Photosynthesis Research

, Volume 102, Issue 2–3, pp 111–141 | Cite as

Optical microscopy in photosynthesis

  • Richard Cisek
  • Leigh Spencer
  • Nicole Prent
  • Donatas Zigmantas
  • George S. Espie
  • Virginijus Barzda


Emerging as well as the most frequently used optical microscopy techniques are reviewed and image contrast generation methods in a microscope are presented, focusing on the nonlinear contrasts such as harmonic generation and multiphoton excitation fluorescence. Nonlinear microscopy presents numerous advantages over linear microscopy techniques including improved deep tissue imaging, optical sectioning, and imaging of live unstained samples. Nonetheless, with the exception of multiphoton excitation fluorescence, nonlinear microscopy is in its infancy, lacking protocols, users and applications; hence, this review focuses on the potential of nonlinear microscopy for studying photosynthetic organisms. Examples of nonlinear microscopic imaging are presented including isolated light-harvesting antenna complexes from higher plants, starch granules, chloroplasts, unicellular alga Chlamydomonas reinhardtii, and cyanobacteria Leptolyngbya sp. and Anabaena sp. While focusing on nonlinear microscopy techniques, second and third harmonic generation and multiphoton excitation fluorescence microscopy, other emerging nonlinear imaging modalities are described and several linear optical microscopy techniques are reviewed in order to clearly describe their capabilities and to highlight the advantages of nonlinear microscopy.


Nonlinear microscopy Second harmonic generation Third harmonic generation Chlamydomonas Chloroplasts Cyanobacteria 





Acousto-optic microscopy


Coherent anti-Stokes Raman scattering


Charge-coupled device


Circular dichroism


Differential interference contrast


Minimum fluorescence yield


Maximum fluorescence yield


Variable fluorescence yield


Fluorescence lifetime imaging microscopy


Field-programmable gate array


Green fluorescent protein




Light-harvesting complex 2


Light-harvesting pigment–protein complex of photosystem II


Multiphoton excitation fluorescence


Messenger ribonucleic acid


Numerical aperture


Near-field scanning optical microscopy


Pulse amplitude modulation


Photosystem I


Photosystem II




Second harmonic generation


Sum frequency generation


Spectrally resolved fluorescence lifetime imaging microscopy


Signal to noise ratio


Stimulated emission depletion


Time-correlated single photon counting


Third harmonic generation


Total internal reflection fluorescence


Time-resolved photothermal


  1. Abbe E (1873) Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Schultzes Arch Mikrosk Anat 9:413–468CrossRefGoogle Scholar
  2. Agarwal UP (2006) Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224:1141–1153PubMedCrossRefGoogle Scholar
  3. Alessa L, Oliveira L (2001) Aluminum toxicity studies in Vaucheria longicaulis var. macounii (Xanthophyta, Tribophyceae). I. Effects on cytoplasmic organization. Environ Exp Bot 45:205–222PubMedCrossRefGoogle Scholar
  4. Amir W, Carriles R, Hoover EE, Planchon TA, Durfee CG, Squier JA (2007) Simultaneous imaging of multiple focal planes using a two-photon scanning microscope. Opt Lett 32:1731–1733PubMedCrossRefGoogle Scholar
  5. Armitage JP, Macnab RM (1987) Unidirectional, intermittent rotation of the flagellum of Rhodobacter sphaeroides. J Bacteriol 169:514–518PubMedGoogle Scholar
  6. Armstrong JA, Bloembergen N, Ducuing J, Pershan PS (1962) Interactions between light waves in a nonlinear dielectric. Phys Rev 127:1918–1939CrossRefGoogle Scholar
  7. Axelrod D (1981) Cell-substrate contacts illuminated by total internal-reflection fluorescence. J Cell Biol 89:141–145PubMedCrossRefGoogle Scholar
  8. Baconnier S, Lang SB (2004) Calcite microcrystals in the pineal gland of the human brain: Second harmonic generators and possible piezoelectric transducers. IEEE Trans Dielectr Electr Insul 11:203–209CrossRefGoogle Scholar
  9. Barad Y, Eisenberg H, Horowitz M, Silberberg Y (1997) Nonlinear scanning laser microscopy by third harmonic generation. Appl Phys Lett 70:922–924CrossRefGoogle Scholar
  10. Barer R, Cole ARH, Thompson HW (1949) Infra-red spectroscopy with the reflecting microscope in physics, chemistry and biology. Nature 163:198–201PubMedCrossRefGoogle Scholar
  11. Barille R, Canioni L, Rivet S, Sarger L, Vacher P, Ducret T (2001) Visualization of intracellular Ca2+ dynamics with simultaneous two-photon-excited fluorescence and third-harmonic generation microscopes. Appl Phys Lett 79:4045–4047CrossRefGoogle Scholar
  12. Barzda V (2005) Visualization of mitochondria in cardiomyocytes by simultaneous harmonic generation and fluorescence microscopy. Opt Express 13:8263–8276PubMedCrossRefGoogle Scholar
  13. Barzda V (2008) Non-linear contrast mechanisms for optical microscopy. In: Aartsma TJ, Matysik J (eds) Biophysical techniques in photosynthesis. Springer, DordrechtGoogle Scholar
  14. Barzda V, Mustardy L, Garab G (1994) Size dependency of circular-dichroism in macroaggregates of photosynthetic pigment–protein complexes. Biochemistry 33:10837–10841PubMedCrossRefGoogle Scholar
  15. Barzda V, Garab G, Gulbinas V, Valkunas L (1996) Evidence for long-range excitation energy migration in macroaggregates of the chlorophyll a/b light-harvesting antenna complexes. BBA-Bioenerg 1273:231–236CrossRefGoogle Scholar
  16. Barzda V, de Grauw CJ, Vroom J, Kleima FJ, van Grondelle R, van Amerongen H, Gerritsen HC (2001a) Fluorescence lifetime heterogeneity in aggregates of LHCII revealed by time-resolved microscopy. Biophys J 81:538–546PubMedCrossRefGoogle Scholar
  17. Barzda V, Gulbinas V, Kananavicius R, Cervinskas V, van Amerongen H, van Grondelle R, Valkunas L (2001b) Singlet-singlet annihilation kinetics in aggregates and trimers of LHCII. Biophys J 80:2409–2421PubMedCrossRefGoogle Scholar
  18. Bayoudh S, Mehta M, Rubinsztein-Dunlop H, Heckenberg NR, Critchley C (2001) Micromanipulation of chloroplasts using optical tweezers. J Microsc-Oxf 203:214–222CrossRefGoogle Scholar
  19. Bayoudh S, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H (2003) Orientation of biological cells using plane-polarized Gaussian beam optical tweezers. J Mod Opt 50:1581–1590Google Scholar
  20. Becker W (2005) Advanced time-correlated single photon counting techniques. Springer, BerlinCrossRefGoogle Scholar
  21. Becker W, Bergmann A, Hink MA, Konig K, Benndorf K, Biskup C (2004) Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech 63:58–66PubMedCrossRefGoogle Scholar
  22. Becker W, Bergmann A, Biskup C (2007) Multispectral fluorescence lifetime imaging by TCSPC. Microsc Res Tech 70:403–409PubMedCrossRefGoogle Scholar
  23. Belisle JM, Costantino S, Leimanis ML, Bellemare MJ, Bohle DS, Georges E, Wiseman PW (2008) Sensitive detection of malaria infection by third harmonic generation imaging. Biophys J 94:L26–L28PubMedCrossRefGoogle Scholar
  24. Berman-Frank I, Lundgren P, Chen YB, Kupper H, Kolber Z, Bergman B, Falkowski P (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534–1537PubMedCrossRefGoogle Scholar
  25. Betzig E, Lewis A, Harootunian A, Isaacson M, Kratschmer E (1986) Near-field scanning optical microscopy (NSOM)–development and biophysical applications. Biophys J 49:269–279PubMedCrossRefGoogle Scholar
  26. Bhagavannarayana G, Parthiban S, Meenakshisundaram S (2008) An interesting correlation between crystalline perfection and second harmonic generation efficiency on KCI- and oxalic acid-doped ADP crystals. Cryst Growth Des 8:446–451CrossRefGoogle Scholar
  27. Block SM, Fahrner KA, Berg HC (1991) Visualization of bacterial flagella by video-enhanced light-microscopy. J Bacteriol 173:933–936PubMedGoogle Scholar
  28. Bloembergen N, Pershan PS (1962) Light waves at boundary of nonlinear media. Phys Rev 128:606–622CrossRefGoogle Scholar
  29. Bopp MA, Jia YW, Li LQ, Cogdell RJ, Hochstrasser RM (1997) Fluorescence and photobleaching dynamics of single light-harvesting complexes. Proc Natl Acad Sci USA 94:10630–10635PubMedCrossRefGoogle Scholar
  30. Borlinghaus R, Gugel H, Albertano P, Seyfried V (2006) Closing the spectral gap–the transition from fixed-parameter fluorescence to tunable devices in confocal microscopy. Art. no. 60900T. In: Three-dimensional and multidimensional microscopy: image acquisition and processing XIII, vol 6090, T900Google Scholar
  31. Boyd RW (2008) Nonlinear optics. Academic Press, AmsterdamGoogle Scholar
  32. Bradbury S, Bracegirdle B (1998) Introduction to light microscopy. Springer, New YorkGoogle Scholar
  33. Bradbury S, Evennett P (1996) Contrast techniques in light microscopy. Bios Scientific Publishers, OxfordGoogle Scholar
  34. Brakenhoff GJ (1979) Imaging nodes in confocal scanning light-microscopy (CSLM). J Microsc-Oxf 117:233–242Google Scholar
  35. Brakenhoff GJ, Blom P, Barends P (1979) Confocal scanning light-microscopy with high aperture immersion lenses. J Microsc-Oxf 117:219–232Google Scholar
  36. Brakenhoff GJ, Vandervoort HTM, Nanninga N (1984) High-resolution confocal scanning light-microscopy in biology. Anal Chim Acta 163:231–236CrossRefGoogle Scholar
  37. Bruce D, Samson G, Carpenter C (1997) The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680(+) in photosystem II enriched membranes at low pH. Biochemistry 36:749–755PubMedCrossRefGoogle Scholar
  38. Brunner R, Bietsch A, Hollricher O, Marti O (1997) Distance control in near-field optical microscopy with piezoelectrical shear-force detection suitable for imaging in liquids. Rev Sci Instrum 68:1769–1772CrossRefGoogle Scholar
  39. Buleon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112PubMedCrossRefGoogle Scholar
  40. Campagnola PJ, Wei MD, Lewis A, Loew LM (1999) High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys J 77:3341–3349PubMedCrossRefGoogle Scholar
  41. Campbell FW, Green DG (1965) Optical and retinal factors affecting visual resolution. J Physiol-Lond 181:576–593PubMedGoogle Scholar
  42. Carpenter WB, Smith FG (1856) The microscope and its revelations. Blanchard and Lea, PhiladelphiaGoogle Scholar
  43. Carr GL (2001) Resolution limits for infrared microspectroscopy explored with synchrotron radiation. Rev Sci Instrum 72:1613–1619CrossRefGoogle Scholar
  44. Carr GL, Reffner JA, Williams GP (1995) Performance of an infrared microspectrometer at the NSLS. In: Proceedings of the 5th international conference on synchrotron radiation instrumentation, AIP, pp 1490–1492Google Scholar
  45. Carriles R, Sheetz KE, Hoover EE, Squier JA, Barzda V (2008) Simultaneous multifocal, multiphoton, photon counting microscopy. Opt Express 16:10364–10371PubMedCrossRefGoogle Scholar
  46. Carriles R, Schafer DN, Sheetz KE, Field JJ, Cisek R, Barzda V, Sylvester AW, Squier JA (2009) Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Rev Sci Instrum 80:081101PubMedCrossRefGoogle Scholar
  47. Chan KLA, Hammond SV, Kazarian SG (2003) Applications of attenuated total reflection infrared spectroscopic imaging to pharmaceutical formulations. Anal Chem 75:2140–2146PubMedCrossRefGoogle Scholar
  48. Chandler E, Hoover E, Field J, Sheetz K, Amir W, Carriles R, Ding SY, Squier J (2009) High-resolution mosaic imaging with multifocal, multiphoton photon-counting microscopy. Appl Opt 48:2067–2077PubMedCrossRefGoogle Scholar
  49. Chandra N, Hildebrandt AC (1967) Differentiation of plants from tobacco mosaic virus inclusion-bearing and inclusion-free single tobacco cells. Virology 31:414–421PubMedCrossRefGoogle Scholar
  50. Cheng J-X, Volkmer A, Xie XS (2002) Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy. J Opt Soc Am B 19:1363–1375CrossRefGoogle Scholar
  51. Chu SW, Chen IH, Liu TM, Chen PC, Sun CK, Lin BL (2001) Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser. Opt Lett 26:1909–1911PubMedCrossRefGoogle Scholar
  52. Chu SW, Liu TM, Sun CK (2003) Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti: sapphire laser. Opt Express 11:933–938PubMedCrossRefGoogle Scholar
  53. Chu SW, Chen SY, Chern GW, Tsai TH, Chen YC, Lin BL, Sun CK (2004) Studies of x((2))/x((3)) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy. Biophys J 86:3914–3922PubMedCrossRefGoogle Scholar
  54. Cisek R, Aus der Au J, Squier J, Barzda V (2005) Fluorescence quenching and exciton–exciton annihilation effects in individual chloroplasts investigated by fluorescence lifetime imaging microscopy. In: Carpentier R, Bruce D, van der Est A (eds) Photosynthesis: fundamental aspects to global perspectives. Allen Press Inc., Lawrence, pp 776–778Google Scholar
  55. Cisek R, Prent N, Greenhalgh C, Sandkuijl D, Tuer A, Major A, Barzda V (2009) Multicontrast nonlinear imaging microscopy. In: Yakovlev VV (ed) Biochemical applications of nonlinear optical spectroscopy. CRC Press, New YorkGoogle Scholar
  56. Clegg RM, Holub O, Gohlke C (2003) Fluorescence lifetime-resolved imaging: measuring lifetimes in an image. Biophotonics Pt A 360:509–542CrossRefGoogle Scholar
  57. Cox G (1993) Trends in confocal microscopy. Micron 24:237–247CrossRefGoogle Scholar
  58. Cox G, Moreno N, Feijo J (2005) Second-harmonic imaging of plant polysaccharides. J Biomed Opt 10:024013-1–024013-6Google Scholar
  59. Davidovits P, Egger MD (1969) Scanning laser microscope. Nature 223:831PubMedCrossRefGoogle Scholar
  60. Debarre D, Beaurepaire E (2007) Quantitative characterization of biological liquids for third-harmonic generation microscopy. Biophys J 92:603–612PubMedCrossRefGoogle Scholar
  61. Debarre D, Supatto W, Pena AM, Fabre A, Tordjmann T, Combettes L, Schanne-Klein MC, Beaurepaire E (2006) Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods 3:47–53PubMedCrossRefGoogle Scholar
  62. Delhaye M, Dhamelincourt P (1975) Raman microprobe and microscope with laser excitation. J Raman Spectrosc 3:33–43CrossRefGoogle Scholar
  63. Delosme R (2003) On some aspects of photosynthesis revealed by photoacoustic studies: a critical evaluation. Photosynth Res 76:289–301PubMedCrossRefGoogle Scholar
  64. Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Phys 43:599–626CrossRefGoogle Scholar
  65. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76PubMedCrossRefGoogle Scholar
  66. Dewa T, Yoshida K, Sugimoto M, Sugiura R, Nango M (2005) Selective organization of an α-helical hydrophobic polypeptide/pigment complex in a lipid domain of binary lipid bilayers. e-J Surf Sci Nanotechnol 3:145–150CrossRefGoogle Scholar
  67. Dewa T, Sugiura R, Suemori Y, Sugimoto M, Takeuchi T, Hiro A, Iida K, Gardiner AT, Cogdell RJ, Nango M (2006) Lateral organization of a membrane protein in a supported binary lipid domain: Direct observation of the organization of bacterial light-harvesting complex 2 by total internal reflection fluorescence microscopy. Langmuir 22:5412–5418PubMedCrossRefGoogle Scholar
  68. Diaspro A (2002) Confocal and two-photon microscopy: foundations, applications, and advances. Wiley, New YorkGoogle Scholar
  69. Dixit R, Cyr R, Gilroy S (2006) Using intrinsically fluorescent proteins for plant cell imaging. Plant J 45:599–615PubMedCrossRefGoogle Scholar
  70. Djaker N, Lenne PF, Marguet D, Colonna A, Hadjur C, Rigneault H (2007) Coherent anti-Stokes Raman scattering microscopy (CARS): instrumentation and applications. Nucl Instrum Methods A 571:177–181CrossRefGoogle Scholar
  71. Doetsch RN (1961) History of microscope. Science 133:946PubMedCrossRefGoogle Scholar
  72. Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, Lurmann R, Jahn R, Eggeling C, Hell SW (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci USA 103:11440–11445PubMedCrossRefGoogle Scholar
  73. Dragnea B, Leone SR (2001) Advances in submicron infrared vibrational band chemical imaging. Int Rev Phys Chem 20:59–92CrossRefGoogle Scholar
  74. Duncan MD, Reintjes J, Manuccia TJ (1982) Scanning coherent anti-Stokes Raman microscope. Opt Lett 7:350–352PubMedCrossRefGoogle Scholar
  75. Dunn RC (1999) Near-field scanning optical microscopy. Chem Rev 99:2891–2927PubMedCrossRefGoogle Scholar
  76. Dunn RC, Holtom GR, Mets L, Xie XS (1994) Near-field fluorescence imaging and fluorescence lifetime measurement of light-harvesting complexes in intact photosynthetic membranes. J Phys Chem-US 98:3094–3098CrossRefGoogle Scholar
  77. Ealand CA (1921) The romance of the microscope, an interesting description of its uses in all branches of science, industry, agriculture, and in the detection of crime, with a short account of its origin, history & development. Seeley, LondonGoogle Scholar
  78. Eckert HJ, Petrasek Z, Kemnitz K (2006) Application of novel low-intensity non-scanning fluorescence lifetime imaging microscopy for monitoring excited state dynamics in individual chloroplasts and living cells of photosynthetic organisms. Proc Soc Photo Opt Instrum 6372:1–9Google Scholar
  79. Edwards HGM, Ellis E, Farwell DW, Janaway RC (1996) Preliminary study of the application of Fourier transform Raman spectroscopy to the analysis of degraded archaeological linen textiles. J Raman Spectrosc 27:663–669CrossRefGoogle Scholar
  80. Edwards HGM, Farwell DW, Webster D (1997) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta A Mol Biomol Spectrosc 53:2383–2392CrossRefGoogle Scholar
  81. Emiliani V, Sanvitto D, Tramier M, Piolot T, Petrasek Z, Kemnitz K, Durieux C, Coppey-Moisan M (2003) Low-intensity two-dimensional imaging of fluorescence lifetimes in living cells. Appl Phys Lett 83:2471–2473CrossRefGoogle Scholar
  82. Evans CL, Xie XS (2008) Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem 1:883–909CrossRefGoogle Scholar
  83. Fay P, Van Baalen C (1987) The cyanobacteria. Elsevier, New YorkGoogle Scholar
  84. Feijo JA, Moreno N (2004) Imaging plant cells by two-photon excitation. Protoplasma 223:1–32PubMedCrossRefGoogle Scholar
  85. Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9:929–943PubMedCrossRefGoogle Scholar
  86. Finazzi G (2005) The central role of the green alga Chlamydomonas reinhardtii in revealing the mechanism of state transitions. J Exp Bot 56:383–388PubMedCrossRefGoogle Scholar
  87. Finzi L, Bustamante C, Garab G, Juang CB (1989) Direct observation of large chiral domains in chloroplast thylakoid membranes by differential polarization microscopy. Proc Natl Acad Sci USA 86:8748–8752PubMedCrossRefGoogle Scholar
  88. Ford BJ (1981) Leeuwenhoek specimens discovered after 307 years. Nature 292:407Google Scholar
  89. Freund I, Deutsch M (1986) Second-harmonic microscopy of biological tissue. Opt Lett 11:94–96PubMedCrossRefGoogle Scholar
  90. Frey-Wyssling A, Steinmann E (1948) Die Schichtendoppelbrechung Grosser Chloroplasten. Biochim Biophys Acta 2:254–259PubMedCrossRefGoogle Scholar
  91. Fricker M, Runions J, Moore I (2006) Quantitative fluorescence microscopy: From art to science. Annu Rev Plant Biol 57:79–107PubMedCrossRefGoogle Scholar
  92. Frohlich MW (1986) Birefringent objects visualized by circular-polarization microscopy. Stain Technol 61:139–143PubMedGoogle Scholar
  93. Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photo-oxidative stress responses in leaves. J Exp Bot 53:1249–1254PubMedCrossRefGoogle Scholar
  94. Gadella TWJ, Jovin TM, Clegg RM (1993) Fluorescence lifetime imaging microscopy (FLIM): spatial-resolution of microstructures on the nanosecond time-scale. Biophys Chem 48:221–239CrossRefGoogle Scholar
  95. Galitovsky V, Chowdhury P, Zharov VP (2004) Photothermal detection of nicotine-induced apoptotic effects in pancreatic cancer cells. Life Sci 75:2677–2687PubMedCrossRefGoogle Scholar
  96. Gallant DJ, Bouchet B, Baldwin PM (1997) Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym 32:177–191CrossRefGoogle Scholar
  97. Garab G, Faludi-Daniel A, Sutherland JC, Hind G (1988) Macroorganization of chlorophyll a/b light-harvesting complex in thylakoids and aggregates: Information from circular differential scattering. Biochemistry 27:2425–2430CrossRefGoogle Scholar
  98. Garab G, Galajda P, Pomozi I, Finzi L, Praznovszky T, Ormos P, van Amerongen H (2005) Alignment of biological microparticles by a polarized laser beam. Eur Biophys J Biophy 34:335–343CrossRefGoogle Scholar
  99. Gest H (2004) The discovery of microorganisms by Robert Hooke and Antoni Van Leeuwenhoek, fellows of the royal society. Notes Rec Roy Soc 58:187–201Google Scholar
  100. Gierlinger N, Schwanninger M (2006) Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol 140:1246–1254PubMedCrossRefGoogle Scholar
  101. Gierlinger N, Schwanninger M (2007) The potential of Raman microscopy and Raman imaging in plant research. Spectrosc Int J 21:69–89Google Scholar
  102. Gierlinger N, Schwanninger M, Reinecke A, Burgert I (2006) Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy. Biomacromolecules 7:2077–2081PubMedCrossRefGoogle Scholar
  103. Gill D, Kilponen RG, Rimai L (1970) Resonance Raman scattering of laser radiation by vibrational modes of carotenoid pigment molecules in intact plant tissues. Nature 227:743PubMedCrossRefGoogle Scholar
  104. Gilroy S (1997) Fluorescence microscopy of living plant cells. Annu Rev Plant Phys 48:165–190CrossRefGoogle Scholar
  105. Giordmaine JA (1965) Nonlinear optical properties of liquids. Phys Rev 138:1599–1606CrossRefGoogle Scholar
  106. Goedheer JC (1955) Orientation of the pigment molecules in the chloroplast. Biochim Biophys Acta 16:471–476PubMedCrossRefGoogle Scholar
  107. Goh CH, Schreiber U, Hedrich R (1999) New approach of monitoring changes in chlorophyll a fluorescence of single guard cells and protoplasts in response to physiological stimuli. Plant Cell Environ 22:1057–1070CrossRefGoogle Scholar
  108. Goldman RD, Spector DL (2005) Live cell imaging: a laboratory manual. Cold Spring Harbor Laboratory Press, WoodburyGoogle Scholar
  109. Goodin MM, Chakrabarty R, Yelton S, Martin K, Clark A, Brooks R (2007) Membrane and protein dynamics in live plant nuclei infected with Sonchus yellow net virus, a plant-adapted rhabdovirus. J Gen Virol 88:1810–1820PubMedCrossRefGoogle Scholar
  110. Gorjanacz M, Torok I, Pomozi I, Garab G, Szlanka T, Kiss I, Mechler BM (2006) Domains of importin-alpha 2 required for ring canal assembly during Drosophila oogenesis. J Struct Biol 154:27–41PubMedCrossRefGoogle Scholar
  111. Graham-Rowe D (2009) Sounding out photons. Nat Photon 3:123–125CrossRefGoogle Scholar
  112. Greenhalgh C, Prent N, Green C, Cisek R, Major A, Stewart B, Barzda V (2007) Influence of semicrystalline order on the second-harmonic generation efficiency in the anisotropic bands of myocytes. Appl Opt 46:1852–1859PubMedCrossRefGoogle Scholar
  113. Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental-conditions. Microbiol Rev 57:725–749PubMedGoogle Scholar
  114. Gunning BES (2005) Plastid stromules: video microscopy of their outgrowth, retraction, tensioning, anchoring, branching, bridging, and tip-shedding. Protoplasma 225:33–42PubMedCrossRefGoogle Scholar
  115. Gunning BES, Schwartz OM (1999) Confocal microscopy of thylakoid autofluorescence in relation to origin of grana and phylogeny in the green algae. Aust J Plant Physiol 26:695–708CrossRefGoogle Scholar
  116. Hall AR (1988) The Leeuwenhoek lecture, 1988. Antoni van Leeuwenhoek 1632–1723. Notes Rec Roy Soc Lond (1938–1996) 43:249–273Google Scholar
  117. Hangarter RP, Gest H (2004) Pictorial demonstrations of photosynthesis. Photosynth Res 80:421–425PubMedCrossRefGoogle Scholar
  118. Harada M, Iwamoto K, Kitamori T, Sawada T (1993) Photothermal microscopy with excitation and probe beams coaxial under the microscope and its application to microparticle analysis. Anal Chem 65:2938–2940CrossRefGoogle Scholar
  119. Harada M, Shibata M, Kitamori T, Sawada T (1999) Sub-attomole molecule detection in a single biological cell in-vitro by thermal lens microscopy. Anal Sci 15:647–650CrossRefGoogle Scholar
  120. Harke B, Keller J, Ullal CK, Westphal V, Schönle A, Hell SW (2008) Resolution scaling in STED microscopy. Opt Express 16:4154–4162PubMedCrossRefGoogle Scholar
  121. Haskell G, Paterson EB (1962) Phase contrast microscope in plant cytology. Genetica 33:52–58PubMedCrossRefGoogle Scholar
  122. Haugland RP, Spence MTZ, Johnson ID, Basey A (2005) Molecular probes the handbook—a guide to fluorescent probes and labeling technologies. Invitrogen Corporation. Accessed 1 May, 2009
  123. Heilemann M, Dedecker P, Hofkens J, Sauer M (2009) Photoswitches: key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification. Laser Photon Rev 3:180–202CrossRefGoogle Scholar
  124. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated-emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782PubMedCrossRefGoogle Scholar
  125. Hepler PK, Gunning BES (1998) Confocal fluorescence microscopy of plant cells. Protoplasma 201:121–157CrossRefGoogle Scholar
  126. Heraud P, Wood BR, Tobin MJ, Beardall J, McNaughton D (2005) Mapping of nutrient-induced biochemical changes in living algal cells using synchrotron infrared microspectroscopy. FEMS Microbiol Lett 249:219–225PubMedCrossRefGoogle Scholar
  127. Heraud P, Caine S, Sanson G, Gleadow R, Wood BR, McNaughton D (2007) Focal plane array infrared imaging: a new way to analyse leaf tissue. New Phytol 173:216–225PubMedCrossRefGoogle Scholar
  128. Hermann JP, Ducuing J (1974) Third-order polarizabilities of long-chain molecules. J Appl Phys 45:5100–5102CrossRefGoogle Scholar
  129. Higashifujime S (1980) Active movement in vitro of bundles of microfilaments isolated from Nitella cell. J Cell Biol 87:569–578CrossRefGoogle Scholar
  130. Hogg J (1867) The microscope: its history, construction, and application. Routledge, LondonGoogle Scholar
  131. Holub O, Seufferheld MJ, Gohlke C, Govindjee, Clegg RM (2000) Fluorescence lifetime imaging (FLI) in real-time—a new technique in photosynthesis research. Photosynthetica 38:581–599CrossRefGoogle Scholar
  132. Holub O, Seufferheld MJ, Govindjee CG, Heiss GJ, Clegg RM (2007) Fluorescence lifetime imaging microscopy of Chlamydomonas reinhardtii: non-photochemical quenching mutants and the effect of photosynthetic inhibitors on the slow chlorophyll fluorescence transient. J Microsc-Oxf 226:90–120CrossRefGoogle Scholar
  133. Hooke R (1665) Micrographia, or, some physiological descriptions of minute bodies made by magnifying glasses, with observations and inquiries thereupon. J. Martyn and J. Allestry, LondonGoogle Scholar
  134. Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Phys 47:655–684CrossRefGoogle Scholar
  135. Jaiswal JK, Simon SM (2007) Imaging single events at the cell membrane. Nat Chem Biol 3:92–98PubMedCrossRefGoogle Scholar
  136. James J, Tanke HJ (1991) Biomedical light microscopy. Kluwer Academic Publishers, DordrechtGoogle Scholar
  137. Jamme F, Robert P, Bouchet B, Saulnier L, Dumas P, Guillon F (2008) Aleurone cell walls of wheat grain: high spatial resolution investigation using synchrotron infrared microspectroscopy. Appl Spectrosc 62:895–900PubMedCrossRefGoogle Scholar
  138. Juang CB, Finzi L, Bustamante CJ (1988) Design and application of a computer-controlled confocal scanning differential polarization microscope. Rev Sci Instrum 59:2399–2408CrossRefGoogle Scholar
  139. Kaiser W, Garrett CGB (1961) Two-photon excitation in CaF2:Eu2+. Phys Rev Lett 7:229–231CrossRefGoogle Scholar
  140. Kano H, Hamaguchi H-O (2005) Ultrabroadband (>2500 cm[sup − 1]) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber. Appl Phys Lett 86:121113–121115CrossRefGoogle Scholar
  141. Katon JE, Sommer AJ, Lang PL (1990) Infrared microspectroscopy. Appl Spectrosc Rev 25:173–211Google Scholar
  142. Kazarian SG, Chan KLA (2006) Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim Biophys Acta (BBA)-Biomembr 1758:858–867CrossRefGoogle Scholar
  143. Kellner RR, Baier CJ, Willig KI, Hell SW, Barrantes FJ (2007) Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy. Neuroscience 144:135–143PubMedCrossRefGoogle Scholar
  144. Klopsteg PE (1960) Indispensable tools of science. Science 132:1913–1922Google Scholar
  145. Knight JC, Birks TA, Russell PS, Atkin DM (1996) All-silica single-mode optical fiber with photonic crystal cladding. Opt Lett 21:1547–1549PubMedCrossRefGoogle Scholar
  146. Kolthammer WS, Barnard D, Carlson N, Edens AD, Miller NA, Saeta PN (2005) Harmonic generation in thin films and multilayers. Phys Rev B 72:1–15CrossRefGoogle Scholar
  147. Konig K (2000) Multiphoton microscopy in life sciences. J Microsc-Oxf 200:83–104CrossRefGoogle Scholar
  148. Koyama Y, Umemoto Y, Akamatsu A, Uehara K, Tanaka M (1986) Raman-spectra of chlorophyll forms. J Mol Struct 146:273–287CrossRefGoogle Scholar
  149. Kuhlbrandt W, Thaler T, Wehrli E (1983) The structure of membrane crystals of the light-harvesting chlorophyll a/b protein complex. J Cell Biol 96:1414–1424PubMedCrossRefGoogle Scholar
  150. Kulfinski FB, Pappelis AJ (1971) Interference microscopy of onion epidermal nuclei in response to 3 fungal pathogens. Physiol Plant Pathol 1:489–495CrossRefGoogle Scholar
  151. Kupper H, Setlik I, Trtilek M, Nedbal L (2000) A microscope for two-dimensional measurements of in vivo chlorophyll fluorescence kinetics using pulsed measuring radiation, continuous actinic radiation, and saturating flashes. Photosynthetica 38:553–570CrossRefGoogle Scholar
  152. Kupper H, Ferimazova N, Setlik I, Berman-Frank I (2004) Traffic lights in Trichodesmium. Regulation of photosynthesis for nitrogen fixation studied by chlorophyll fluorescence kinetic microscopy. Plant Physiol 135:2120–2133PubMedCrossRefGoogle Scholar
  153. Laclaire JW (1987) Microtubule cytoskeleton in intact and wounded coenocytic green-algae. Planta 171:30–42CrossRefGoogle Scholar
  154. Lakowicz JR, Berndt KW (1991) Lifetime-selective fluorescence imaging using an RF phase-sensitive camera. Rev Sci Instrum 62:1727–1734CrossRefGoogle Scholar
  155. Langdale JA, Rothermel BA, Nelson T (1988) Cellular-pattern of photosynthetic gene-expression in developing maize leaves. Gene Dev 2:106–115PubMedCrossRefGoogle Scholar
  156. Lapotko DO, Romanovskaya TR, Shnip A, Zharov VP (2002) Photothermal time-resolved imaging of living cells. Laser Surg Med 31:53–63CrossRefGoogle Scholar
  157. Lawrie AC, Wheeler CT (1973) Supply of photosynthetic assimilates to nodules of Pisum sativum l. in relation to fixation of nitrogen. New Phytol 72:1341–1348CrossRefGoogle Scholar
  158. Leeuwenhoek Av (1695) Arcana naturae detecta ab Antonio van Leeuwenhoek. Apud H. a Krooneveld, Delphis BatavorumGoogle Scholar
  159. Lewis EN, Treado PJ, Reeder RC, Story GM, Dowrey AE, Marcott C, Levin IW (1995) Fourier-transform spectroscopic imaging using an infrared focal-plane array detector. Anal Chem 67:3377–3381PubMedCrossRefGoogle Scholar
  160. Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL, An XM, Chang WR (2004) Crystal structure of spinach major light-harvesting complex at 2.72 angstrom resolution. Nature 428:287–292PubMedCrossRefGoogle Scholar
  161. Locharoenrat K, Sano H, Mizutani G (2008) Demonstration of confocal sum frequency microscopy. In: 8th international conference on excitonic processes in condensed matter (EXCON 2008), Wiley-VCH, New York, pp 304–306Google Scholar
  162. Ly S, McNerney G, Fore S, Chan J, Huser T (2007) Time-gated single photon counting enables separation of CARS microscopy data from multiphoton-excited tissue autofluorescence. Opt Express 15:16839–16851PubMedCrossRefGoogle Scholar
  163. Maestre MF, Katz JE (1982) A circular-dichroism microspectrophotometer. Biopolymers 21:1899–1908CrossRefGoogle Scholar
  164. Major A, Barzda V, Piunno PAE, Musikhin S, Krull UJ (2006a) An extended cavity diode-pumped femtosecond Yb : KGW laser for applications in optical DNA sensor technology based on fluorescence lifetime measurements. Opt Express 14:5285–5294PubMedCrossRefGoogle Scholar
  165. Major A, Cisek R, Barzda V (2006b) Femtosecond Yb:KGd(WO4)2 laser oscillator pumped by a high power fiber-coupled diode laser module. Opt Express 14:12163–12168PubMedCrossRefGoogle Scholar
  166. Malkin S (1995) The photoacoustic method in photosynthesis—monitoring and analysis of phenomena which lead to pressure changes following light excitation. In: Amesz J, Hoff A (eds) Biophysical techniques in photosynthesis. Kluwer, DodrechtGoogle Scholar
  167. Manten AA (1969) On earliest microscopical observations of pollen grains. Rev Palaeobot Palynol 9:5–16Google Scholar
  168. Marder SR, Torruellas WE, BlanchardDesce M, Ricci V, Stegeman GI, Gilmour S, Bredas JL, Li J, Bublitz GU, Boxer SG (1997) Large molecular third-order optical nonlinearities in polarized carotenoids. Science 276:1233–1236PubMedCrossRefGoogle Scholar
  169. Maslov K, Zhang HF, Hu S, Wang LV (2008) Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt Lett 33:929–931PubMedCrossRefGoogle Scholar
  170. Menke W (1938) Über den Feinbau der Chloroplasten. Colloid Polym Sci 85:256–259Google Scholar
  171. Mickols W, Tinoco I, Katz JE, Maestre MF, Bustamante C (1985) Imaging differential polarization microscope with electronic readout. Rev Sci Instrum 56:2228–2236CrossRefGoogle Scholar
  172. Millard AC, Wiseman PW, Fittinghoff DN, Wilson KR, Squier JA, Muller M (1999) Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source. Appl Opt 38:7393–7397PubMedCrossRefGoogle Scholar
  173. Millard AC, Campagnola PJ, Mohler W, Lewis A, Loew LM (2003) Second harmonic imaging microscopy. Method Enzymol 361:47–69CrossRefGoogle Scholar
  174. Miller LM, Dumas P (2006) Chemical imaging of biological tissue with synchrotron infrared light. BBA-Biomembr 1758:846–857CrossRefGoogle Scholar
  175. Mineyuki Y, Kataoka H, Masuda Y, Nagai R (1995) Dynamic changes in the actin cytoskeleton during the high-fluence rate response of the Mougeotia chloroplast. Protoplasma 185:222–229Google Scholar
  176. Minsky M (1988) Memoir on inventing the confocal scanning microscope. Scanning 10:128–138Google Scholar
  177. Miyauchi Y, Sano H, Mirzutani G (2006) Selective observation of starch in a water plant using optical sum-frequency microscopy. J Opt Soc Am A 23:1687–1690CrossRefGoogle Scholar
  178. Mizutani G, Sonoda Y, Sano H, Sakamoto M, Takahashi T, Ushioda S (2000) Detection of starch granules in a living plant by optical second harmonic microscopy. J Lumin 87–9:824–826CrossRefGoogle Scholar
  179. Mizutani G, Koyama T, Tomizawa S, Sano H (2005) Distinction between some saccharides in scattered optical sum frequency intensity images. Spectrochim Acta A 62:845–849CrossRefGoogle Scholar
  180. Moreaux L, Sandre O, Mertz J (2000) Membrane imaging by second-harmonic generation microscopy. J Opt Soc Am B 17:1685–1694CrossRefGoogle Scholar
  181. Moyer PJ, Kammer SB (1996) High-resolution imaging using near-field scanning optical microscopy and shear force feedback in water. Appl Phys Lett 68:3380–3382CrossRefGoogle Scholar
  182. Muller M (2006) Introduction to confocal fluorescence microscopy. SPIE Press, BellinghamGoogle Scholar
  183. Muller M, Squier J, Wilson KR, Brakenhoff GJ (1998) 3D microscopy of transparent objects using third-harmonic generation. J Microsc-Oxf 191:266–274CrossRefGoogle Scholar
  184. Murdock JN, Wetzel DL (2009) FT-IR microspectroscopy enhances biological and ecological analysis of algae. Appl Spectrosc Rev 44:335–361CrossRefGoogle Scholar
  185. Mustardy L, Garab G (2003) Granum revisited. A three-dimensional model—where things fall into place. Trends Plant Sci 8:117–122PubMedCrossRefGoogle Scholar
  186. Nadiarnykh O, LaComb R, Campagnola PJ, Mohler WA (2007) Coherent and incoherent SHG in fibrillar cellulose matrices. Opt Express 15:3348–3360PubMedCrossRefGoogle Scholar
  187. Nomarski MG, Rousseaugaudeix M (1955) Influence de leclairage semi-coherent sur la limite de separation—cas dune source annulaire. J Phys-Paris 16:S13–S16Google Scholar
  188. Novotny L, Sanchez EJ, Xie XS (1998) Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams. Ultramicroscopy 71:21–29CrossRefGoogle Scholar
  189. Oida T, Sako Y, Kusumi A (1993) Fluorescence lifetime imaging microscopy (flimscopy)—methodology development and application to studies of endosome fusion in single cells. Biophys J 64:676–685PubMedCrossRefGoogle Scholar
  190. Oron D, Tal E, Silberberg Y (2003) Depth-resolved multiphoton polarization microscopy by third-harmonic generation. Opt Lett 28:2315–2317PubMedCrossRefGoogle Scholar
  191. Oxborough K, Baker NR (1997) An instrument capable of imaging chlorophyll alpha fluorescence from intact leaves at very low irradiance and at cellular and subcellular levels of organization. Plant Cell Environ 20:1473–1483CrossRefGoogle Scholar
  192. Padawer J (1965) Dynamic morphology of surviving mast cells. A time-lapse cinephotomicrographic study with nomarskis interference contrast optics. Anat Rec 151:499–503Google Scholar
  193. Paddock SW (1999) Confocal microscopy methods and protocols. Humana Press, TotowaGoogle Scholar
  194. Pawley JB (2006) Handbook of biological confocal microscopy. Springer, New YorkGoogle Scholar
  195. Peat L, Oliveira L (1994) Organization of the cytoskeleton in the coenocytic alga Vaucheria longicaulis var. Macounii: an experimental study. Protoplasma 177:95–107CrossRefGoogle Scholar
  196. Petran M, Hadravsk M, Egger MD, Galambos R (1968) Tandem-scanning reflected-light microscope. J Opt Soc Am 58:661–665CrossRefGoogle Scholar
  197. Petran M, Hadravsky M, Boyde A (1985) The tandem scanning reflected light-microscope. Scanning 7:97–108Google Scholar
  198. Ploem JS, Tanke HJ (1987) Introduction to fluorescence microscopy. Oxford University Press, OxfordGoogle Scholar
  199. Plotnikov SV, Millard AC, Campagnola PJ, Mohler WA (2006) Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres. Biophys J 90:693–703PubMedCrossRefGoogle Scholar
  200. Pohl DW, Denk W, Lanz M (1984) Optical stethoscopy—image recording with resolution lambda/20. Appl Phys Lett 44:651–653CrossRefGoogle Scholar
  201. Polivka T, Sundstrom V (2004) Ultrafast dynamics of carotenoid excited states—from solution to natural and artificial systems. Chem Rev 104:2021–2071PubMedCrossRefGoogle Scholar
  202. Potma EO, de Boeij WP, Wiersma DA (2000) Nonlinear coherent four-wave mixing in optical microscopy. J Opt Soc Am B 17:1678–1684CrossRefGoogle Scholar
  203. Potma EO, Evans CL, Xie XS (2006) Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging. Opt Lett 31:241–243PubMedCrossRefGoogle Scholar
  204. Prent N, Cisek R, Greenhalgh C, Aus der Au J, Squier J, Barzda V (2005) Imaging individual chloroplasts simultaneously with third- and second-harmonic generation and multiphoton excitation fluorescence microscopy. In: van der Est A, Bruce D (eds) Photosynthesis: fundamental aspects to global perspectives. Allen Press, Lawrence, pp 1037–1039Google Scholar
  205. Psilodimitrakopoulos S, Amat-Roldan I, Santos S, Mathew M, Thayil AKN, Zalvidea D, Artigas D, Loza-Alvarez P (2008) Starch granules as a probe for the polarization at the sample plane of a high resolution multiphoton microscope. In: SPIE, 68600EGoogle Scholar
  206. Puppels GJ, Demul FFM, Otto C, Greve J, Robertnicoud M, Arndtjovin DJ, Jovin TM (1990) Studying single living cells and chromosomes by confocal raman microspectroscopy. Nature 347:301–303PubMedCrossRefGoogle Scholar
  207. Raab TK, Martin MC (2001) Visualizing rhizosphere chemistry of legumes with mid-infrared synchrotron radiation. Planta 213:881–887PubMedCrossRefGoogle Scholar
  208. Raman CV (1928) A change of wave-length in light scattering. Nature 121:619CrossRefGoogle Scholar
  209. Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501–502CrossRefGoogle Scholar
  210. Rawlins D (1992) Light microscopy. BIOS Scientific Publishers, OxfordGoogle Scholar
  211. Reshak AH (2009) Second harmonic generation from thick leaves using the two-photon laser scanning microscope. Micron 40:455–462PubMedCrossRefGoogle Scholar
  212. Reshak AH, Sarafis V, Heintzmann R (2009) Second harmonic imaging of chloroplasts using the two-photon laser scanning microscope. Micron 40:378–385PubMedCrossRefGoogle Scholar
  213. Rimai L, Kilponen RG, Gill D (1970) Excitation profiles of laser Raman spectra in resonance region of 2 carotenoid pigments in solution. J Am Chem Soc 92:3824CrossRefGoogle Scholar
  214. Rittweger E, Rankin BR, Westphal V, Hell SW (2007) Fluorescence depletion mechanisms in super-resolving STED microscopy. Chem Phys Lett 442:483–487CrossRefGoogle Scholar
  215. Rodriguez LG, Lockett SJ, Holtom GR (2006) Coherent anti-Stokes Raman scattering microscopy: a biological review. Cytometry A 69A:779–791CrossRefGoogle Scholar
  216. Saeta PN, Miller NA (2001) Distinguishing surface and bulk contributions to third-harmonic generation in silicon. Appl Phys Lett 79:2704–2706CrossRefGoogle Scholar
  217. Sager R, Palade GE (1957) Structure and development of the chloroplast in Chlamydomonas 1. The normal green cell. J Biophys Biochem Cytol 3:463–506PubMedCrossRefGoogle Scholar
  218. Salzer R, Steiner G, Mantsch HH, Mansfield J, Lewis EN (2000) Infrared and Raman imaging of biological and biomimetic samples. Fresenius J Anal Chem 366:712–726PubMedCrossRefGoogle Scholar
  219. Sanchez EJ, Novotny L, Xie XS (1999) Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys Rev Lett 82:4014–4017CrossRefGoogle Scholar
  220. Sauer K, Calvin M (1962) Molecular orientation in quantasomes 1. Electric dichroism and electric birefringence of quantasomes from spinach chloroplasts. J Mol Biol 4:451–466PubMedCrossRefGoogle Scholar
  221. Sawitzky H, Grolig F (1995) Phragmoplast of the green-alga Spirogyra is functionally distinct from the higher-plant phragmoplast. J Cell Biol 130:1359–1371PubMedCrossRefGoogle Scholar
  222. Schneckenburger H (2005) Total internal reflection fluorescence microscopy: technical innovations and novel applications. Curr Opin Biotechnol 16:13–18PubMedCrossRefGoogle Scholar
  223. Schulz H, Baranska M (2007) Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spectrosc 43:13–25CrossRefGoogle Scholar
  224. Selbach M, Kuhlmann HW (1999) Structure, fluorescent properties and proposed function in phototaxis of the stigma apparatus in the ciliate Chlamydodon mnemosyne. J Exp Biol 202:919–927PubMedGoogle Scholar
  225. Senge MO, Fazekas M, Notaras EGA, Blau WJ, Zawadzka M, Locos OB, Mhuircheartaigh EMN (2007) Nonlinear optical properties of porphyrins. Adv Mater 19:2737–2774CrossRefGoogle Scholar
  226. Setlikova E, Setlik I, Kupper H, Kasalicky V, Prasil O (2005) The photosynthesis of individual algal cells during the cell cycle of Scenedesmus quadricauda studied by chlorophyll fluorescence kinetic microscopy. Photosynth Res 84:113–120PubMedCrossRefGoogle Scholar
  227. Shcheslavskiy V, Petrov G, Yakovlev VV (2003) Nonlinear optical susceptibility measurements of solutions using third-harmonic generation on the interface. Appl Phys Lett 82:3982–3984CrossRefGoogle Scholar
  228. Shcheslavskiy V, Petrov GI, Saltiel S, Yakovlev VV (2004) Quantitative characterization of aqueous solutions probed by the third-harmonic generation microscopy. J Struct Biol 147:42–49PubMedCrossRefGoogle Scholar
  229. Shcheslavskiy VI, Saltiel SM, Faustov A, Petrov GI, Yakovlev VV (2005) Third-harmonic Rayleigh scattering: theory and experiment. J Opt Soc Am B 22:2402–2408CrossRefGoogle Scholar
  230. Shcheslavskiy VI, Saltiel SM, Faustov AR, Petrov GI, Yakovlev VV (2006a) How to measure chi((3)) of a nanoparticle. Opt Lett 31:1486–1488PubMedCrossRefGoogle Scholar
  231. Shcheslavskiy VI, Saltiel SM, Ivanov DA, Ivanov AA, Petrusevich VY, Petrov GI, Yakovlev VV (2006b) Nonlinear optics of molecular nanostructures in solution: assessment of the size and nonlinear optical properties. Chem Phys Lett 429:294–298CrossRefGoogle Scholar
  232. Sheetz KE, Squier J (2009) Ultrafast optics: imaging and manipulating biological systems. J Appl Phys 105:17CrossRefGoogle Scholar
  233. Shen YR (1989) Optical 2nd harmonic-generation at interfaces. Annu Rev Phys Chem 40:327–350CrossRefGoogle Scholar
  234. Sheppard CJR, Wilson T (1978) Depth of field in scanning microscope. Opt Lett 3:115–117PubMedCrossRefGoogle Scholar
  235. Sheppard CJR, Wilson T (1980) Image-formation in confocal scanning microscopes. Optik 55:331–342Google Scholar
  236. Sheppard CJR, Gannaway JN, Kompfner R, Walsh D (1977) Scanning harmonic optical microscope. IEEE J Quant Electr 13:D100Google Scholar
  237. Shinkarev VP, Brunner R, Wraight CA (1999) Application of near-field scanning optical microscopy in photosynthesis research. Photosynth Res 61:181–193CrossRefGoogle Scholar
  238. Shotton D, White N (1989) Confocal scanning microscopy: three-dimensional biological imaging. Trends Biochem Sci 14:435–439PubMedCrossRefGoogle Scholar
  239. Shumway CR, Russo VM, Pappelis AJ (1988) Degenerative changes in the epidermal-cell wall of Allium cepa caused by Botrytis allii: loss of dry mass, pectin, and cellulose in halos. Mycopathologia 101:47–52CrossRefGoogle Scholar
  240. Sijtsema NM, Wouters SD, De Grauw CJ, Otto C, Greve J (1998) Confocal direct imaging Raman microscope: design and applications in biology. Appl Spectrosc 52:348–355CrossRefGoogle Scholar
  241. Simidjiev I, Barzda V, Mustardy L, Garab G (1997) Isolation of lamellar aggregates of the light-harvesting chlorophyll a/b protein complex of photosystem II with long-range chiral order and structural flexibility. Anal Biochem 250:169–175PubMedCrossRefGoogle Scholar
  242. Singh S, Bradley LT (1964) 3-photon absorption in napthalene crystals by laser excitation. Phys Rev Lett 12:612–614CrossRefGoogle Scholar
  243. Slavík J (1998) Fluorescence microscopy and fluorescent probes. Plenum Press, New YorkGoogle Scholar
  244. Smith GD, Clark RJH (2004) Raman microscopy in archaeological science. J Archaeol Sci 31:1137–1160CrossRefGoogle Scholar
  245. Snel JFH, Dassen HHA (2000) Measurement of light and pH dependence of single-cell photosynthesis by fluorescence microscopy. J Fluoresc 10:269–273CrossRefGoogle Scholar
  246. So PTC, Dong CY, Masters BR, Berland KM (2000) Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng 2:399–429PubMedCrossRefGoogle Scholar
  247. Solberg RA, Bald JG (1962) Cytoplasmic structure of healthy and TMV-infected living cells. Am J Bot 49:149–157CrossRefGoogle Scholar
  248. Sommer AJ, Tisinger LG, Marcott C, Story GM (2001) Attenuated total internal reflection infrared mapping microspectroscopy using an imaging microscope. Appl Spectrosc 55:252–256CrossRefGoogle Scholar
  249. Spencer M (1982) Fundamentals of light microscopy. Cambridge University Press, CambridgeGoogle Scholar
  250. Squier J, Muller M (2001) High resolution nonlinear microscopy: a review of sources and methods for achieving optimal imaging. Rev Sci Instrum 72:2855–2867CrossRefGoogle Scholar
  251. Squier JA, Muller M, Brakenhoff GJ, Wilson KR (1998) Third harmonic generation microscopy. Opt Express 3:315–324PubMedCrossRefGoogle Scholar
  252. Staehelin LA (2003) Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth Res 76:185–196PubMedCrossRefGoogle Scholar
  253. Steinbach G, Pomozi I, Zsiros O, Pay A, Horvath GV, Garab G (2008) Imaging fluorescence detected linear dichroism of plant cell walls in laser scanning confocal microscope. Cytometry A 73A:202–208CrossRefGoogle Scholar
  254. Steinbach G, Pomozi I, Zsiros O, Menczel L, Garab G (2009) Imaging anisotropy using differential polarization laser scanning confocal microscopy. Acta Histochem 111:317–326CrossRefGoogle Scholar
  255. Stoller P, Reiser KM, Celliers PM, Rubenchik AM (2002) Polarization-modulated second harmonic generation in collagen. Biophys J 82:3330–3342PubMedCrossRefGoogle Scholar
  256. Strugger S (1950) Uber den bau der proplastiden und chloroplasten. Naturwissenschaften 37:166–167CrossRefGoogle Scholar
  257. Sun CK (2005) Higher harmonic generation microscopy. Adv Biochem Eng Biotechnol 95:17–56PubMedGoogle Scholar
  258. Supatto W, Debarre D, Farge E, Beaurepaire E (2005a) Femtosecond pulse-induced microprocessing of live Drosophila embryos. Med Laser Appl 20:207–216CrossRefGoogle Scholar
  259. Supatto W, Debarre D, Moulia B, Brouzes E, Martin JL, Farge E, Beaurepaire E (2005b) In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc Natl Acad Sci USA 102:1047–1052PubMedCrossRefGoogle Scholar
  260. Sutherland LR (2003) Handbook of nonlinear optics. Taylor & Francis, New YorkGoogle Scholar
  261. Thornber JP (1975) Chlorophyll-proteins: light-harvesting and reaction center components of plants. Annu Rev Plant Phys 26:127–158CrossRefGoogle Scholar
  262. Tinoco I, Mickols W, Maestre MF, Bustamante C (1987) Absorption, scattering, and imaging of biomolecular structures with polarized-light. Annu Rev Biophys Biophys Chem 16:319–349PubMedCrossRefGoogle Scholar
  263. Tirlapur UK, König K (2001) Femtosecond near-infrared lasers as a novel tool for non-invasive real-time high-resolution time-lapse imaging of chloroplast division in living bundle sheath cells of Arabidopsis. Planta 214:1–10PubMedCrossRefGoogle Scholar
  264. Tirlapur UK, König K (2002) Two-photon near-infrared femtosecond laser scanning microscopy in plant biology. In: Diaspro A (ed) Confocal and two-photon microscopy: foundations, applications, and advances. Wiley, New YorkGoogle Scholar
  265. Tiziani HJ, Uhde HM (1994) 3-dimensional analysis by a microlens-array confocal arrangement. Appl Opt 33:567–572CrossRefGoogle Scholar
  266. Tokeshi M, Uchida M, Hibara A, Sawada T, Kitamori T (2001) Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle molecule determination. Anal Chem 73:2112–2116PubMedCrossRefGoogle Scholar
  267. Toledo-Crow R, Yang PC, Chen Y, Vaez-Iravani M (1992) Near-field differential scanning optical microscope with atomic force regulation. Appl Phys Lett 60:2957–2959CrossRefGoogle Scholar
  268. Tornbom L, Oliveira L (1993) Wound-healing in Vaucheria longicaulis hoppaugh var. Macounii blum. 2. Cytoplasmic streaming and organelle movement. New Phytol 124:135–148CrossRefGoogle Scholar
  269. Trudel E, Gallant J, Mons S, Mioskowski C, Lebeau L, Jeuris K, Foubert P, De Schryver F, Salesse C (2001) Design of functionalized lipids and evidence for their binding to photosystem II core complex by oxygen evolution measurements, atomic force microscopy, and scanning near-field optical microscopy. Biophys J 81:563–571PubMedCrossRefGoogle Scholar
  270. Tsang TYF (1995) Optical third-harmonic generation at interfaces. Phys Rev A 52:4116–4125PubMedCrossRefGoogle Scholar
  271. Ulrich V, Fischer P, Riemann I, Konig K (2004) Compact multiphoton/single photon laser scanning microscope for spectral imaging and fluorescence lifetime imaging. Scanning 26:217–225PubMedGoogle Scholar
  272. Vacha F, Bumba L, Kaftan D, Vacha M (2005) Microscopy and single molecule detection in photosynthesis. Micron 36:483–502PubMedCrossRefGoogle Scholar
  273. Vacha F, Adamec F, Valenta J, Vacha M (2007) Spatial location of photosystem pigment–protein complexes in thylakoid membranes of chloroplasts of Pisum sativum studied by chlorophyll fluorescence. J Lumin 122:301–303CrossRefGoogle Scholar
  274. van Munster EB, Gadella TWJ (2005) Fluorescence lifetime imaging microscopy (FLIM). Adv Biochem Eng Biotechnol 95:143–175PubMedGoogle Scholar
  275. van Oijen AM, Ketelaars M, Kohler J, Aartsma TJ, Schmidt J (1999) Unraveling the electronic structure of individual photosynthetic pigment–protein complexes. Science 285:400–402PubMedCrossRefGoogle Scholar
  276. van Spronsen EA, Sarafis V, Brakenhoff GJ, Vandervoort HTM, Nanninga N (1989) 3-dimensional structure of living chloroplasts as visualized by confocal scanning laser microscopy. Protoplasma 148:8–14CrossRefGoogle Scholar
  277. Verbiest T, Van Elshocht S, Kauranen M, Hellemans L, Snauwaert J, Nuckolls C, Katz TJ, Persoons A (1998) Strong enhancement of nonlinear optical properties through supramolecular chirality. Science 282:913–915PubMedCrossRefGoogle Scholar
  278. Walla PJ, Yom J, Krueger BP, Fleming GR (2000) Two-photon excitation spectrum of light-harvesting complex II and fluorescence upconversion after one- and two-photon excitation of the carotenoids. J Phys Chem B 104:4799–4806CrossRefGoogle Scholar
  279. Walla PJ, Linden PA, Ohta K, Fleming GR (2002) Excited-state kinetics of the carotenoid S-1 state in LHC II and two-photon excitation spectra of lutein and beta-carotene in solution: Efficient car S-1 → Chl electronic energy transfer via hot S-1 states? J Phys Chem A 106:1909–1916CrossRefGoogle Scholar
  280. Wang XD, Pang YJ, Ku G, Xie XY, Stoica G, Wang LHV (2003) Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol 21:803–806PubMedCrossRefGoogle Scholar
  281. Ward JF, New GHC (1969) Optical third harmonic generation in gases by a focused laser beam. Phys Rev 185:57–72CrossRefGoogle Scholar
  282. Wazawa T, Ueda M (2005) Total internal reflection fluorescence microscopy in single molecule nanobioscience. Adv Biochem Eng Biotechnol 95:77–106PubMedGoogle Scholar
  283. Wetzel DL, Eilert AJ, Pietrzak LN, Miller SS, Sweat JA (1998) Ultraspatially-resolved synchrotron infrared microspectroscopy of plant tissue in situ. Cell Mol Biol 44:145–168PubMedGoogle Scholar
  284. Wetzel DL, Srivarin P, Finney JR (2003) Revealing protein infrared spectral detail in a heterogeneous matrix dominated by starch. Vib Spectrosc 31:109–114CrossRefGoogle Scholar
  285. Wildman SG, Honda SI, Honglada T (1962) Chloroplasts and mitochondria in living plant cells: cinephotomicrographic studies. Science 138:434–436Google Scholar
  286. Willig KI, Kellner RR, Medda R, Hein B, Jakobs S, Hell SW (2006) Nanoscale resolution in GFP-based microscopy. Nat Methods 3:721–723PubMedCrossRefGoogle Scholar
  287. Willig KI, Harke B, Medda R, Hell SW (2007) STED microscopy with continuous wave beams. Nat Methods 4:915–918PubMedCrossRefGoogle Scholar
  288. Wokosin DL (2008) Nonlinear excitation fluorescence microscopy: source considerations for biological applications. In: Conference on solid state lasers XVII, SPIE-Int Soc Optical Engineering, pp 87128–87128Google Scholar
  289. Wustman BA, Melkonian M, Becker B (2004) A study of cell wall and flagella formation during cell division in the scaly green alga Scherffelia dubia (Chlorophyta). J Phycol 40:895–910CrossRefGoogle Scholar
  290. Xiao GQ, Corle TR, Kino GS (1988) Real-time confocal scanning optical microscope. Appl Phys Lett 53:716–718CrossRefGoogle Scholar
  291. Xu MH, Wang LHV (2002) Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans Med Imaging 21:814–822PubMedCrossRefGoogle Scholar
  292. Yang SY, Tsuboi M (1999) Polarizing microscopy of eyespot of Chlamydomonas: In situ observation of its location, orientation, and multiplication. Biospectroscopy 5:93–100PubMedCrossRefGoogle Scholar
  293. Yelin D, Silberberg Y (1999) Laser scanning third-harmonic-generation microscopy in biology. Opt Express 5:169–175PubMedCrossRefGoogle Scholar
  294. Yi ZW, Huang H, Kuang TY, Sui SF (2005) Three-dimensional architecture of phycobilisomes from Nostoc flagelliforme revealed by single particle electron microscopy. FEBS Lett 579:3569–3573PubMedCrossRefGoogle Scholar
  295. Yu P (2005) Molecular chemistry imaging to reveal structural features of various plant feed tissues. J Struct Biol 150:81–89PubMedCrossRefGoogle Scholar
  296. Yu P (2007) Ultra-spatial synchrotron radiation for imaging molecular chemical structure: applications in plant and animal studies. Spectrosc-Int J 21:183–192Google Scholar
  297. Yu PQ, McKinnon JJ, Christensen CR, Christensen DA (2004) Imaging molecular chemistry of pioneer corn. J Agric Food Chem 52:7345–7352PubMedCrossRefGoogle Scholar
  298. Yu P, Wang R, Bai Y (2005) Reveal protein molecular structural-chemical differences between two types of winterfat (forage) seeds with physiological differences in low temperature tolerance using synchrotron-based Fourier transform infrared microspectroscopy. J Agric Food Chem 53:9297–9303PubMedCrossRefGoogle Scholar
  299. Zenzie HH, Moulton PF (1994) Tunable optical parametric oscillators pumped by Ti-Sapphire lasers. Opt Lett 19:963–965PubMedCrossRefGoogle Scholar
  300. Zernike F (1935) The phase contrast process in microscopic examinations. Phys Z 36:848–851Google Scholar
  301. Zernike F (1955) How I discovered phase contrast. Science 121:345–349PubMedCrossRefGoogle Scholar
  302. Zhang HF, Maslov K, Wang LV (2007) In vivo imaging of subcutaneous structures using functional photoacoustic microscopy. Nat Protoc 2:797–804PubMedCrossRefGoogle Scholar
  303. Zharov V, Lapotko D (2003) Photothermal sensing of nanoscale targets. Rev Sci Instrum 74:785–788CrossRefGoogle Scholar
  304. Zharov VP, Lapotko DO (2005) Photothermal imaging of nanoparticles and cells. IEEE J Sel Top Quantum 11:733–751CrossRefGoogle Scholar
  305. Zharov VP, Galitovskiy V, Lyle CS, Chambers TC (2006) Superhigh-sensitivity photothermal monitoring of individual cell response to antitumor drug. J Biomed Opt 11:064034Google Scholar
  306. Zheltikov AM (2006) Let there be white light: supercontinuum generation by ultrashort laser pulses. Physics-Usp 49:605–628CrossRefGoogle Scholar
  307. Zikratov G, Yueh F-Y, Singh JP, Norton OP, Kumar RA, Cook RL (1999) Spontaneous anti-Stokes Raman probe for gas temperature measurements in industrial furnaces. Appl Opt 38:1467–1475PubMedCrossRefGoogle Scholar
  308. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1368–1376CrossRefGoogle Scholar
  309. Zumbusch A, Holtom GR, Xie XS (1999) Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys Rev Lett 82:4142–4145CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Richard Cisek
    • 1
  • Leigh Spencer
    • 1
  • Nicole Prent
    • 1
  • Donatas Zigmantas
    • 2
  • George S. Espie
    • 3
  • Virginijus Barzda
    • 1
  1. 1.Department of Chemical and Physical Sciences, Department of Physics, and Institute for Optical SciencesUniversity of TorontoMississaugaCanada
  2. 2.Department of Chemical PhysicsLund UniversityLundSweden
  3. 3.Department of BiologyUniversity of TorontoMississaugaCanada

Personalised recommendations