, Reinbothe C, Reinbothe S (2007) A plant porphyria related to defects in plastid import of protochlorophyllide oxidoreductase A. Proc Natl Acad Sci USA 104:2019–2023PubMedCrossRefGoogle Scholar
  194. Pöpperl G, Oster U, Rüdiger W (1998) Light-dependent increase of chlorophyll precursors during the day-night cycle in tobacco and barley seedlings. J Plant Physiol 153:40–45Google Scholar
  195. Privat I, Hakimi M-A, Buhot L, Favory J-J, Lerbs-Mache S (2003) Characterization of Arabidopsis plastid sigma-like transcription factors SIG1, SIG2 and SIG3. Plant Mol Biol 51:385–399PubMedCrossRefGoogle Scholar
  196. Przybyla D, Göbel C, Imboden A, Hamberg M, Feussner S, Apel K (2008) Enzymatic, but non-enzymatic 1O2-mediated peroxidation of poly-unsaturated fatty acids forms part of the EXECUTER1-dependent stress response program in the flu mutant in Arabidopsis thaliana. Plant J 54:236–248PubMedCrossRefGoogle Scholar
  197. Pukacki P, Giertych M, Chalupka W (1980) Light filtering function of bud scales in woody plants. Planta 140:132–133CrossRefGoogle Scholar
  198. Rascio N, Mariani Colombo P, Orsenigo M (1980) The ultrastructural development of plastids in leaves of maize plants exposed to continuous illumination. Protoplasma 102:131–139CrossRefGoogle Scholar
  199. Rebeiz CC, Rebeiz CA (1986) Chloroplast biogenesis 53: ultrastructural study of chloroplast development during photoperiodic greening. In: Akoyunoglou G, Senger H (eds) Regulation of chloroplast differentiation. Alan R Liss, New York, pp 389–396Google Scholar
  200. Reid JD, Hunter CN (2004) Magnesium-dependent ATPase activity and cooperativity of magnesium chelatase from Synechocystis sp. PCC6803. J Biol Chem 279:26893–26899PubMedCrossRefGoogle Scholar
  201. Reinbothe S, Reinbothe C, Apel K, Lebedev N (1996) Evolution of chlorophyll biosynthesis—the challenge to survive photooxidation. Cell 86:703–705PubMedCrossRefGoogle Scholar
  202. Reinbothe S, Mache R, Reinbothe C (2000) A second, substrate-dependent site of protein import into chloroplasts. Proc Natl Acad Sci USA 97:9795–9800PubMedCrossRefGoogle Scholar
  203. Reinbothe C, Buhr F, Pollmann S, Reinbothe S (2003) In vitro reconstitution of light-harvesting POR protochlorophyllide complex with protochlorophyllides a and b. J Biol Chem 278:807–815PubMedCrossRefGoogle Scholar
  204. Reinbothe C, Pollmann S, Desvignes C, Weigele M, Beck E, Reinbothe S (2004a) LHPP, the light-harvesting NADPH:protochlorophyllide (Pchlide) oxidoreductase:Pchlide complex of etiolated plants, is developmentally expressed across the barley leaf gradient. Plant Sci 167:1027–1041CrossRefGoogle Scholar
  205. Reinbothe S, Quigley F, Gray J, Schemenewitz A, Reinbothe C (2004b) Identification of plastid envelope proteins required for import of protochlorophyllide oxidoreductase A into the chloroplast of barley. Proc Natl Acad Sci USA 101:2197–2202PubMedCrossRefGoogle Scholar
  206. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110PubMedCrossRefGoogle Scholar
  207. Rosinski J, Rosen WG (1972) Chloroplast development: fine structure and chlorophyll synthesis. Q Rev Biol 47:160–191CrossRefGoogle Scholar
  208. Rossini L, Cribb L, Martin DJ, Langdale JA (2001) The maize Golden2 gene defines a novel class of transcriptional regulators in plants. Plant Cell 13:1231–1244PubMedCrossRefGoogle Scholar
  209. Runge S, Sperling U, Frick G, Apel K, Armstrong GA (1996) Distinct roles for light-dependent NADPH:protochlorophyllide oxidoreductases (POR) A and B during greening in higher plants. Plant J 9:513–523PubMedCrossRefGoogle Scholar
  210. Ruppel HG, Kesselmeier J, Lütz C (1978) Biochemical and cytological observations on chloroplast development. V. Reaggregations of prolamellar body tubules without protein participation. Z Pflanzenphysiol 90:101–110Google Scholar
  211. Ryberg M, Sundqvist C (1982) Spectral forms of protochlorophyllide in prolamellar bodies and prothylakoids fractionated from wheat etioplasts. Physiol Plant 56:133–138CrossRefGoogle Scholar
  212. Ryberg M, Sundqvist C (1988) The regular ultrastructure of isolated prolamellar bodies depends on the presence of membrane-bound NADPH-protochlorophyllide oxidoreductase. Physiol Plant 73:218–226CrossRefGoogle Scholar
  213. Ryberg M, Terry MJ (2002) Analysis of protochlorophyllide reaccumulation in the phytochrome chromophore-deficient aurea and yg-2 mutants of tomato by in vivo fluorescence spectroscopy. Photosynth Res 74:195–203PubMedCrossRefGoogle Scholar
  214. Ryberg H, Liljenberg C, Sundqvist C (1980) Crystalloid formation in protochlorophyll-accumulating plastids from the inner seed coat of Cyclanthera explodens. Physiol Plant 50:333–339CrossRefGoogle Scholar
  215. Sandmann G, Böger P (1997) Phytoene desaturase as a target for bleaching herbicides. In: Roe RM, Burton JD, Kuhr RJ (eds) Herbicide activity: toxicology. Biochemistry and molecular biology. IOS Press, Amsterdam, pp 1–10Google Scholar
  216. Schenemewitz A, Pollmann S, Reinbothe C, Reinbothe S (2007) A substrate-independent, 14:3:3 protein-mediated plastid import pathway of NADPH:protochlorophyllideoxidoreductase A. Proc Natl Sci USA 104:8538–8543CrossRefGoogle Scholar
  217. Scheumann V, Klement H, Helfrich M, Oster U, Schoch S, Rüdiger W (1999) Protochlorophyllide b does not occur in barley etioplasts. FEBS Lett 445:445–448PubMedCrossRefGoogle Scholar
  218. Schnepf E (1962) Plastidenstrukturen bei Passiflora. Protoplasma 54:310–313CrossRefGoogle Scholar
  219. Schoefs B, Bertrand M (2005) Chlorophyll biosynthesis—a review. In: Pessarakli M (ed) Handbook of photosynthesis, 2nd edn. CRC Press, Boca Raton, pp 37–54Google Scholar
  220. Schoefs B, Franck F (1993) Photoreduction of protochlorophyllide to chlorophyllide in 2-d-old dark-grown bean (Phaseolus vulgaris cv. Commodore) leaves. Comparison with 10-d-old dark-grown (etiolated) leaves. J Exp Bot 44:1053–1057CrossRefGoogle Scholar
  221. Schoefs B, Franck F (1995) Role of the NADPH:protochlorophyllide reductase in photoprotection of newly formed chlorophyllide. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol 3. Kluwer Academic Publishers, Dordrecht, pp 1013–1017Google Scholar
  222. Schoefs B, Franck F (2003) Protochlorophyllide reduction: mechanisms and evolution. Photochem Photobiol 78:543–557PubMedCrossRefGoogle Scholar
  223. Schoefs B, Franck F (2008) The photoenzymatic cycle of NADPH:protochlorophyllide oxidoreductase in primary bean leaves (Phaseolus vulgaris) during the first days of photoperiodic growth. Photosynth Res 96:15–26PubMedCrossRefGoogle Scholar
  224. Schoefs B, Bertrand M, Lemoine Y (1995) Separation of photosynthetic pigments and their precursors by reversed-phase high-performance liquid chromatography using a photodiode-array detector. J Chromatogr A 692:239–245CrossRefGoogle Scholar
  225. Schoefs B, Bertrand M, Lemoine Y (1998) Changes in the photosynthetic pigments in bean leaves during the first photoperiod of greening and the subsequent dark-phase. Comparison between old (10-d-old) leaves and young (2-d-old) leaves. Photosynth Res 57:203–213CrossRefGoogle Scholar
  226. Schon A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG, Söll D (1986) The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322:281–284PubMedCrossRefGoogle Scholar
  227. Schürmann P, Buchanan BB (2008) The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid Redox Signal 10:1235–1274PubMedCrossRefGoogle Scholar
  228. Selstam E (1998) Development of thylakoid membranes with respect to lipids. In: Siegenthaler P-A, Murata N (eds) Advances in Photosynthesis 6. Lipids in photosynthesis: structure function and genetics. Kluwer Academic Publisher, Dordrecht, Boston, London, pp 209–224Google Scholar
  229. Selstam E, Sandelius AS (1984) A comparison between prolamellar bodies and prothylakoid membranes of etioplasts of dark-grown wheat concerning lipid and polypeptide composition. Plant Physiol 76:1036–1040PubMedCrossRefGoogle Scholar
  230. Selstam E, Widell-Wigge A (1993) Chloroplast lipids and the assembly of membranes. In: Sundqvist C, Ryberg M (eds) Pigment-protein complexes in plastids: synthesis and assembly. Academic Press, San Diego, pp 241–277Google Scholar
  231. Selstam E, Schelin J, Brain T, Williams WP (2002) The effects of low pH on the properties of protochlorophyllide oxidoreductase and the organization of prolamellar bodies of maize (Zea mays). Eur J Biochem 269:2336–2346PubMedCrossRefGoogle Scholar
  232. Serrato AJ, Pérez-Ruiz JM, Spínola MC, Cejudo FJ (2004) A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J Biol Chem 279:43821–43827PubMedCrossRefGoogle Scholar
  233. Sharer JD, Koosha H, Church WB, March PE (1999) The function of conserved amino acid residues adjacent to the effector domain in elongation factor G. Proteins 37:293–302PubMedCrossRefGoogle Scholar
  234. Shen H, Moon J, Huq E (2005) PIF1 is regulated by light-mediated degradation through the ubiquitin-26S proteasome pathways to optimize photomorphogenesis of seedlings in Arabidopsis. Plant J 44:1023–1035PubMedCrossRefGoogle Scholar
  235. Shen H, Zhu L, Castillon A, Majee M, Downie B, Huq E (2008) Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes. Plant Cell 20:1586–1602PubMedCrossRefGoogle Scholar
  236. Shin J, Kim K, Kang H, Zulfugarov IS, Bae G, Lee C-H, Lee D, Choi G (2009) Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc Natl Acad Sci USA 106:7660–7665PubMedCrossRefGoogle Scholar
  237. Shipley GG, Green JP, Nichols BW (1973) The phase behaviour of monogalactosyl, digalactosyl, and sulphoquinovosyl diglycerides. Biochim Biophys Acta 311:531–544PubMedCrossRefGoogle Scholar
  238. Signol M (1961) Action de l’acide 3-(α-iminoéthyl)-5 méthyl-tétronique sur l’infrastructure des chloroplastes de maïs. C R Acad Sci III 252:1645–1649Google Scholar
  239. Skribanek A, Böddi B (2001) Light- and cold-stress effects on the greening process in epicotyls and young stems of red oak (Quercus rubra) seedlings. Tree Physiol 21:549–554PubMedGoogle Scholar
  240. Skribanek A, Apatini D, Inaoka M, Böddi B (2000) Protochlorophyllide and chlorophyll forms in dark-grown stems and stem-related organs. J Photochem Photobiol B 55:172–177PubMedCrossRefGoogle Scholar
  241. Smith H (1994) Sensing the light environment: the functions of the phytochrome family. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants, 2nd edn. Kluwer Academic Publishers, Dordrecht, pp 377–416Google Scholar
  242. Smith M, Rounds CM, Wang F, Chen K, Afithile M, Schnell DJ (2004) The targeting of the atToc159 preprotein receptor to the chloroplast outer membrane is mediated by its GTPase domain and is regulated by GTP. J Cell Biol 165:323–334PubMedCrossRefGoogle Scholar
  243. Solymosi K, Böddi B (2006) Optical properties of bud scales and protochlorophyll(ide) forms in leaf primordia of closed and opened buds. Tree Physiol 26:1075–1085PubMedGoogle Scholar
  244. Solymosi K, Schoefs B (2008) Prolamellar body: a unique plastid compartment, which does not only occur in dark-grown leaves. In: Schoefs B (ed) Plant cell organelles—selected topics. Research Signpost, Trivandrum, pp 151–202Google Scholar
  245. Solymosi K, Lenti K, Myśliwa-Kurdziel B, Fidy J, Strzałka K, Böddi B (2004a) Hg2+ reacts with different components of the NADPH:protochlorophyllide oxidoreductase macrodomains. Plant Biol 6:358–368PubMedCrossRefGoogle Scholar
  246. Solymosi K, Martinez K, Kristóf Z, Sundqvist C, Böddi B (2004b) Plastid differentiation and chlorophyll biosynthesis in different leaf layers of white cabbage (Brassica oleracea cv capitata). Physiol Plant 121:520–529CrossRefGoogle Scholar
  247. Solymosi K, Bóka K, Böddi B (2006a) Transient etiolation: protochlorophyll(ide) and chlorophyll forms in differentiating plastids of closed and breaking leaf buds of horse chestnut (Aesculus hippocastanum). Tree Physiol 26:1087–1096PubMedGoogle Scholar
  248. Solymosi K, Myśliwa-Kurdziel B, Bóka K, Strzałka K, Böddi B (2006b) Disintegration of the prolamellar body structure at high concentrations of Hg2+. Plant Biol 8:627–635PubMedCrossRefGoogle Scholar
  249. Solymosi K, Vitányi B, Hideg É, Böddi B (2007) Etiolation symptoms in sunflower (Helianthus annuus) cotyledons partially covered by the pericarp of the achene. Ann Bot 99:857–867PubMedCrossRefGoogle Scholar
  250. Spano AJ, He Z, Michel H, Hunt DF, Timko MP (1992) Molecular cloning, nuclear gene structure, and developmental expression of NADPH–protochlorophyllide oxidoreductase in pea (Pisum sativum L.). Plant Mol Biol 18:967–972PubMedCrossRefGoogle Scholar
  251. Sperling U, van Cleve, Frick G, Apel K, Armstrong GA (1997) Overexpression of light-dependent PORA or PORB in plants depleted of endogenous POR by far-red light enhances seedling survival in white light and protects against photooxidative damage. Plant J 12:649–658PubMedCrossRefGoogle Scholar
  252. Sperling U, Franck F, van Cleve B, Frick G, Apel K, Armstrong GA (1998) Etioplast differentation in Arabidopsis: both PORA and PORB restore the prolamellar body and photoactive protochlorophyllide-F655 to the cop1 photomorphogenic mutant. Plant Cell 10:283–296PubMedCrossRefGoogle Scholar
  253. Spetea C, Schoefs B (2010) Solute transporters in plant thylakoid membranes: key players during photosynthesis and light stress. Commun Integr Biol 3:1–8CrossRefGoogle Scholar
  254. Stenbaek A, Jensen PE (2010) Redox regulation of chlorophyll biosynthesis. Phytochemistry 71:853–859PubMedCrossRefGoogle Scholar
  255. Stenbaek A, Hansson A, Wulff RP, Hansson M, Dietz KJ, Jensen PE (2008) NADPH-dependent thioredoxin reductase and 2-cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase. FEBS Lett 582:2278–2773CrossRefGoogle Scholar
  256. Stengel A, Benz P, Balsera M, Soll J, Bolter B (2008) TIC62 redoxregulated translocon composition and dynamics. J Biol Chem 283:6656–6667PubMedCrossRefGoogle Scholar
  257. Stephenson PG, Fankhauser C, Terry MJ (2009) PIF3 is a repressor of chloroplast development. Proc Natl Acad Sci USA 106:7654–7659PubMedCrossRefGoogle Scholar
  258. Stetler DA, Laetsch WM (1969) Chloroplast development in Nicotiana tabacum ‘Maryland Mammoth’. Am J Bot 56:260–270CrossRefGoogle Scholar
  259. Stpiczynska M, Milanesi C, Faleri C, Cresti M (2005) Ultrastructure of the nectary spur of Platanthera chlorantha (Custer) Rchb. (Orchidaceae) during successive stages of nectar secretion. Acta Biol Cracov Bot 47:111–119Google Scholar
  260. Strand A, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrin IX. Nature 421:79–83PubMedCrossRefGoogle Scholar
  261. Su Q, Frick G, Armstrong GA, Apel K (2001) POR C of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol Biol 47:805–813PubMedCrossRefGoogle Scholar
  262. Sujak A, Gabrielska J, Grudzinski W, Borc R, Mazurek P, Gruszecki WI (1999) Lutein and zeaxanthin as protectors of lipid membranes against oxidative damage: the structural aspects. Arch Biochem Biophys 371:301–307PubMedCrossRefGoogle Scholar
  263. Sundqvist C, Ryberg H (1979) Structure of protochlorophyll-containing plastids in the inner seed coat of pumpkin seeds (Cucurbita pepo). Physiol Plant 47:124–128CrossRefGoogle Scholar
  264. Sundqvist C, Ryberg H (1983) A long-wavelength absorbing form of protochlorophyll and crystalloids in the inner seed coat of Luffa cylindrica. Physiol Plant 59:42–45CrossRefGoogle Scholar
  265. Szenzenstein A, Kósa A, Solymosi K, Sárvári É, Böddi B (2010) Preferential regeneration of the NADPH: protochlorophyllide oxidoreductase oligomer complexes in pea epicotyls after bleaching. Physiol Plant 138:102–112PubMedCrossRefGoogle Scholar
  266. Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346PubMedCrossRefGoogle Scholar
  267. Terry MJ, Kendrick RE (1999) Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. Plant Physiol 119:143–152PubMedCrossRefGoogle Scholar
  268. Tollsten L, Gunnar Bergström G (2008) Fragrance chemotypes of Platanthera (Orchidaceae)—the result of adaptation to pollinating moths? Nord J Bot 13:607–613CrossRefGoogle Scholar
  269. Turner GW, Gershenzon J, Croteau RB (2000) Development of peltate glandular trichomes of peppermint. Plant Physiol 124:665–679PubMedCrossRefGoogle Scholar
  270. Tzvetkova-Chevolleau T, Franck F, Alawady AE, Dall’Osto L, Carrière F, Bassi R, Grimm B, Nussaume L, Havaux M (2007) The light stress-induced protein ELIP2 is a regulator of chlorophyll synthesis in Arabidopsis thaliana. Plant J 50:795–809PubMedCrossRefGoogle Scholar
  271. Usuda H (1988) Adenine nucleotide levels, the redox state of the NADP system, and assimilatory force in nonaqueously purified mesophyll chloroplasts from maize leaves under different light intensities. Plant Physiol 88:1461–1468PubMedCrossRefGoogle Scholar
  272. Vázquez MD, Poschenrieder C, Barceló J (1987) Chromium VI induced structural and ultrastructural changes in bush bean plants (Phaseolus vulgaris L.). Ann Bot 59:427–428Google Scholar
  273. Verbelen JP, de Greef JA (1979) De chloroplast-ontwikkeling bij Phaseolus vulgaris. Biol Jaarb Dodonaea 47:123–129Google Scholar
  274. Virgin HI, Egnéus HS (1983) Control of plastid development in higher plants. In: Shropshire W Jr, Mohr H (eds) Encyclopedia of plant physiology, vol 16A. Springer, Berlin, Heidelberg, pp 289–311Google Scholar
  275. Vogelmann TC (1989) Penetration of light into plants. Photochem Photobiol 50:895–902CrossRefGoogle Scholar
  276. von Wettstein D (1959) The formation of plastid structures. J Ultrastruct Res 3:234–240CrossRefGoogle Scholar
  277. von Wettstein D (2001) Discovery of a protein required for photosynthetic membrane assembly. Proc Natl Acad Sci USA 98:3633–3635CrossRefGoogle Scholar
  278. von Wettstein D, Kahn A, Nielsen PF, Gough S (1974) Genetic regulation of chlorophyll synthesis analyzed with mutants in barley. Science 184:800–802PubMedCrossRefGoogle Scholar
  279. von Zychlinski A, Kleffman T, Krishnamurthy N, Sjölander K, Baginsky S, Gruissem W (2005) Proteome analysis of the rice etioplast: metabolic and regulatory networks and novel protein functions. Mol Cell Proteomics 4:1072–1084CrossRefGoogle Scholar
  280. Vothknecht UC, Kannangara CG, von Wettstein D (1998) Barley glutamyl tRNAGLU reductase: mutations affecting haem inhibition and enzyme activity. Phytochemistry 47:513–519PubMedCrossRefGoogle Scholar
  281. Walter G, Peine F, Dujardin EC, Hoffmann P (1988) Pyridine-nucleotide contents and activity of protochlorophyllide-photooxidoreductase in vivo. 1. Comparative investigations in etiolated seedlings of Triticum aestivum L. and Phaseolus coccineus L. Photosynthetica 22:502–510Google Scholar
  282. Waters MT (2004) Plastid tubules in higher plants: an analysis of form and function. PhD dissertation, University of NottinghamGoogle Scholar
  283. Waters MT, Moylan EC, Langdale JA (2008) GLK transcription factors regulate chloroplast development in a cellautonomous manner. Plant J 56:432–444PubMedCrossRefGoogle Scholar
  284. Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ, Langdale JA (2009) GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell 21:1109–1128PubMedCrossRefGoogle Scholar
  285. Whatley JM (1974) Chloroplast development in primary leaves of Phaseolus vulgaris. New Phytol 73:1097–1110CrossRefGoogle Scholar
  286. Widell K-O, Vogelmann TC (1985) Optical properties of Lactuca and Taraxacum seed and fruit coats: their role as light filters. Physiol Plant 64:34–40CrossRefGoogle Scholar
  287. Widell K-O, Vogelmann TC (1988) Fiber optic studies of light gradients and spectral regime within Lactuca sativa achenes. Physiol Plant 72:706–712CrossRefGoogle Scholar
  288. Wiktorsson B, Ryberg M, Sundqvist C (1996) Aggregation of NADPH-protochlorophyllide oxidoreductase pigment complexes is favoured by protein phosphorylation. Plant Physiol Biochem 34:23–34Google Scholar
  289. Wise RR (2006) The diversity of plastid form and function. In: Wise RR, Hoober KJ (eds) Advances in photosynthesis and respiration, vol. 23. The structure and function of plastids. Springer, Dordrecht, pp 3–26Google Scholar
  290. Wolley JT, Stoller EV (1978) Light penetration and light-induced seed germination in soil. Plant Physiol 61:597–600CrossRefGoogle Scholar
  291. Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet 9:383–395PubMedCrossRefGoogle Scholar
  292. Wredle U, Walles B, Hakman I (2000) Chromoplasts are formed in Vicia faba suspensor cells. Int J Plant Sci 161:713–719CrossRefGoogle Scholar
  293. Wrischer M (1966) Neubildung von Prolamellarkörpern in Chloroplasten. Z Pflanzenphysiol 55:296–299Google Scholar
  294. Yahubyan G, Minkov I, Sundqvist C (2001) Carotenoid dependence of the protochlorophyllide to chlorophyllide phototransformation in dark-grown wheat seedlings. J Photochem Photobiol B 65:171–176PubMedCrossRefGoogle Scholar
  295. Yamamoto YY, Puente P, Deng XW (2000) An Arabidopsis cotyledon-specific albino locus: a possible role in 16rRNA maturation. Plant Cell Physiol 41:68–76PubMedGoogle Scholar
  296. Yasumura Y, Moylan EC, Langdale JA (2005) A conserved transcription factor mediates nuclear control of organelle biogenesis in anciently diverged land plants. Plant Cell 17:1894–1907PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Plant Anatomy, Institute of BiologyEötvös UniversityBudapestHungary
  2. 2.UMR 1088 INRA/CNRS 5184/UB Plante-Microbe-EnvironnementINRA-CMSEDijon CedexFrance

Personalised recommendations