Photosynthesis Research

, Volume 103, Issue 3, pp 183–194 | Cite as

Comparative sequence analysis of CP12, a small protein involved in the formation of a Calvin cycle complex in photosynthetic organisms

  • René Groben
  • Dimitrios Kaloudas
  • Christine A. Raines
  • Bernard Offmann
  • Stephen C. Maberly
  • Brigitte Gontero
Regular Paper

Abstract

CP12, a small intrinsically unstructured protein, plays an important role in the regulation of the Calvin cycle by forming a complex with phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). An extensive search in databases revealed 129 protein sequences from, higher plants, mosses and liverworts, different groups of eukaryotic algae and cyanobacteria. CP12 was identified throughout the Plantae, apart from in the Prasinophyceae. Within the Chromalveolata, two putative CP12 proteins have been found in the genomes of the diatom Thalassiosira pseudonana and the haptophyte Emiliania huxleyi, but specific searches in further chromalveolate genomes or EST datasets did not reveal any CP12 sequences in other Prymnesiophyceae, Dinophyceae or Pelagophyceae. A species from the Euglenophyceae within the Excavata also appeared to lack CP12. Phylogenetic analysis showed a clear separation into a number of higher taxonomic clades and among different forms of CP12 in higher plants. Cyanobacteria, Chlorophyceae, Rhodophyta and Glaucophyceae, Bryophyta, and the CP12-3 forms in higher plants all form separate clades. The degree of disorder of CP12 was higher in higher plants than in the eukaryotic algae and cyanobacteria apart from the green algal class Mesostigmatophyceae, which is ancestral to the streptophytes. This suggests that CP12 has evolved to become more flexible and possibly take on more general roles. Different features of the CP12 sequences in the different taxonomic groups and their potential functions and interactions in the Calvin cycle are discussed.

Keywords

Calvin cycle CP12 Glyceraldehyde-3-phosphate dehydrogenase Intrinsically unstructured protein Phosphoribulokinase 

Notes

Acknowledgements

We would like to thank Michael W. Gray (Dalhousie University) for his help in analysing unpublished data from the Protist EST Program. This research was partially funded by the Franco-British Research Partnership Programme Alliance funded by the British Council and Egide.

Supplementary material

11120_2010_9542_MOESM1_ESM.pdf (35 kb)
Supplementary material 1 (PDF 35 kb)
11120_2010_9542_MOESM2_ESM.pdf (74 kb)
Supplementary material 2 (PDF 75 kb)
11120_2010_9542_MOESM3_ESM.pdf (23 kb)
Supplementary material 3 (PDF 24 kb)
11120_2010_9542_MOESM4_ESM.pdf (21 kb)
Supplementary material 4 (PDF 21 kb)
11120_2010_9542_MOESM5_ESM.pdf (15 kb)
Supplementary material 5 (PDF 15 kb)
11120_2010_9542_MOESM6_ESM.pdf (26 kb)
Supplementary material 6 (PDF 26 kb)
11120_2010_9542_MOESM7_ESM.pdf (16 kb)
Supplementary material 7 (PDF 16 kb)
11120_2010_9542_MOESM8_ESM.pdf (64 kb)
Supplementary material 8 (PDF 65 kb)

References

  1. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105CrossRefPubMedGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  4. Avilan L, Gontero B, Lebreton S, Ricard J (1997) Memory and imprinting effects in multienzyme complexes-I. Isolation, dissociation, and reassociation of a phosphoribulokinase-glyceraldehyde-3-phosphate dehydrogenase complex from Chlamydomonas reinhardtii chloroplasts. Eur J Biochem 246:78–84CrossRefPubMedGoogle Scholar
  5. Boggetto N, Gontero B, Maberly SC (2007) Regulation of phosphoribulokinase and glyceraldehyde 3-phosphate dehydrogenase in a freshwater diatom, Asterionella formosa (Bacillariophyceae). J Phycol 43:1227–1234CrossRefGoogle Scholar
  6. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190CrossRefPubMedGoogle Scholar
  7. Daugbjerg N, Moestrup O, Arctander P (1995) Phylogeny of genera of Prasinophyceae and Pedinophyceae (Chlorophyta) deduced from molecular analysis of the rbcL gene. Phycol Res 43:203–213CrossRefGoogle Scholar
  8. Dunker AK (2007) Another window into disordered protein function. Structure 15:1026–1028CrossRefPubMedGoogle Scholar
  9. Emanuelsson O, Nielsen H, Von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Prot Sci 8:978–984CrossRefGoogle Scholar
  10. Erales J, Avilan L, Lebreton S, Gontero B (2008a) Exploring CP12 binding proteins revealed aldolase as a new partner for the phosphoribulokinase/glyceraldehyde 3-phosphate dehydrogenase/CP12 complex—purification and kinetic characterization of this enzyme from Chlamydomonas reinhardtii. FEBS J 275:1248–1259CrossRefPubMedGoogle Scholar
  11. Erales J, Gontero B, Maberly SC (2008b) Specificity and function of glyceraldehyde-3-phosphate dehydrogenase in a freshwater diatom, Asterionella formosa (Bacillariophyceae). J Phycol 44:1455–1464CrossRefGoogle Scholar
  12. Erales J, Lignon S, Gontero B (2009) CP12 from Chlamydomonas reinhardtii, a permanent specific “chaperone-like” protein of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 284:12735–12744CrossRefPubMedGoogle Scholar
  13. Fermani S, Sparla F, Falini G, Martelli PL, Casadio R, Pupillo P, Ripamonti A, Trost P (2007) Molecular mechanism of thioredoxin regulation in photosynthetic A2B2-glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 104:11109–11114CrossRefPubMedGoogle Scholar
  14. Gardebien F, Thangudu RR, Gontero B, Offmann B (2006) Construction of a 3D model of CP12, a protein linker. J Mol Graph Model 25:186–195CrossRefPubMedGoogle Scholar
  15. Graciet E, Gans P, Wedel N, Lebreton S, Camadro JM, Gontero B (2003a) The small protein CP12: a protein linker for supramolecular complex assembly. Biochemistry 42:8163–8170CrossRefPubMedGoogle Scholar
  16. Graciet E, Lebreton S, Camadro JM, Gontero B (2003b) Characterization of native and recombinant A4 glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem 270:129–136CrossRefPubMedGoogle Scholar
  17. Graciet E, Lebreton S, Gontero B (2004) Emergence of new regulatory mechanisms in the Benson-Calvin pathway via protein-protein interactions: a glyceraldehyde-3-phosphate dehydrogenase/CP12/phosphoribulokinase complex. J Exp Bot 55:1245–1254CrossRefPubMedGoogle Scholar
  18. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  19. Howard TP, Metodiev M, Lloyd JC, Raines CA (2008) Thioredoxin-mediated reversible dissociation of a stromal multiprotein complex in response to changes in light availability. Proc Natl Acad Sci USA 105:4056–4061CrossRefPubMedGoogle Scholar
  20. Huelsenbeck JP, Ronquist F (2001) MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  21. Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24:8–11CrossRefPubMedGoogle Scholar
  22. Kapraun DF (2007) Nuclear DNA content estimates in green algal lineages: chlorophyta and streptophyta. Ann Bot (Lond) 99:677–701CrossRefGoogle Scholar
  23. Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol 20:670–676CrossRefPubMedGoogle Scholar
  24. Lebreton S, Andreescu S, Graciet E, Gontero B (2006) Mapping of the interaction site of CP12 with glyceraldehyde-3-phosphate dehydrogenase from Chlamydomonas reinhardtii. Functional consequences for glyceraldehyde-3-phosphate dehydrogenase. FEBS J 273:3358–3369CrossRefPubMedGoogle Scholar
  25. Lemieux C, Otis C, Turmel M (2000) Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403:649–652CrossRefPubMedGoogle Scholar
  26. Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128CrossRefPubMedGoogle Scholar
  27. Li X, Romero P, Rani M, Dunker AK, Obradovic Z (1999) Predicting protein disorder for N-, C-, and internal regions. Genome Inform Ser Workshop Genome Inform 10:30–40PubMedGoogle Scholar
  28. Maberly SC, Courcelle C, Groben R, Gontero B (2010) Phylogenetically-based variation in the regulation of the Calvin cycle enzymes, phosphoribulokinase and glyceraldehyde-3-phosphate dehydrogenase, in algae. J Exp Bot 61:735–745CrossRefPubMedGoogle Scholar
  29. Marri L, Sparla F, Pupillo P, Trost P (2005a) Co-ordinated gene expression of photosynthetic glyceraldehyde-3-phosphate dehydrogenase, phosphoribulokinase, and CP12 in Arabidopsis thaliana. J Exp Bot 56:73–80PubMedGoogle Scholar
  30. Marri L, Trost P, Pupillo P, Sparla F (2005b) Reconstitution and properties of the recombinant glyceraldehyde-3-phosphate dehydrogenase/CP12/phosphoribulokinase supramolecular complex of Arabidopsis. Plant Physiol 139:1433–1443CrossRefPubMedGoogle Scholar
  31. Marri L, Zaffagnini M, Collin V, Issakidis-Bourguet E, Lemaire SD, Pupillo P, Sparla F, Miginiac-Maslow M, Trost P (2009) Prompt and easy activation by specific thioredoxins of Calvin cycle enzymes of Arabidopsis thaliana associated in the GAPDH/CP12/PRK supramolecular complex. Mol Plant 2:259–269CrossRefPubMedGoogle Scholar
  32. Matsuzaki M et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657CrossRefPubMedGoogle Scholar
  33. Oesterhelt C, Klocke S, Holtgrefe S, Linke V, Weber AP, Scheibe R (2007) Redox regulation of chloroplast enzymes in Galdieria sulphuraria in view of eukaryotic evolution. Plant Cell Physiol 48:1359–1373CrossRefPubMedGoogle Scholar
  34. Pohlmeyer K, Paap BK, Soll J, Wedel N (1996) CP12: a small nuclear-encoded chloroplast protein provides novel insights into higher-plant GAPDH evolution. Plant Mol Biol 32:969–978CrossRefPubMedGoogle Scholar
  35. Raines CA, Paul MJ (2006) Products of leaf primary carbon metabolism modulate the developmental programme determining plant morphology. J Exp Bot 57:1857–1862CrossRefPubMedGoogle Scholar
  36. Robbens S, Petersen J, Brinkmann H, Rouze P, Van de Peer Y (2007) Unique regulation of the Calvin cycle in the ultrasmall green alga Ostreococcus. J Mol Evol 64:601–604CrossRefPubMedGoogle Scholar
  37. Romero P, Obradovic Z, Dunker K (1997) Sequence data analysis for long disordered regions prediction in the calcineurin family. Genome Inform Ser Workshop Genome Inform 8:110–124PubMedGoogle Scholar
  38. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42:38–48CrossRefPubMedGoogle Scholar
  39. Rumpho ME, Pochareddya S, Worfula JM, Summerb J, Bhattacharyac D, Pelletreaua KN, Tylerd MS, Leee J, Manhartf JR, Soulea KM (2009) Molecular characterization of the Calvin cycle enzyme phosphoribulokinase in the stramenopile alga Vaucheria litorea and the plastid hosting mollusc Elysia chlorotica. Mol Plant 2:1384–1396CrossRefPubMedGoogle Scholar
  40. Scheibe R, Wedel N, Vetter S, Emmerlich V, Sauermann SM (2002) Co-existence of two regulatory NADP-glyceraldehyde 3-P dehydrogenase complexes in higher plant chloroplasts. Eur J Biochem 269:5617–5624CrossRefPubMedGoogle Scholar
  41. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucl Acids Res 18:6097–6100CrossRefPubMedGoogle Scholar
  42. Shaw J, Renzaglia K (2004) Phylogeny and diversification of bryophytes. Am J Bot 91:1557–1581CrossRefGoogle Scholar
  43. Singh P, Kaloudas D, Raines CA (2008) Expression analysis of the Arabidopsis CP12 gene family suggests novel roles for these proteins in roots and floral tissues. J Exp Bot 59:3975–3985CrossRefPubMedGoogle Scholar
  44. Smith RF, Wiese BA, Wojzynski MK, Davison DB, Worley KC (1996) BCM Search Launcher—an integrated interface to molecular biology data base search and analysis services available on the World Wide Web. Genome Res 6:454–462CrossRefPubMedGoogle Scholar
  45. Tamoi M, Miyazaki T, Fukamizo T, Shigeoka S (2005) The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. Plant J 42:504–513CrossRefPubMedGoogle Scholar
  46. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  47. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882CrossRefPubMedGoogle Scholar
  48. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533CrossRefPubMedGoogle Scholar
  49. Tompa P, Szasz C, Buday L (2005) Structural disorder throws new light on moonlighting. Trends Biochem Sci 30:484–489CrossRefPubMedGoogle Scholar
  50. Trost P, Fermani S, Marri L, Zaffagnini M, Falini G, Scagliarini S, Pupillo P, Sparla F (2006) Thioredoxin-dependent regulation of photosynthetic glyceraldehyde-3-phosphate dehydrogenase: autonomous vs. CP12-dependent mechanisms. Photosynth Res 89:1–13CrossRefGoogle Scholar
  51. Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269:2–12CrossRefPubMedGoogle Scholar
  52. Wedel N, Soll J (1998) Evolutionary conserved light regulation of Calvin cycle activity by NADPH-mediated reversible phosphoribulokinase/CP12/glyceraldehyde-3-phosphate dehydrogenase complex dissociation. Proc Natl Acad Sci USA 95:9699–9704CrossRefPubMedGoogle Scholar
  53. Wedel N, Soll J, Paap BK (1997) CP12 provides a new mode of light regulation of Calvin cycle activity in higher plants. Proc Natl Acad Sci USA 94:10479–10484CrossRefPubMedGoogle Scholar
  54. Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • René Groben
    • 1
  • Dimitrios Kaloudas
    • 2
  • Christine A. Raines
    • 2
  • Bernard Offmann
    • 3
  • Stephen C. Maberly
    • 1
  • Brigitte Gontero
    • 4
  1. 1.Centre for Hydrology and Ecology, Lancaster Environment CentreLancasterUK
  2. 2.Department of Biological SciencesUniversity of EssexColchesterUK
  3. 3.Laboratoire de Biochimie et Génétique MoléculaireUniversité de La RéunionSaint Denis, Messag Cedex 09, La RéunionFrance
  4. 4.Laboratoire d’Enzymologie de Complexes SupramoléculairesUPR 90 36-IFR 88- Aix Marseille Universités, BIP-CNRSMarseille Cedex 20France

Personalised recommendations