Photosynthesis Research

, Volume 104, Issue 2–3, pp 163–176 | Cite as

Inorganic sulfur oxidizing system in green sulfur bacteria

  • Hidehiro Sakurai
  • Takuro Ogawa
  • Michiko Shiga
  • Kazuhito Inoue


Green sulfur bacteria use various reduced sulfur compounds such as sulfide, elemental sulfur, and thiosulfate as electron donors for photoautotrophic growth. This article briefly summarizes what is known about the inorganic sulfur oxidizing systems of these bacteria with emphasis on the biochemical aspects. Enzymes that oxidize sulfide in green sulfur bacteria are membrane-bound sulfide-quinone oxidoreductase, periplasmic (sometimes membrane-bound) flavocytochrome c sulfide dehydrogenase, and monomeric flavocytochrome c (SoxF). Some green sulfur bacteria oxidize thiosulfate by the multienzyme system called either the TOMES (thiosulfate oxidizing multi-enzyme system) or Sox (sulfur oxidizing system) composed of the three periplasmic proteins: SoxB, SoxYZ, and SoxAXK with a soluble small molecule cytochrome c as the electron acceptor. The oxidation of sulfide and thiosulfate by these enzymes in vitro is assumed to yield two electrons and result in the transfer of a sulfur atom to persulfides, which are subsequently transformed to elemental sulfur. The elemental sulfur is temporarily stored in the form of globules attached to the extracellular surface of the outer membranes. The oxidation pathway of elemental sulfur to sulfate is currently unclear, although the participation of several proteins including those of the dissimilatory sulfite reductase system etc. is suggested from comparative genomic analyses.


Cytochrome Green sulfur bacteria Sox Sulfide dehydrogenase Thiosulfate 



Adenosine phosphosulfate




Flavo-cytochrome c sulfide dehydrogenase


Green sulfur bacteria


Iron–sulfur protein


Reaction center


Zero-valence sulfur


Sulfur oxidizing enzyme system


Sulfide-quinone reductase


Thiosulfate oxidizing multi-enzyme system



We thank M. Kitashima for comparative genomic analyses and preparation of the figures. This work was supported in part by the Global COE Program (Integrative Life Science Based on the Study of Biosignaling Mechanisms) and by the High-tech Research Center project, MEXT, Japan to KI.


  1. Appia-Ayme C, Berks BC (2002) SoxV, an orthogolue of the CcdA disulfide transporter, is involved in thiosulfate oxidation in Rhodovulum sulfidophilum and reduces the periplasmic thioredoxin SoxW. Biochem Biophys Res Commun 296:737–741CrossRefPubMedGoogle Scholar
  2. Appia-Ayme C, Little PJ, Matsumoto Y, Leech AP, Berks BC (2001) Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum. J Bacteriol 183:6107–6118CrossRefPubMedGoogle Scholar
  3. Arieli B, Shahak Y, Taglicht D, Hauska G, Padan E (1994) Purification and characterization of sulfide-quinone reductase, a novel enzyme driving anoxygenic photosynthesis in Oscillatoria limnetica. J Biol Chem 269:5705–5711PubMedGoogle Scholar
  4. Azai C, Tsukatani Y, Harada J, Oh-oka H (2009) Sulfur oxidation in mutants of the photosynthetic green sulfur bacterium Chlorobium tepidum devoid of cytochrome c-554 and SoxB. Photosynth Res 100:57–65CrossRefPubMedGoogle Scholar
  5. Bamford VA, Bruno A, Rasmussen T, Appia-Ayme C, Cheesman MR, Berks BC, Hemmings AM (2002) Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme. EMBO J 21:5599–5610CrossRefPubMedGoogle Scholar
  6. Bardischewsky F, Quentimeier A, Friedrich CG (2006) The flavoprotein SoxF functions in chemotrophic thiosulfate oxidation of Paracoccus pantotrophus in vivo and in vitro. FEMS Microbiol Lett 258:121–126CrossRefPubMedGoogle Scholar
  7. Beck BJ, Downs DM (1998) The apbE gene encodes a lipoprotein involved in thiamine synthesis in Salmonella typhimurium. J Bacteriol 180:885–891PubMedGoogle Scholar
  8. Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975:189–221CrossRefPubMedGoogle Scholar
  9. Brune DC (1995a) Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina. Arch Microbiol 163:391–399CrossRefPubMedGoogle Scholar
  10. Brune DC (1995b) Sulfur compounds as photosynthetic electron donors. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Amsterdam, pp 847–870Google Scholar
  11. Cammack R, Chapman A, Lu WP, Karagouni A, Kelly DP (1989) Evidence that protein B of the thiosulphate-oxidizing system of Thiobacillus versutus contains a binuclear manganese cluster. FEBS Lett 253:239–243CrossRefGoogle Scholar
  12. Chan LK, Morgan-Kiss RM, Hanson TE (2008a) Sulfur oxidation in Chlorobium tepidum (syn. Chlorobaculum tepidum): genetic and proteomic analyses. In: Dahl C, Friedrich CG (eds) Microbial sulfur metabolism. Springer, Berlin, pp 117–126CrossRefGoogle Scholar
  13. Chan LK, Morgan-Kiss RM, Hanson TE (2008b) Genetic and proteomic studies of sulfur oxidation in Chlorobium tepidum (syn. Chlorobaculum tepidum). In: Hell R, Dahl C, Knaff DB, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, Berlin, pp 357–373CrossRefGoogle Scholar
  14. Chan LK, Weber TS, Morgan-Kiss RM, Hanson TE (2008c) A genomic region required for phototrophic thiosulfate oxidation in the green sulfur bacterium Chlorobium tepidum (syn. Chlorobaculum tepidum). Microbiology 154:818–829CrossRefPubMedGoogle Scholar
  15. Chan LK, Morgan-Kiss RM, Hanson TE (2009) Functional analysis of three sulfide:quinone oxidoreductase homologs in Chlorobaculum tepidum. J Bacteriol 191:1026–1034CrossRefPubMedGoogle Scholar
  16. Cort JR, Selan U, Schulte A, Grimm F, Kennedy MA, Dahl C (2008) Allochromatium vinosum DsrC: Solution-state NMR structure, redox properties, and interaction with DsrEFH, a protein essential for purple sulfur bacterial sulfur oxidation. J Mol Biol 382:692–707CrossRefPubMedGoogle Scholar
  17. Dahl C (2008) Inorganic sulfur compounds as electron donors in purple sulfur bacteria. In: Hell R, Dahl C, Knaff DB, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, Berlin, pp 289–317CrossRefGoogle Scholar
  18. Dahl C, Friedrich CG (eds) (2008) Microbial sulfur metabolism. Springer, HeidelbergGoogle Scholar
  19. Dahl C, Engels S, Pott-Sperling AS, Schulte A, Sander J, Lübbe Y, Deuster O, Brune DC (2005) Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol 187:1392–1404CrossRefPubMedGoogle Scholar
  20. Dambe T, Quentmeier A, Rother D, Friedrich C, Scheidig AJ (2005) Structure of the cytochrome complex SoxXA of Paracoccus pantotrophus, a heme enzyme initiating chemotrophic sulfur oxidation. J Struct Biol 152:229–234CrossRefPubMedGoogle Scholar
  21. Davidson MW, Gray GO, Knaff DB (1985) Interaction of Chromatium vinosum flavocytochrome c-552 with cytochromes studied by affinity-chromatography. FEBS Lett 187:155–159CrossRefGoogle Scholar
  22. De Jong GAH, Hazeu W, Bos P, Kuenen G (1997) Isolation of the tetrathionate hydrolase from Thiobacillus acidophilus. Eur J Biochem 243:678–683CrossRefPubMedGoogle Scholar
  23. Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R, Gwinn ML, Nelson WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Nierman WC, Feldblyum TV, Hansen CL, Craven MB, Radune D, Vamathevan J, Khouri H, White O, Gruber TM, Ketchum KA, Venter JC, Tettelin H, Bryant DA, Fraser CM (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99:9509–9514CrossRefPubMedGoogle Scholar
  24. Epel B, Schäfer KO, Quentmeier A, Friedrich C, Lubitz W (2005) Multifrequency EPR analysis of the dimanganese cluster of the putative sulfate thiohydrolase SoxB of Paracoccus pantotrophus. J Biol Inorg Chem 10:636–642CrossRefPubMedGoogle Scholar
  25. Fabianek RA, Hennecke H, Thony-Meyer L (1998) The active-site cysteines of the periplasmic thioredoxin-like protein CcmG of Escherichia coli are important but not essential for cytochrome c maturation in vivo. J Bacteriol 180:1947–1950PubMedGoogle Scholar
  26. Friedrich CG, Quentmeier A, Bardischewsky F, Rother D, Kraft R, Kostka S, Prinz H (2000) Novel genes for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J Bacteriol 182:4677–4687CrossRefPubMedGoogle Scholar
  27. Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882CrossRefPubMedGoogle Scholar
  28. Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259CrossRefPubMedGoogle Scholar
  29. Friedrich CG, Quentmeier A, Bardischewsky F, Rother D, Orawski G, Hellwig P, Fischer J (2008) Redox control of chemotrophic sulfur oxidation of Paracoccus pantotrophus. In: Dahl C, Friedrich CG (eds) Microbial sulfur metabolism. Springer, Berlin, pp 139–150CrossRefGoogle Scholar
  30. Frigaard NU, Bryant DA (2008a) Genomic and evolutionary perspectives on sulfur metabolism in green sulfur bacteria. In: Dahl C, Friedrich CG (eds) Microbial sulfur metabolism. Springer, Berlin, pp 60–76CrossRefGoogle Scholar
  31. Frigaard NU, Bryant DA (2008b) Genomic insights into the sulfur metabolism of phototrophic green sulfur bacteria. In: Hell R, Dahl C, Knaff DB, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, Berlin, pp 337–355CrossRefGoogle Scholar
  32. Frigaard NU, Dahl C (2009) Sulfur metabolism in phototrophic sulfur bacteria. Adv Microbiol Physiol 54:103–200CrossRefGoogle Scholar
  33. Griesbeck C, Schütz M, Schödl T, Bathe S, Nausch L, Mederer N, Vielreicher M, Hauska G (2002) Mechanism of sulfide-quinone reductase investigated using site-directed mutagenesis and sulfur analysis. Biochemistry 41:11552–11565CrossRefPubMedGoogle Scholar
  34. Grimm F, Bettina F, Dahl C (2008) Thiosulfate and sulfur oxidation in purple sulfur bacteria. In: Dahl C, Friedrich CG (eds) Microbial sulfur metabolism. Springer, Berlin, pp 101–116CrossRefGoogle Scholar
  35. Hauska G, Schoedl T, Remigy H, Tsiotis G (2001) The reaction center of green sulfur bacteria. Biochim Biophys Acta 1507:260–277CrossRefPubMedGoogle Scholar
  36. Heising S, Richter L, Ludwig W, Schink B (1999) Chlorobium ferrooxidans sp nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a “Geospirillum” sp strain. Arch Microbiol 172:116–124CrossRefPubMedGoogle Scholar
  37. Hell R, Dahl C, Knaff DB, Leustek T (eds) (2008) Sulfur metabolism in phototrophic organisms. Advances in photosynthesis and respiration, vol 27. Springer, BerlinGoogle Scholar
  38. Hensen D, Sperling D, Trüper HG, Brune DC, Dahl C (2006) Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum. Mol Microbiol 62:794–810CrossRefPubMedGoogle Scholar
  39. Imhoff JF (2008) Systematics of anoxygenic phototrophic bacteria. In: Hell R, Dahl C, Knaff DB, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, Berlin, pp 269–287CrossRefGoogle Scholar
  40. Itoh M, Seo D, Sakurai H, Sétif P (2002) Kinetics of electron transfer between soluble cytochrome c-554 and purified reaction center complex from the green sulfur bacterium Chlorobium tepidum. Photosynth Res 71:125–135CrossRefPubMedGoogle Scholar
  41. Japanese Biochemical Society (ed) (1984) In: Seikagaku handbook (in Japanese). Maruzen, TokyoGoogle Scholar
  42. Kappler U, Friedrich CG, Trüper HG, Dahl C (2001) Evidence for two pathways of thiosulfate oxidation in Starkeya novella (formerly Thiobacillus novellus). Arch Microbiol 175:102–111CrossRefPubMedGoogle Scholar
  43. Kappler U, Aguey-Zinsou KF, Hanson GR, Bernhardt PV, McEwan AG (2004) Cytochrome c 551 from Starkeya novella. Characterization, spectroscopic properties, and phylogeny of a diheme protein of the SoxAX family. J Biol Chem 279:6252–6260CrossRefPubMedGoogle Scholar
  44. Kappler U, Hanson GR, Jones A, McEwan AG (2005) A recombinant diheme SoxAX cytochrome—implications for the relationship between EPR signals and modified heme-ligands. FEBS Lett 579:2491–2498CrossRefPubMedGoogle Scholar
  45. Kelly DP, Shergill JK, Lu WP, Wood AP (1997) Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie van Leeuwenhoek 71:95–107CrossRefPubMedGoogle Scholar
  46. Khanna S, Nicholas DJD (1982) Utilization of tetrathionate and S35-labeled thiosulfate by washed cells of Chlorobium vibrioforme f. sp. thiofulfatophilum. J Gen Microbiol 128:1027–1034Google Scholar
  47. Klughammer C, Hager C, Padan E, Schtitz M, Schreiber U, Shahak Y, Hauska G (1995) Reduction of cytochromes with menaquinol and sulfide in membranes from green sulfur bacteria. Photosynth Res 43:27–34CrossRefGoogle Scholar
  48. Kostanjevecki V, Brige A, Meyer TE, Cusanovich MA, Guisez Y, Van Beeumen J (2000) A membrane-bound flavocytochrome c-sulfide dehydrogenase from the purple phototrophic sulfur bacterium Ectothiorhodospira vacuolata. J Bacteriol 182:3097–3103CrossRefPubMedGoogle Scholar
  49. Kusai A, Yamanaka T (1973a) A novel function of cytochrome c (555, Chlorobium thiosulfatophilum) in oxidation of thiosulfate. Biochem Biophys Res Comm 51:107–112CrossRefPubMedGoogle Scholar
  50. Kusai A, Yamanaka T (1973b) Cytochrome c (553, Chlorobium thiosulfatophilum) is a sulphide-cytochrome c reductase. FEBS Lett 34:235–237CrossRefPubMedGoogle Scholar
  51. Kusai A, Yamanaka T (1973c) The oxidation mechanisms of thiosulphate and sulphide in Chlorobium thiosulphatophilum: roles of cytochrome c-551 and cytochrome c-553. Biochim Biophys Acta 325:304–314CrossRefPubMedGoogle Scholar
  52. Kusumoto N, Setif P, Brettel K, Seo D, Sakurai H (1999) Electron transfer kinetics in purified reaction centers from the green sulfur bacterium Chlorobium tepidum studied by multiple-flash excitation. Biochemistry 38:12124–12137CrossRefPubMedGoogle Scholar
  53. Liebl U, Pezennec S, Riedel A, Kellner E, Nitschke W (1992) The Rieske FeS center from the gram-positive bacterium PS3 and its interaction with the menaquinone pool studied by EPR. J Biol Chem 267:14068–14072PubMedGoogle Scholar
  54. Madigan MT (2001) Family VI. “Heliobacteriaceae”. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 625–630Google Scholar
  55. Messens J, Collet JF (2006) Pathways of disulfide bond formation in Escherichia coli. Int J Biochem Cell Physiol 38:1050–1062CrossRefGoogle Scholar
  56. Meulenberg R, Pronk JT, Hazeu W, Vandijken JP, Frank J, Bos P, Kuenen JG (1993) Purification and partial characterization of thiosulfate dehydrogenase from Thiobacillus acidophilus. J Gen Microbiol 139:2033–2039Google Scholar
  57. Meyer TE, Cusanovich MA (2003) Discovery and characterization of electron transfer proteins in the photosynthetic bacteria. Photosynth Res 76:111–126CrossRefPubMedGoogle Scholar
  58. Meyer TE, Bartsch RG, Cusanovich MA, Mathewson JH (1968) Cytochromes of Chlorobium thiosulfatophilum. Biochim Biophys Acta 153:854–861CrossRefPubMedGoogle Scholar
  59. Miller JR, Busby RW, Jordan SW, Cheek J, Henshaw TF, Ashley GW, Broderick JB, Cronan JE, Marletta MA (2000) Escherichia coli LipA is a lipoyl synthase: In vitro biosynthesis of lipoylated pyruvate dehydrogenase complex from octanoyl-acyl carrier protein. Biochemistry 39:15166–15178CrossRefPubMedGoogle Scholar
  60. Missiakas D, Schwager F, Raina S (1995) Identification and characterization of a new disulfide isomerase-like protein (DsbD) in Escherichia coli. EMBO J 14:3415–3424PubMedGoogle Scholar
  61. Ogawa T, Furusawa T, Nomura R, Seo D, Hosoya-Matsuda N, Sakurai H, Inoue K (2008) SoxAX binding protein, a novel component of the thiosulfate-oxidizing multienzyme system in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 190:6097–6110CrossRefPubMedGoogle Scholar
  62. Ogawa T, Furusawa T, Shiga M, Seo D, Sakurai H, Inoue K (in press) Biochemical studies of the soxF-encoded monomeric flavoprotein purified from the green sulfur bacterium Chlorobaculum tepidum that stimulates in vitro thiosulfate oxidation. Biosci Biotechnol BiochemGoogle Scholar
  63. Oh-Oka H, Iwaki M, Itoh S (1998) Membrane-bound cytochrome c z couples quinol oxidoreductase to the P840 reaction center complex in isolated membranes of the green sulfur bacterium Chlorobium tepidum. Biochemistry 37:12293–12300CrossRefPubMedGoogle Scholar
  64. Okumura N, Shimada K, Matsuura K (1994) Photooxidation of membrane-bound and soluble cytochrome c in the green sulfur bacterium Chlorobium tepidum. Photosynth Res 41:125–134CrossRefGoogle Scholar
  65. Okuzumi M, Kita Y (1965) Studies on biochemistry of Thiobacilli. 6. Oxidation of thiosulfate to tetrathionate by T. thiooxidans. Agr Biol Chem 29:1063–1068Google Scholar
  66. Overmann J (2001) Green sulfur bacteria. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Berlin, pp 601–623Google Scholar
  67. Page MD, Ferguson SJ (1997) Paracoccus denitrificans CcmG is a periplasmic protein-disulphide oxidoreductase required for c- and aa(3)-type cytochrome biogenesis; Evidence for a reductase role in vivo. Mol Microbiol 24:977–990CrossRefPubMedGoogle Scholar
  68. Pattaragulwanit K, Brune DC, Trüper HG, Dahl C (1998) Molecular genetic evidence for extracytoplasmic localization of sulfur globules in Chromatium vinosum. Arch Microbiol 169:434–444CrossRefPubMedGoogle Scholar
  69. Pott AS, Dahl C (1998) Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiology-SGM 144:1881–1894CrossRefGoogle Scholar
  70. Quentmeier A, Friedrich CG (2001) The cysteine residue of the SoxY protein as the active site of protein-bound sulfur oxidation of Paracoccus pantotrophus GB17. FEBS Lett 503:168–172CrossRefPubMedGoogle Scholar
  71. Quentmeier A, Hellwig P, Bardischewsky F, Wichmann R, Friedrich CG (2004) Sulfide dehydrogenase activity of the monomeric flavoprotein SoxF of Paracoccus pantotrophus. Biochemistry 43:14696–14703CrossRefPubMedGoogle Scholar
  72. Quentmeier A, Janning P, Hellwig P, Friedrich CG (2007) Activation of the heterodimeric central complex SoxYZ of chemotrophic sulfur oxidation is linked to a conformational change and SoxY-Y interprotein disulfide formation. Biochemistry 46:10990–10998CrossRefPubMedGoogle Scholar
  73. Quentmeier A, Li L, Friedrich CG (2008) Identification of two inactive forms of the central sulfur cycle protein SoxYZ of Paracoccus pantotrophus. FEBS Lett 582:3701–3704CrossRefPubMedGoogle Scholar
  74. Reinartz M, Tschape J, Bruser T, Trüper HG, Dahl C (1998) Sulfide oxidation in the phototrophic sulfur bacterium Chromatium vinosum. Arch Microbiol 170:59–68CrossRefPubMedGoogle Scholar
  75. Rother D, Henrich HJ, Quentmeier A, Bardischewsky F, Friedrich CG (2001) Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in Paracoccus pantotrophus GB17. J Bacteriol 183:4499–4508CrossRefPubMedGoogle Scholar
  76. Sakurai H, Kusumoto N, Inoue K (1996) Function of the reaction center of green sulfur bacteria. Photochem Photobiol 64:5–13CrossRefGoogle Scholar
  77. Sander J, Dahl C (2009) Metabolism of inorganic sulfur compounds in purple bacteria. In: Hunter N, Daldal F, Thurnauer MC, Beaty JT (eds) The purple phototrophic bacteria. Berlin, Springer, pp 60–76Google Scholar
  78. Sauve V, Roversi P, Leath KJ, Garman EF, Antrobus R, Lea SM, Berks BC (2009) Mechanism for the hydrolysis of a sulfur–sulfur bond based on the crystal structure of the thiosulfohydrolase SoxB. J Biol Chem 284:21707–21718CrossRefPubMedGoogle Scholar
  79. Schütz M, Shahak Y, Padan E, Hauska G (1997) Sulfide-quinone reductase from Rhodobacter capsulatus—purification, cloning, and expression. J Biol Chem 272:9890–9894CrossRefPubMedGoogle Scholar
  80. Shahak Y, Hauska G (2008) Sulfide oxidation from cyanobacteria to humans: sulfide-quinone oxidoreductase (SQR). In: Hell R, Dahl C, Knaff DB, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, Berlin, pp 337–355Google Scholar
  81. Shahak Y, Arieli B, Padan E, Hauska G (1992) Sulfide quinone reductase (SQR) activity in Chlorobium. FEBS Lett 299:127–130CrossRefPubMedGoogle Scholar
  82. Steudel R (2003) Inorganic polysulfane H2Sn with n > 1. In: Steudel R (ed) Elemental sulfur and sulfur-rich compounds II. Topics in current chemistry, vol 231. Springer, BerlinGoogle Scholar
  83. Steudel R, Steudel Y (2010) Derivatives of cysteine related to the thiosulfate metabolism of sulfur bacteria by the multi-enzyme complex “Sox’’-studied by B3LYP-PCM and G3X(MP2) calculations. Phys Chem Chem Phys 12:630–644CrossRefPubMedGoogle Scholar
  84. Sugio T, Taha TM, Takeuchi F (2009) Ferrous iron production mediated by tetrathionate hydrolase in tetrathionate-, sulfur-, and iron-grown Acidithiobacillus ferrooxidans ATCC 23270 cells. Biosci Biotechnol Biochem 73:1381–1386CrossRefPubMedGoogle Scholar
  85. Trüper HG, Lorenz C, Schedel M, Steinmetz M (1988) Metabolism of thiosulfate in Chlorobium. In: Olson M, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria. Plenum Press, New York, pp 189–200Google Scholar
  86. Tsukatani Y, Miyamoto R, Itoh S, Oh-oka H (2006) Soluble cytochrome c-554, CycA, is not essential for photosynthetic electron transfer in Chlorobium tepidum. FEBS Lett 580:2191–2194CrossRefPubMedGoogle Scholar
  87. Verté F, Kostanjevecki V, Smet LD, Meyer TE, Cusanovich MA, Van Beeumen JJ (2002) Identification of a thiosulfate utilization gene cluster from the green phototrophic bacterium Chlorobium limicola. Biochemistry 41:2932–2945CrossRefPubMedGoogle Scholar
  88. Visser JM, de Jong GAH, Robertson LA, Kuenen JG (1997) A novel membrane-bound flavocytochrome c sulfide dehydrogenase from the colourless sulfur bacterium Thiobacillus sp. W5. Arch Microbiol 167:295–301CrossRefPubMedGoogle Scholar
  89. Welte C, Hafner S, Kratzer C, Quentmeier A, Friedrich CG, Dahl C (2009) Interaction between Sox proteins of two physiologically distinct bacteria and a new protein involved in thiosulfate oxidation. FEBS Lett 583:1281–1286CrossRefPubMedGoogle Scholar
  90. Yamanaka T (1996) Mechanisms of oxidation of inorganic electron donors in autotrophic bacteria. Plant Cell Physiol 37:569–574Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Hidehiro Sakurai
    • 1
    • 3
  • Takuro Ogawa
    • 4
  • Michiko Shiga
    • 2
  • Kazuhito Inoue
    • 1
    • 2
    • 4
  1. 1.Research Institute for Photosynthetic Hydrogen ProductionKanagawa UniversityHiratsukaJapan
  2. 2.Department of Biological SciencesKanagawa UniversityHiratsukaJapan
  3. 3.Department of Biology, School of EducationWaseda UniversityTokyoJapan
  4. 4.Graduate School of ScienceUniversity of TokyoBunkyo, TokyoJapan

Personalised recommendations