Photosynthesis Research

, Volume 104, Issue 2–3, pp 211–219 | Cite as

The lamellar spacing in self-assembling bacteriochlorophyll aggregates is proportional to the length of the esterifying alcohol

  • Jakub Pšenčík
  • Mika Torkkeli
  • Anita Zupčanová
  • František Vácha
  • Ritva E. Serimaa
  • Roman Tuma
Regular Paper


Chlorosomes from green photosynthetic bacteria are large photosynthetic antennae containing self-assembling aggregates of bacteriochlorophyll c, d, or e. The pigments within chlorosomes are organized in curved lamellar structures. Aggregates with similar optical properties can be prepared in vitro, both in polar as well as non-polar solvents. In order to gain insight into their structure we examined hexane-induced aggregates of purified bacteriochlorophyll c by X-ray scattering. The bacteriochlorophyll c aggregates exhibit scattering features that are virtually identical to those of native chlorosomes demonstrating that the self-assembly of these pigments is fully encoded in their chemical structure. Thus, the hexane-induced aggregates constitute an excellent model to study the effects of chemical structure on assembly. Using bacteriochlorophyllides transesterified with different alcohols we have established a linear relationship between the esterifying alcohol length and the lamellar spacing. The results provide a structural basis for lamellar spacing variability observed for native chlorosomes from different species. A plausible physiological role of this variability is discussed. The X-ray scattering also confirmed the assignments of peaks, which arise from the crystalline baseplate in the native chlorosomes.


Green photosynthetic bacteria Chlorosome Bacteriochlorophyll Aggregate Bacteriochlorophyllide X-ray scattering 



This study was supported by Czech Ministry of Education, Youth and Sports (projects MSM0021620835, MSM6007665808, AV0Z50510513) and Czech Science Foundation (206/09/0375); R.T. was supported by Academy of Finland (project 118462) and The University of Leeds.


  1. Alster J, Zupcanova A, Vacha F, Psencik J (2008) Effect of quinones on formation and properties of bacteriochlorophyll c aggregates. Photosynth Res 95:183–189CrossRefPubMedGoogle Scholar
  2. Arellano JB, Melo TB, Borrego CM, Garcia-Gil J, Naqvi KR (2000) Nanosecond laser photolysis studies of chlorosomes and artificial aggregates containing bacteriochlorophyll e: evidence for the proximity of carotenoids and bacteriochlorophyll a in chlorosomes from Chlorobium phaeobacteroides strain CL1401. Photochem Photobiol 72:669–675CrossRefPubMedGoogle Scholar
  3. Arellano JB, Torkkeli M, Tuma R, Laurinmaki P, Melo TB, Ikonen TP, Butcher SJ, Serimaa RE, Psencik J (2008) Hexanol-induced order-disorder transitions in lamellar self-assembling aggregates of bacteriochlorophyll c in Chlorobium tepidum chlorosomes. Langmuir 24:2035–2041CrossRefPubMedGoogle Scholar
  4. Balaban TS (2005) Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems. Acc Chem Res 38:612–623CrossRefPubMedGoogle Scholar
  5. Balaban TS, Tamiaki H, Holzwarth AR (2005) Chlorins programmed for self-assembly. Top Curr Chem 258:1–38CrossRefGoogle Scholar
  6. Blankenship RE, Matsuura K (2003) Antenna complexes from green photosynthetic bacteria. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis, pp 195–217. Kluwer Academic Publishers, DordrechtGoogle Scholar
  7. Castenholz RW, Pierson BK (1995) Ecology of thermophilic anoxygenic phototrophs. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria, pp 87–103. Kluwer Academic Publisher, Dordrecht, The NetherlandsGoogle Scholar
  8. Chung S, Bryant DA (1996) Characterization of the csmD and csmE genes from Chlorobium tepidum. The CsmA, CsmC, CsmD, and CsmE proteins are components of the chlorosome envelope. Photosynth Res 50:41–59CrossRefGoogle Scholar
  9. Cox RP, Miller M, Aschenbrucker J, Ma YZ, Gillbro T (1998) The role of bacteriochlorophyll e and carotenoids in light harvesting in brown-colored green sulfur bacteria. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol 1. Kluwer Academic Publishers, Dordrecht, pp 149–152Google Scholar
  10. Egawa A, Fujiwara T, Mizoguchi T, Kakitani Y, Koyama Y, Akutsu H (2007) Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR. Proc Natl Acad Sci 104:790–795CrossRefPubMedGoogle Scholar
  11. Frigaard NU, Bryant DA (2006) Chlorosomes: antenna organelles in photosynthetic green bacteria. In: Shively JM (ed) Complex intracellular structures in prokaryotes (series: Microbiology Monographs, vol 2. Springer, Berlin, pp 79–114CrossRefGoogle Scholar
  12. Ganapathy S, Oostergetel GT, Wawrzyniak PK, Reus M, Chew AGM, Buda F, Boekema EJ, Bryant DA, Holzwarth AR, de Groot HJM (2009) Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes. Proc Natl Acad Sci USA 106:8525–8530CrossRefPubMedGoogle Scholar
  13. Hirota M, Moriyama T, Shimada K, Miller M, Olson JM, Matsuura K (1992) High degree of organization of bacteriochlorophyll c in chlorosome-like aggregates spontaneously assembled in aqueous solution. Biochim Biophys Acta 1099:271–274CrossRefGoogle Scholar
  14. Ikonen TP, Li H, Psencik J, Laurinmaki PA, Butcher SJ, Frigaard NU, Serimaa RE, Bryant DA, Tuma R (2007) X-ray scattering and electron cryomicroscopy study on the effect of carotenoid biosynthesis to the structure of Chlorobium tepidum chlorosomes. Biophys J 93:620–628CrossRefPubMedGoogle Scholar
  15. Klinger P, Arellano JB, Vacha FE, Hala J, Psencik J (2004) Effect of carotenoids and monogalactosyl diglyceride on bacteriochlorophyll c aggregates in aqueous buffer: Implications for the self-assembly of chlorosomes. Photochem Photobiol 80:572–578PubMedGoogle Scholar
  16. Larsen KL, Cox RP, Miller M (1994) Effects of illumination intensity on bacteriochlorophyll c homolog distribution in Chloroflexus aurantiacus grown under controlled conditions. Photosynth Res 41:151–156CrossRefGoogle Scholar
  17. Ma YZ, Cox RP, Gillbro T, Miller M (1996) Bacteriochlorophyll organization and energy transfer kinetics in chlorosomes from Chloroflexus aurantiacus depend on the light regime during growth. Photosynth Res 47:157–165CrossRefGoogle Scholar
  18. Miyatake T, Tamiaki H (2005) Self-aggregates of bacteriochlorophylls-c, d and e in a light-harvesting antenna system of green photosynthetic bacteria: effect of stereochemistry at the chiral 3-(1-hydroxyethyl) group on the supramolecular arrangement of chlorophyllous pigments. J Photochem Photobiol C 6:89–107CrossRefGoogle Scholar
  19. Nozawa T, Ohtomo K, Suzuki M, Nakagawa H, Shikama Y, Konami H, Wang ZY (1994) Structures of chlorosomes and aggregated BChl c in Chlorobium tepidum from solid state high resolution CP/MAS 13C NMR. Photosynth Res 41:211–223CrossRefGoogle Scholar
  20. Oostergetel GT, Reus M, Gomez Maqueo Chew A, Bryant DA, Boekema EJ, Holzwarth AR (2007) Long-range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo-electron microscopy. FEBS Lett 581:5435–5439PubMedGoogle Scholar
  21. Pedersen MO, Underhaug J, Dittmer J, Miller M, Nielsen NC (2008) The three-dimensional structure of CsmA: a small antenna protein from the green sulfur bacterium Chlorobium tepidum. FEBS Lett 582:2869–2874CrossRefPubMedGoogle Scholar
  22. Psencik J, Ma YZ, Arellano JB, Garcia-Gil J, Holzwarth AR, Gillbro T (2002) Excitation energy transfer in chlorosomes of Chlorobium phaeobacteroides strain CL1401: the role of carotenoids. Photosynth Res 71:5–18CrossRefPubMedGoogle Scholar
  23. Psencik J, Ikonen TP, Laurinmäki P, Merckel MC, Butcher SJ, Serimaa RE, Tuma R (2004) Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Biophys J 87:1165–1172CrossRefPubMedGoogle Scholar
  24. Psencik J, Arellano JB, Ikonen TP, Borrego CM, Laurinmaki PA, Butcher SJ, Serimaa RE, Tuma R (2006) Internal structure of chlorosomes from brown-colored Chlorobium species and the role of carotenoids in their assembly. Biophys J 91:1433–1440CrossRefPubMedGoogle Scholar
  25. Psencik J, Collins AM, Liljeroos L, Torkkeli M, Laurinmaki P, Ansink HM, Ikonen TP, Serimaa RE, Blankenship RE, Tuma R, Butcher SJ (2009) Structure of chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus. J Bacteriol 191:6701–6708CrossRefPubMedGoogle Scholar
  26. Schmidt K, Maarzahl M, Mayer F (1980) Development and pigmentation of chlorosomes in Chloroflexus aurantiacus strain Ok-70-fl. Arch Microbiol 127:87–97CrossRefGoogle Scholar
  27. Smith KM, Kehres LA, Fajer J (1983) Aggregation of the bacteriochlorophylls c, d and e. Models for the antenna chlorophylls of green and brown photosynthetic bacteria. J Am Chem Soc 105:1387–1389CrossRefGoogle Scholar
  28. Steensgaard DB, Wackerbarth H, Hildebrandt P, Holzwarth AR (2000) Diastereoselective control of bacteriochlorophyll e aggregation. 3(1)-S-BChl e is essential for the formation of chlorosome-like aggregates. J Phys Chem B 104:10379–10386CrossRefGoogle Scholar
  29. Umetsu M, Wang ZY, Zhang J, Ishii T, Uehara K, Inoko Y, Kobayashi M, Nozawa T (1999) How the formation process influences the structure of BChl c aggregates. Photosynth Res 60:229–239CrossRefGoogle Scholar
  30. van Rossum BJ, Boender GJ, Mulder FM, Raap J, Balaban TS, Holzwarth AR, Schaffner K, Prytulla S, Oschkinat H, de Groot HJM (1998) Multidimensional CP-MAS C-13 NMR of uniformly enriched chlorophyll. Spectrochim Acta A Mol Biol Spectrosc 54:1167–1176CrossRefGoogle Scholar
  31. Vassilieva EV, Stirewalt VL, Jakobs CU, Frigaard NU, Inoue-Sakamoto K, Baker MA, Sotak A, Bryant DA (2002) Subcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsrnH, and CsmX. Biochemistry 41:4358–4370CrossRefPubMedGoogle Scholar
  32. Vila X, Abella CA (1994) Effects of light quality on the physiology and the ecology of planktonic green sulfur bacteria in lakes. Photosynth Res 41:53–65CrossRefGoogle Scholar
  33. Wahlund TM, Woese CR, Castenholz RW, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot-springs, Chlorobium tepidum sp. nov. Arch Microbiol 156:81–90CrossRefGoogle Scholar
  34. Zupcanova A, Arellano JB, Bina D, Kopecky J, Psencik J, Vacha F (2008) The length of esterifying alcohol affects the aggregation properties of chlorosomal bacteriochlorophylls. Photochem Photobiol 84:1187–1194CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jakub Pšenčík
    • 1
    • 2
  • Mika Torkkeli
    • 3
  • Anita Zupčanová
    • 2
    • 4
  • František Vácha
    • 2
    • 4
  • Ritva E. Serimaa
    • 3
  • Roman Tuma
    • 5
  1. 1.Department of Chemical Physics and Optics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.Institute of Physical BiologyUniversity of South BohemiaNové HradyCzech Republic
  3. 3.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  4. 4.Biology CentreAcademy of Sciences of the Czech RepublicČeské BudějoviceCzech Republic
  5. 5.The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK

Personalised recommendations