Advertisement

Photosynthesis Research

, Volume 104, Issue 2–3, pp 357–372 | Cite as

Molecular signatures for the main phyla of photosynthetic bacteria and their subgroups

  • Radhey S. Gupta
Review

Abstract

The bacterial groups corresponding to different photosynthetic prokaryotes are presently identified mainly on the basis of their branching in phylogenetic trees. The availability of genome sequences is enabling identification of many molecular signatures that are specific for different groups of photosynthetic bacteria. Our recent work has identified large numbers of signatures consisting of conserved inserts or deletions (indels) in widely distributed proteins, as well as whole proteins that are specific for various sequenced species/strains from Cyanobacteria, Chlorobi, and Proteobacteria phyla. Based upon these signatures, it is now possible to identify/distinguish bacteria from these phyla of photosynthetic bacteria as well as their major subclades in clear molecular terms. The use of these signatures in conjunction with phylogenomic analyses, summarized here, is leading to a holistic picture concerning the branching order and evolutionary relationships among the above groups of photosynthetic bacteria. Although detailed studies in this regard have not yet been carried on Chloroflexi and Heliobacteriaceae, we have identified some conserved indels that are specific for these groups. Some of the conserved indels for the photosynthetic bacteria are present in photosynthesis-related proteins. These include a 4 aa insert in the pyruvate flavodoxin/ferridoxin oxidoreductase that is specific for the genus Chloroflexus, a 2 aa insert in magnesium chelatase that is uniquely shared by all Cyanobacteria except the deepest branching Clade A (Gloebacterales), a 6 aa insert in an A-type flavoprotein that is specific for various marine unicellular Cyanobacteria, a 2 aa insert in heme oxygenase that is specific for various Prochlorococcus strains/isolates, and 1 aa deletion in the protein protochlorophyllide oxidoreductase that is commonly shared by various Prochlorococcus strains except the deepest branching isolates MIT 9303 and MIT 9313. The identified CSIs are located in the structures of these proteins in surface loops indicating that they may be important in mediating protein–protein interactions. The cellular functions of these conserved indels, or most of the signature proteins are presently unknown, but they provide valuable means for discovering novel properties that are unique to different groups of photosynthetic bacteria.

Keywords

Conserved signature indels Lineage-specific Signature proteins Heme oxygenase Magnesium chelatase Pyruvate flavodoxin/ferredoxin oxidoreductase Protochlorophyllide oxidoreductase Flavoprotein Chloroflexi Chlorobi Heliobacteriaceae Cyanobacterial phylogeny 

Abbreviations

CSI

Conserved signature indel (insert of deletion)

CSP

Conserved signature protein

LGT

Lateral gene transfer

POR

Protochlorophyllide oxidoreductase

PFOR

Pyruvate flavodoxin/ferridoxin oxidoreductase

RC(s)

Reaction center(s)

Notes

Acknowledgments

The research work from the author’s lab was supported by a research grant from the Natural Sciences and Engineering Research Council of Canada.

References

  1. Akiva E, Itzhaki Z, Margalit H (2008) Built-in loops allow versatility in domain-domain interactions: lessons from self-interacting domains. Proc Natl Acad Sci USA 105:13292–13297CrossRefPubMedGoogle Scholar
  2. Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33:91–111CrossRefPubMedGoogle Scholar
  3. Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23:94–97CrossRefPubMedGoogle Scholar
  4. Blankenship RE, Olson JM, Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 399–435Google Scholar
  5. Boone DR, Castenholz RW, Garrity GM (2001) Bergey’s manual of systematic bacteriology. Springer, New York, pp 1–721Google Scholar
  6. Bryant DA, Frigaard NU (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14:488–496CrossRefPubMedGoogle Scholar
  7. Bryant DA, Costas AM, Maresca JA, Chew AG, Klatt CG, Bateson MM, Tallon LJ, Hostetler J, Nelson WC, Heidelberg JF, Ward DM (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic Acidobacterium. Science 317:523–526CrossRefPubMedGoogle Scholar
  8. Castenholz RW (2001) Phylum BX. Cyanobacteria: oxygenic photosynthetic bacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 474–487Google Scholar
  9. Chabriere E, Vernede X, Guigliarelli B, Charon MH, Hatchikian EC, Fontecilla-Camps JC (2001) Crystal structure of the free radical intermediate of pyruvate: ferredoxin oxidoreductase. Science 294:2559–2563CrossRefPubMedGoogle Scholar
  10. Charon MH, Volbeda A, Chabriere E, Pieulle L, Fontecilla-Camps JC (1999) Structure and electron transfer mechanism of pyruvate: ferredoxin oxidoreductase. Curr Opin Struct Biol 9:663–669CrossRefPubMedGoogle Scholar
  11. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287CrossRefPubMedGoogle Scholar
  12. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145CrossRefPubMedGoogle Scholar
  13. Delwiche CF, Kuhsel M, Palmer JD (1995) Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. Mol Phylogenet Evol 4:110–128CrossRefPubMedGoogle Scholar
  14. Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM, Barbe V, Duprat S, Galperin MY, Koonin EV, Le Gall F, Makarova KS, Ostrowski M, Oztas S, Robert C, Rogozin IB, Scanlan DJ, De Marsac NT, Weissenbach J, Wincker P, Wolf YI, Hess WR (2003) Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci USA 100:10020–10025CrossRefPubMedGoogle Scholar
  15. Dutilh BE, Snel B, Ettema TJ, Huynen MA (2008) Signature genes as a phylogenomic tool. Mol Biol Evol 25:1659–1667CrossRefPubMedGoogle Scholar
  16. Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, DeBoy R, Gwinn ML, Nelson WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Nierman WC, Feldblyum TV, Hansen CL, Craven MB, Radune D, Vamathevan J, Khouri H, White O, Gruber TM, Ketchum KA, Venter JC, Tettelin H, Bryant DA, Fraser CM (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99:9509–9514CrossRefPubMedGoogle Scholar
  17. Fang G, Rocha EP, Danchin A (2008) Persistence drives gene clustering in bacterial genomes. BMC Genomics 9:4CrossRefPubMedGoogle Scholar
  18. Frigaard NU, Chew AG, Li H, Maresca JA, Bryant DA (2003) Chlorobium tepidum: insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth Res 78:93–117CrossRefPubMedGoogle Scholar
  19. Gao B, Mohan R, Gupta RS (2009) Phylogenomics and protein signatures elucidating the evolutionary relationships among the Gammaproteobacteria. Int J Syst Evol Microbiol 59:234–247CrossRefPubMedGoogle Scholar
  20. Gest H, Blankenship RE (2004) Time line of discoveries: anoxygenic bacterial photosynthesis. Photosynth Res 80:59–70CrossRefPubMedGoogle Scholar
  21. Gest H, Favinger J (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll. Arch Microbiol 136:11–16CrossRefGoogle Scholar
  22. Golbeck JH (1993) Shared thematic elements in photochemical reaction centers. Proc Natl Acad Sci USA 90:1642–1646CrossRefPubMedGoogle Scholar
  23. Griffiths E, Gupta RS (2001) The use of signature sequences in different proteins to determine the relative branching order of bacterial divisions: evidence that Fibrobacter diverged at a similar time to Chlamydia and the Cytophaga-Flavobacterium-Bacteroides division. Microbiology 147:2611–2622PubMedGoogle Scholar
  24. Griffiths E, Gupta RS (2004) Signature sequences in diverse proteins provide evidence for the late divergence of the order Aquificales. Int Microbiol 7:41–52PubMedGoogle Scholar
  25. Griffiths E, Gupta RS (2006) Lateral transfers of serine hydroxymethyl transferase (glyA) and UDP-N-acetylglucosamine enolpyruvyl transferase (murA) genes from free-living Actinobacteria to the parasitic chlamydiae. J Mol Evol 63:283–296CrossRefPubMedGoogle Scholar
  26. Griffiths E, Gupta RS (2007) Phylogeny and shared conserved inserts in proteins provide evidence that Verrucomicrobia are the closest known free-living relatives of chlamydiae. Microbiology 153:2648–2654CrossRefPubMedGoogle Scholar
  27. Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among Archaebacteria, Eubacteria, and Eukaryotes. Microbiol Mol Biol Rev 62:1435–1491PubMedGoogle Scholar
  28. Gupta RS (2000) The phylogeny of Proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24:367–402CrossRefPubMedGoogle Scholar
  29. Gupta RS (2001) The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins. Int Microbiol 4:187–202CrossRefPubMedGoogle Scholar
  30. Gupta RS (2003) Evolutionary relationships among photosynthetic bacteria. Photosynth Res 76:173–183CrossRefPubMedGoogle Scholar
  31. Gupta RS (2004) The Phylogeny and Signature Sequences characteristics of Fibrobacters, Chlorobi and Bacteroidetes. Crit Rev Microbiol 30:123–143CrossRefPubMedGoogle Scholar
  32. Gupta RS (2005a) Molecular sequences and the early history of life. In: Sapp J (ed) Microbial phylogeny and evolution: concepts and controversies. Oxford University Press, New York, pp 160–183Google Scholar
  33. Gupta RS (2005b) Protein signatures distinctive of Alpha proteobacteria and its subgroups and a model for Alpha proteobacterial evolution. Crit Rev Microbiol 31:101–135CrossRefPubMedGoogle Scholar
  34. Gupta RS (2006) Molecular signatures (unique proteins and conserved indels) that are specific for the epsilon Proteobacteria (Campylobacterales). BMC Genomics 7:167CrossRefPubMedGoogle Scholar
  35. Gupta RS (2009) Protein signatures (molecular synapomorphies) that are distinctive characteristics of the major cyanobacterial clades. Int J Syst Evol Microbiol 59:2510–2526CrossRefPubMedGoogle Scholar
  36. Gupta RS, Griffiths E (2002) Critical issues in bacterial phylogenies. Theor Popul Biol 61:423–434CrossRefPubMedGoogle Scholar
  37. Gupta RS, Johari V (1998) Signature sequences in diverse proteins provide evidence of a close evolutionary relationship between the Deinococcus-Thermus group and Cyanobacteria. J Mol Evol 46:716–720CrossRefPubMedGoogle Scholar
  38. Gupta RS, Lorenzini E (2007) Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the Bacteroidetes and Chlorobi species. BMC Evol Biol 7:71CrossRefPubMedGoogle Scholar
  39. Gupta RS, Mathews DW (2010) Signature proteins for the major clades of Cyanobacteria. BMC Evol Biol 10:24CrossRefPubMedGoogle Scholar
  40. Gupta RS, Mok A (2007) Phylogenomics and signature proteins for the alpha proteobacteria and its main groups. BMC Microbiol 7:106CrossRefPubMedGoogle Scholar
  41. Gupta RS, Sneath PHA (2007) Application of the character compatibility approach to generalized molecular sequence data: branching order of the proteobacterial subdivisions. J Mol Evol 64:90–100CrossRefPubMedGoogle Scholar
  42. Gupta RS, Pereira M, Chandrasekera C, Johari V (2003) Molecular signatures in protein sequences that are characteristic of Cyanobacteria and plastid homologues. Int J Syst Evol Microbiol 53:1833–1842CrossRefPubMedGoogle Scholar
  43. Handa S, Pierson BK (2006) The family Chloroflexiae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria. Springer, New York, pp 815–842Google Scholar
  44. Heinnickel M, Golbeck JH (2007) Heliobacterial photosynthesis. Photosynth Res 92:35–53CrossRefPubMedGoogle Scholar
  45. Helman Y, Tchernov D, Reinhold L, Shibata M, Ogawa T, Schwarz R, Ohad I, Kaplan A (2003) Genes encoding A-type flavoproteins are essential for photoreduction of O2 in Cyanobacteria. Curr Biol 13:230–235CrossRefPubMedGoogle Scholar
  46. Heyes DJ, Scrutton NS (2009) Conformational changes in the catalytic cycle of protochlorophyllide oxidoreductase: what lessons can be learnt from dihydrofolate reductase? Biochem Soc Trans 37:354–357CrossRefPubMedGoogle Scholar
  47. Hoffmann L, Komarek J, kastovsky J (2005) System of Cyanoprokaryotes (Cyanobacteria)—state in 2004. Algol Stud 117:95–115Google Scholar
  48. Hormozdiari F, Salari R, Hsing M, Schonhuth A, Chan SK, Sahinalp SC, Cherkasov A (2009) The effect of insertions and deletions on wirings in protein-protein interaction networks: a large-scale study. J Comput Biol 16:159–167CrossRefPubMedGoogle Scholar
  49. Imhoff JF (2001) The anoxygenic phototrophic purple bacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Springer-Verlag, Berlin, pp 631–637Google Scholar
  50. Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna-Matthews-Olson protein) gene sequences. Int J Syst Evol Microbiol 53:941–951CrossRefPubMedGoogle Scholar
  51. Kainth P, Gupta RS (2005) Signature proteins that are distinctive of alpha proteobacteria. BMC Genomics 6:94CrossRefPubMedGoogle Scholar
  52. Kersters K, Devos P, Gillis M, Swings J, Vandamme P, Stackebrandt E (2006) Introduction to the Proteobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria. Springer, New York, pp 3–37Google Scholar
  53. Kirzhner V, Nevo E, Korol A, Bolshoy A (2003) A large-scale comparison of genomic sequences: one promising approach. Acta Biotheor 51:73–89CrossRefPubMedGoogle Scholar
  54. Koonin EV, Aravind L, Kondrashov AS (2000) The impact of comparative genomics on our understanding of evolution. Cell 101:573–576CrossRefPubMedGoogle Scholar
  55. Kuo CH, Ochman H (2009) The fate of new bacterial genes. FEMS Microbiol Rev 33:38–43CrossRefPubMedGoogle Scholar
  56. Lang AS, Beatty JT (2007) Importance of widespread gene transfer agent genes in alpha Proteobacteria. Trends Microbiol 15:54–62CrossRefPubMedGoogle Scholar
  57. Lerat E, Daubin V, Ochman H, Moran NA (2005) Evolutionary origins of genomic repertoires in bacteria. PLoS Biol 3:e130CrossRefPubMedGoogle Scholar
  58. Ludwig W, Klenk H-P (2005) Overview: a phylogenetic backbone and taxonomic framework for prokaryotic systematics. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Springer-Verlag, Berlin, pp 49–65CrossRefGoogle Scholar
  59. Madigan MT (2006) The family Heliobacteriaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria. Springer, New York, pp 951–964Google Scholar
  60. Moore LR, Rocap G, Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464–467CrossRefPubMedGoogle Scholar
  61. Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, Haselkorn R, Galperin MY (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA 103:13126–13131CrossRefPubMedGoogle Scholar
  62. Narra HP, Cordes MH, Ochman H (2008) Structural features and the persistence of acquired proteins. Proteomics 8:4772–4781CrossRefPubMedGoogle Scholar
  63. Nobrega MA, Pennacchio LA (2004) Comparative genomic analysis as a tool for biological discovery. J Physiol 554:31–39CrossRefPubMedGoogle Scholar
  64. Olsen GJ, Woese CR, Overbeek R (1994) The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6PubMedGoogle Scholar
  65. Olson JM, Pierson BK (1987) Evolution of reaction centers in photosynthetic prokaryotes. Int Rev Cytol 108:209–248CrossRefPubMedGoogle Scholar
  66. Oren A, Stackebrandt E (2002) Prokaryote taxonomy online: challenges ahead. Nature 419:15CrossRefPubMedGoogle Scholar
  67. Overmann J (2003) The family Chlorobiaceae. In Dworkin M et al (eds) The Prokaryotes: an evolving electronic resource for the microbiological community. Springer-Verlag, New YorkGoogle Scholar
  68. Overmann J, Garcia-Pichel F (2000) The phototrophic way of life. In: Dworkin M et al (eds) The prokaryotes: an evolving electronic resource for the microbiological community. Springer-Verlag, New YorkGoogle Scholar
  69. Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127PubMedGoogle Scholar
  70. Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY, Blankenship RE (2002) Whole-genome analysis of photosynthetic prokaryotes. Science 298:1616–1620CrossRefPubMedGoogle Scholar
  71. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  72. Rivera MC, Lake JA (1992) Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257:74–76CrossRefPubMedGoogle Scholar
  73. Rocap G, Distel DL, Waterbury JB, Chisholm SW (2002) Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S–23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol 68:1180–1191CrossRefPubMedGoogle Scholar
  74. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER, Chisholm SW (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047CrossRefPubMedGoogle Scholar
  75. Rokas A, Holland PW (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459CrossRefPubMedGoogle Scholar
  76. Sanchez-Baracaldo P, Hayes PK, Blank CE (2005) Morphological and habitat evolution in the Cyanobacteria using a compartmentalization approach. Geobiology 3:145–165CrossRefGoogle Scholar
  77. Sattley WM, Madigan MT, Swingley WD, Cheung PC, Clocksin KM, Conrad AL, Dejesa LC, Honchak BM, Jung DO, Karbach LE, Kurdoglu A, Lahiri S, Mastrian SD, Page LE, Taylor HL, Wang ZT, Raymond J, Chen M, Blankenship RE, Touchman JW (2008) The genome of Heliobacterium modesticaldum, a phototrophic representative of the Firmicutes containing the simplest photosynthetic apparatus. J Bacteriol 190:4687–4696CrossRefPubMedGoogle Scholar
  78. Shi T, Falkowski PG (2008) Genome evolution in Cyanobacteria: the stable core and the variable shell. Proc Natl Acad Sci USA 105:2510–2515CrossRefPubMedGoogle Scholar
  79. Silaghi-Dumitrescu R, Kurtz D M Jr, Ljungdahl LG, Lanzilotta WN (2005) X-ray crystal structures of Moorella thermoacetica FprA. Novel diiron site structure and mechanistic insights into a scavenging nitric oxide reductase. Biochemistry 44:6492–6501CrossRefPubMedGoogle Scholar
  80. Singh B, Gupta RS (2009) Conserved inserts in the Hsp60 (GroEL) and Hsp70 (DnaK) proteins are essential for cellular growth. Mol Genet Genomics 281:361–373CrossRefPubMedGoogle Scholar
  81. Sugishima M, Migita CT, Zhang X, Yoshida T, Fukuyama K (2004) Crystal structure of heme oxygenase-1 from cyanobacterium Synechocystis sp. PCC 6803 in complex with heme. Eur J Biochem 271:4517–4525CrossRefPubMedGoogle Scholar
  82. Sugishima M, Hagiwara Y, Zhang X, Yoshida T, Migita CT, Fukuyama K (2005) Crystal structure of dimeric heme oxygenase-2 from Synechocystis sp. PCC 6803 in complex with heme. Biochemistry 44:4257–4266CrossRefPubMedGoogle Scholar
  83. Swingley WD, Sadekar S, Mastrian SD, Matthies HJ, Hao J, Ramos H, Acharya CR, Conrad AL, Taylor HL, Dejesa LC, Shah MK, O’huallachain ME, Lince MT, Blankenship RE, Beatty JT, Touchman JW (2007) The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism. J Bacteriol 189:683–690CrossRefPubMedGoogle Scholar
  84. Swingley WD, Blankenship RE, Raymond J (2008a) Integrating Markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families. Mol Biol Evol 25:643–654CrossRefPubMedGoogle Scholar
  85. Swingley WD, Chen M, Cheung PC, Conrad AL, Dejesa LC, Hao J, Honchak BM, Karbach LE, Kurdoglu A, Lahiri S, Mastrian SD, Miyashita H, Page L, Ramakrishna P, Satoh S, Sattley WM, Shimada Y, Taylor HL, Tomo T, Tsuchiya T, Wang ZT, Raymond J, Mimuro M, Blankenship RE, Touchman JW (2008b) Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proc Natl Acad Sci USA 105:2005–2010CrossRefPubMedGoogle Scholar
  86. Tsukatani Y, Wen J, Blankenship RE, Bryant DA (2010) Characterization of the FMO protein from the aerobic chlorophototroph, Candidatus Chloracidobacterium thermophilum. Photosynth Res. doi: 10.1007/s11120-00909517-0)
  87. Vassiliev IR, Antonkine ML, Golbeck JH (2001) Iron-sulfur clusters in type I reaction centers. Biochim Biophys Acta 1507:139–160CrossRefPubMedGoogle Scholar
  88. Vermaas WFJ (1994) Evolution of heliobacteria: implications for photosynthetic reaction center complexes. Photosynth Res 41:285–294CrossRefPubMedGoogle Scholar
  89. Walker CJ, Willows RD (1997) Mechanism and regulation of Mg-chelatase. Biochem J 327(Pt 2):321–333PubMedGoogle Scholar
  90. Wall JD, Weaver PF, Gest H (1975) Gene transfer agents, bacteriophages, and bacteriocins of Rhodopseudomonas capsulata. Arch Microbiol 105:217–224CrossRefPubMedGoogle Scholar
  91. Williams KP, Sobral BW, Dickerman AW (2007) A robust species tree for the Alphaproteobacteria. J Bacteriol 189:4578–4586CrossRefPubMedGoogle Scholar
  92. Willows RD (2003) Biosynthesis of chlorophylls from protoporphyrin IX. Nat Prod Rep 20:327–341CrossRefPubMedGoogle Scholar
  93. Wilmotte A, Golubic S (1991) Morphological and genetic criteria in the taxonomy of Cyanophyta/Cyanobacteria. Archiv fur Hydrobiologie 64:1–24Google Scholar
  94. Wilmotte A, Herdman M (2001) Phylogenetic relationships among the Cyanobacteria based on 16S rRNA sequences. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 487–493Google Scholar
  95. Wu D, Raymond J, Wu M, Chatterji S, Ren Q, Graham JE, Bryant DA, Robb F, Colman A, Tallon LJ, Badger JH, Madupu R, Ward NL, Eisen JA (2009) Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum. PLoS One 4:e4207CrossRefPubMedGoogle Scholar
  96. Yildiz FH, Gest H, Bauer CE (1991) Attenuated effect of oxygen on photopigment synthesis in Rhodospirillum centenum. J Bacteriol 173:5502–5506PubMedGoogle Scholar
  97. Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724PubMedGoogle Scholar
  98. Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT (2006) Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res 16:1099–1108CrossRefPubMedGoogle Scholar
  99. Zhaxybayeva O, Doolittle WF, Papke RT, Gogarten JP (2009) Intertwined evolutionary histories of marine Synechococcus and Prochlorococcus marinus. Genome Biology and Evolution 1:325–339CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada

Personalised recommendations