Photosynthesis Research

, Volume 102, Issue 2–3, pp 377–390 | Cite as

Spin labeling EPR

  • Johann P. Klare
  • Heinz-Jürgen SteinhoffEmail author


Site-directed spin labeling in combination with electron paramagnetic resonance spectroscopy has emerged as an efficient tool to elucidate the structure and conformational dynamics of biomolecules under native-like conditions. This article summarizes the basics as well as recent progress of site-directed spin labeling. Continuous wave EPR spectra analyses and pulse EPR techniques are reviewed with special emphasis on applications to the sensory rhodopsin–transducer complex mediating the photophobic response of the halophilic archaeum Natronomonas pharaonis and the photosynthetic reaction center from Rhodobacter sphaeroides R26.


DEER Nitroxide PELDOR Polarity Photosynthetic reaction center Sensory rhodopsin Spin label accessibility Spin label mobility 



Amphipathic sequence


Chromium oxalate


Continuous wave


Double electron–electron resonance


Electron paramagnetic resonance


(1-Oxyl-2,2,5,5-tetramethylpyrroline-3-methyl)methanethiosulfonate spin label


Natronomonas pharaonis sensory rhodopsin II


Natronomonas pharaonis halobacterial transducer II


Pulse electron–electron double resonance


Purple membrane lipids


Reaction center


Site-directed spin labeling


Transmembrane helix


  1. Altenbach C, Flitsch SL, Khorana HG, Hubbell WL (1989a) Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry 28:7806–7812PubMedGoogle Scholar
  2. Altenbach C, Froncisz W, Hyde JS, Hubbell WL (1989b) Conformation of spin-labeled melittin at membrane surfaces investigated by pulse saturation recovery and continuous wave power saturation electron paramagnetic resonance. Biophys J 56:1183–1191PubMedGoogle Scholar
  3. Altenbach C, Marti T, Khorana HG, Hubbell WL (1990) Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science 248:1088–1092PubMedGoogle Scholar
  4. Altenbach C, Greenhalgh DA, Khorana HG, Hubbell WL (1994) A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci USA 91:1667–1671PubMedGoogle Scholar
  5. Altenbach C, Oh KJ, Trabanino RJ, Hideg K, Hubbell WL (2001) Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: experimental strategies and practical limitations. Biochemistry 40:15471–15482PubMedGoogle Scholar
  6. Altenbach C, Froncisz W, Hemker R, Mchaourab H, Hubbell WL (2005) Accessibility of nitroxide side chains: absolute Heisenberg exchange rates from power saturation EPR. Biophys J 89:2103–2112PubMedGoogle Scholar
  7. Altenbach C, Kusnetzow AK, Ernst OP, Hofmann KP, Hubbell WL (2008) High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc Natl Acad Sci USA 105:7439–7444PubMedGoogle Scholar
  8. Anderson DJ, Hanson P, McNulty J, Millhauser GL, Monaco V, Formaggio F et al (1999) Solution structures of TOAC-labeled trichogin GA IV peptides from allowed (g = 2) and half-field electron spin resonance. J Am Chem Soc 121:6919–6927Google Scholar
  9. Aravind L, Ponting CP (1999) The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol Lett 176:111–116PubMedGoogle Scholar
  10. Balog M, Kalai T, Jeko J, Berente Z, Steinhoff H-J, Engelhard M, Hideg K (2003) Synthesis of new conformationally rigid paramagnetic [alpha]-amino acids. Tetrahedron Lett 44:9213–9217Google Scholar
  11. Balog M, Kalai T, Jekö J, Steinhoff H-J, Engelhard M, Hideg K (2004) Synthesis of new 2, 2, 5, 5-tetramethyl-2, 5-dihydro-1H-pyrrol-1-yloxyl radicals and 2-substituted-2, 5, 5-trimethylpyrrolidin-1-yloxyl radicals based a-amino acids. Synlett 14:2591–2593Google Scholar
  12. Banham JE, Baker CM, Ceola S, Day IJ, Grant GH, Groenen EJJ et al (2008) Distance measurements in the borderline region of applicability of CW EPR and DEER: a model study on a homologous series of spin-labelled peptides. J Magn Reson 191:202–218PubMedGoogle Scholar
  13. Barbosa SR, Cilli EM, Lamy-Freund MT, Castrucci AM, Nakaie CR (1999a) First synthesis of a fully active spin-labeled peptide hormone. FEBS Lett 446:45–48PubMedGoogle Scholar
  14. Barbosa SR, Cilli EM, Lamy-Freund MT, Castrucci AM, Nakaie CR (1999b) First synthesis of a fully active spin-labeled peptide hormone. FEBS Lett 446:45–48PubMedGoogle Scholar
  15. Barnes JP, Liang Z, Mchaourab HS, Freed JH, Hubbell WL (1999) A multifrequency electron spin resonance study of T4 lysozyme dynamics. Biophys J 76:3298–3306PubMedGoogle Scholar
  16. Becker CFW, Hunter CL, Seidel R, Kent SBH, Goody RS, Engelhard M (2003) Total chemical synthesis of a functional interacting protein pair: the protooncogene H-Ras and the Ras-binding domain of its effector c-Raf1. Proc Natl Acad Sci USA 100:5075–5080PubMedGoogle Scholar
  17. Becker CFW, Lausecker K, Balog M, Kalai T, Hideg K, Steinhoff H-J, Engelhard M (2005) Incorporation of spin-labelled amino acids into proteins. Magn Reson Chem 43:S34–S39PubMedGoogle Scholar
  18. Beier C, Steinhoff H-J (2006) A structure-based simulation approach for electron paramagnetic resonance spectra using molecular and stochastic dynamics simulations. Biophys J 91:2647–2664PubMedGoogle Scholar
  19. Berliner LJ (ed) (1976) Spin labeling: theory and applications. Academic Press, New YorkGoogle Scholar
  20. Berliner LJ (ed) (1979) Spin labeling II: theory and applications. Academic Press, New YorkGoogle Scholar
  21. Berliner LJ, Reuben J (eds) (1989) Spin labeling theory and applications. Plenum Press, New YorkGoogle Scholar
  22. Berliner LJ, Grunwald J, Hankovszky HO, Hideg K (1982) A novel reversible thiol-specific spin label: papain active site labeling and inhibition. Anal Biochem 119:450–455PubMedGoogle Scholar
  23. Berliner LJ, Eaton SS, Eaton GR (eds) (2000) Distance measurements in biological systems by EPR. New York, Plenum PressGoogle Scholar
  24. Bode BE, Plackmeyer J, Prisner TF, Schiemann O (2008) PELDOR measurements on a nitroxide-labeled Cu(II) porphyrin: orientation selection, spin-density distribution, and conformational flexibility. J Phys Chem A 112:5064–5073PubMedGoogle Scholar
  25. Borbat PP, Freed JH (1999) Multiple-quantum ESR and distance measurements. Chem Phys Lett 313:145–154Google Scholar
  26. Borbat PP, Costa-Filho AJ, Earle KA, Moscicki JK, Freed JH (2001) Electron spin resonance in studies of membranes and proteins. Science 291:266–269PubMedGoogle Scholar
  27. Bordignon E, Steinhoff H-J (2007) Membrane protein structure and dynamics studied by site-directed spin labeling ESR. In: Hemminga MA, Berliner LJ (eds) ESR spectroscopy in membrane biophysics. Springer Science and Business Media, New York, pp 129–164Google Scholar
  28. Bordignon E, Klare JP, Döbber MA, Wegener AA, Martell S, Engelhard M, Steinhoff H-J (2005) Structural analysis of a HAMP domain: the linker region of the phototransducer in complex with sensory rhodopsin II. J Biol Chem 280:38767–38775PubMedGoogle Scholar
  29. Bordignon E, Klare JP, Holterhues J, Martell S, Krasnaberski A, Engelhard M, Steinhoff H-J (2007) Analysis of light-induced conformational changes of Natronomonas pharaonis sensory rhodopsin II by time resolved electron paramagnetic resonance spectroscopy. Photochem Photobiol 83:263–272PubMedGoogle Scholar
  30. Borovykh IV, Ceola S, Gajula P, Gast P, Steinhoff H-J, Huber M (2006) Distance between a native cofactor and a spin label in the reaction centre of Rhodobacter sphaeroides by a two-frequency pulsed electron paramagnetic resonance method and molecular dynamics simulations. J Magn Res 180:178–185Google Scholar
  31. Brutlach H, Bordignon E, Urban L, Klare JP, Reyher H-J, Engelhard M, Steinhoff H-J (2006) High-field EPR and site-directed spin labeling reveal a periodical polarity profile: the sequence 88 to 94 of the phototransducer, NpHtrII, in complex with sensory rhodopsin, NpSRII. Appl Magn Reson 30:359–372Google Scholar
  32. Budil DE, Sale KL, Khairy K, Fajer PG (2006) Calculating slow-motional electron paramagnetic resonance spectra from molecular dynamics using a diffusion operator approach. J Phys Chem A 110:3703–3713PubMedGoogle Scholar
  33. Chin JW, Cropp TA, Anderson JC, Mukherji M, Zhang Z, Schultz PG (2003) An expanded eukaryotic genetic code. Science 301:964–967PubMedGoogle Scholar
  34. Columbus L, Hubbell WL (2002) A new spin on protein dynamics. Trends Biochem Sci 27:288–295PubMedGoogle Scholar
  35. Columbus L, Tamas K, Jekö J, Kalman H, Hubbell WL (2001) Molecular motion of spin labeled side chains in a-helices: analysis by variation of side chain structure. Biochem 40:3828–3846Google Scholar
  36. Cornish VW, Benson DR, Altenbach C, Hideg K, Hubbell WL, Schultz PG (1994) Site-Specific incorporation of biophysical probes into proteins. Proc Natl Acad Sci USA 91:2910–2914PubMedGoogle Scholar
  37. Deiters A, Schultz PG (2005) In vivo incorporation of an alkyne into proteins in Escherichia coli. Bioorg Med Chem Lett 15:1521–1524PubMedGoogle Scholar
  38. DeSensi SC, Rangel DP, Beth AH, Lybrand TP, Hustedt EJ (2008) Simulation of nitroxide electron paramagnetic resonance spectra from Brownian trajectories and molecular dynamics simulations. Biophys J 94:3798–3809PubMedGoogle Scholar
  39. Döbber MA, Bordignon E, Klare JP, Holterhues J, Martell S, Mennes N et al (2008) Salt-driven equilibrium between two conformations in the HAMP domain from Natronomonas pharaonis: the language of signal transfer? J Biol Chem 283:28691–28701Google Scholar
  40. Edwards TE, Sigurdsson ST (2005) EPR spectroscopic analysis of U7 hammerhead ribozyme dynamics during metal ion induced folding. Biochem 44:12870–12878Google Scholar
  41. Edwards TE, Okonogi TM, Robinson BH, Sigurdsson ST (2001) Site-specific incorporation of nitroxide spin-labels into internal sites of the TAR RNA; structure-dependent dynamics of RNA by EPR spectroscopy. J Am Chem Soc 123:1527–1528PubMedGoogle Scholar
  42. Elsässer C, Monien B, Haehnel W, Bittl R (2005) Orientation of spin labels in de novo peptides. Magn Reson Chem 43:S26–S33PubMedGoogle Scholar
  43. Farahbakhsh ZT, Altenbach C, Hubbell WL (1992) Spin labeled cysteines as sensors for protein–lipid interaction and conformation in rhodopsin. Photochem Photobiol 56:1019–1033PubMedGoogle Scholar
  44. Farahbakhsh ZT, Hideg K, Hubbell WL (1993) Photoactivated conformational changes in rhodopsin: a time-resolved spin label study. Science 262:1416–1419PubMedGoogle Scholar
  45. Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274:768–770PubMedGoogle Scholar
  46. Feher G (1998) Three decades of research in bacterial photosynthesis and the road leading to it: a personal account. Photosynth Res 55:1–40Google Scholar
  47. Feher G (2002) My road to biophysics: picking flowers on the way to photosynthesis. Annu Rev Biophys Biomol Struct 31:1–44PubMedGoogle Scholar
  48. Feix JB, Popp CA, Venkataramu SD, Beth AH, Park JH, Hyde JS (1984) An electron–electron double-resonance study of interactions between [14N]- and [15N]stearic acid spin-label pairs: lateral diffusion and vertical fluctuations in dimyristoylphosphatidylcholine. Biochem 23:2293–2299Google Scholar
  49. Freed JH (1976) Theory of slow tumbling ESR spectra for nitroxides. In: Berliner LJ (ed) Spin labeling: theory and applications. Academic Press, New York, pp 53–132Google Scholar
  50. Gajula P, Borovykh IV, Beier C, Shkuropatova T, Gast P, Steinhoff H-J (2007) Spin-labeled photosynthetic reaction centers from Rhodobacter sphaeroides studied by electron paramagnetic resonance spectroscopy and molecular dynamics simulation. Appl Magn Reson 31:167–178Google Scholar
  51. Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R et al (2002) Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419:484–487PubMedGoogle Scholar
  52. Griffith OH, McConnell HM (1966) A nitroxide-maleimide spin label. Proc Natl Acad Sci USA 55:8–11PubMedGoogle Scholar
  53. Grote M, Bordignon E, Polyhach Y, Jeschke G, Steinhoff HJ, Schneider E (2008) A comparative EPR study of the nucleotide-binding domains’ catalytic cycle in the assembled maltose ABC-importer. Biophys J 95:2924–2938PubMedGoogle Scholar
  54. Hanson P, Martinez G, Millhauser G, Formaggio F, Crisma M, Toniolo C, Vita C (1996a) Distinguishing helix conformations in alanine-rich peptides using the unnatural amino acid TOAC and electron spin resonance. J Am Chem Soc 118:271–272Google Scholar
  55. Hanson P, Millhauser G, Formaggio F, Crisma M, Toniolo C (1996b) ESR characterization of hexameric, helical peptides using double TOAC spin labeling. J Am Chem Soc 118:7618–7625Google Scholar
  56. Hoff AJ, Deisenhofer J (1997) Photophysics of photosynthesis. Structure and spectroscopy of reaction centers of purple bacteria. Phys Rep 287:1–247Google Scholar
  57. Hubbell WL, Mchaourab HS, Altenbach C, Lietzow MA (1996) Watching proteins move using site-directed spin labeling. Structure 4:779–783PubMedGoogle Scholar
  58. Hubbell WL, Gross A, Langen R, Lietzow MA (1998) Recent advances in site-directed spin labeling of proteins. Curr Opin Struc Biol 8:649–656Google Scholar
  59. Huber M, Törring JT (1995) High-field EPR on the primary electron donor cation radical in single crystals of heterodimer mutant reaction centers of photosynthetic bacteria—first characterization of the G-tensor. Chem Phys 194:379–385Google Scholar
  60. Isas JM, Langen R, Haigler HT, Hubbell WL (2002) Structure and dynamics of a helical hairpin and loop region in annexin 12: a site-directed spin labeling study. Biochemistry 41:1464–1473PubMedGoogle Scholar
  61. Jäger H, Koch A, Maus V, Spiess HW, Jeschke G (2008) Relaxation-based distance measurements between a nitroxide and a lanthanide spin label. J Magn Res 194:254–263Google Scholar
  62. Jeschke G, Bender A, Schweikardt T, Panek G, Decker H, Paulsen H (2005) Localization of the N-terminal domain in light-harvesting chlorophyll a/b protein by EPR measurements. J Biol Chem 280:18623–18630PubMedGoogle Scholar
  63. Jeschke G, Chechik V, Ionita P, Godt A, Zimmermann H, Banham JE et al (2006) Deer analysis 2006—a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Reson 30:473–498Google Scholar
  64. Kalai T, Hubbell WL, Hideg K (2009) Click reactions with nitroxides. Synthesis 2009:1336–1340Google Scholar
  65. Kim N-K, Murali A, DeRose VJ (2004) A distance ruler for RNA using EPR and site-directed spin labeling. Chem Biol 11:939–948PubMedGoogle Scholar
  66. Klare JP, Gordeliy VI, Labahn J, Büldt G, Steinhoff H-J, Engelhard M (2004) The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. FEBS Lett 564:219–224PubMedGoogle Scholar
  67. Klare JP, Bordignon E, Döbber MA, Fitter J, Kriegsmann J, Chizhov I et al (2006) Effects of solubilization on the structure and function of the sensory rhodopsin II/transducer complex. J Mol Biol 356:1207–1221PubMedGoogle Scholar
  68. Klare JP, Chizhov I, Engelhard M (2007) Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors. Results Probl Cell Differ 45:73–122Google Scholar
  69. Klug CS, Feix JB (2008) methods and applications of site-directed spin labeling EPR spectroscopy. In: Correia JJ, Detrich HW (eds) Methods in cell biology. Biophysical tools for biologists, volume one: in vitro techniques. New York, Academic Press, pp 617–658Google Scholar
  70. Kochendoerfer GG, Chen SY, Mao F, Cressman S, Traviglia S, Shao H, Hunter CL, Low DW, Cagle EN, Carnevali M, Gueriguian V, Keogh PJ, Porter H, Stratton SM, Wiedeke MC, Wilken J, Tang J, Levy JJ, Miranda LP, Crnogorac MM, Kalbag S, Botti P, Schindler-Horvat J, Savatski L, Adamson JW, Kung A, Kent SB, Bradburne JA (2003) Design and chemical synthesis of a homogeneous polymer-modified erythropoiesis protein. Science 299:884–887PubMedGoogle Scholar
  71. Kolb H, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40:2004–2021PubMedGoogle Scholar
  72. Leigh JS Jr (1970) ESR rigid-lattice line shape in a system of two interacting spins. J Chem Phys 52:2608–2612Google Scholar
  73. Luecke H, Schobert B, Lanyi JK, Spudich EN, Spudich JL (2001) Crystal structure of sensory rhodopsin II at 2.4 A: insights into color tuning and transducer interaction. Science 293:1499–1503PubMedGoogle Scholar
  74. Marchetto R, Schreier S, Nakaie CR (1993) A novel spin-labeled amino-acid derivative for use in peptide-synthesis-(9-fluorenylmethyloxycarbonyl)-2, 2, 6, 6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid. J Am Chem Soc 115:11042–11043Google Scholar
  75. Marsh D, Dzikovski BG, Livshits VA (2006) Oxygen profiles in membranes. Biophys J 90:L49–L51PubMedGoogle Scholar
  76. Marsh D, Jost M, Peggion C, Toniolo C (2007) TOAC spin labels in the backbone of alamethicin: EPR studies in lipid membranes. Biophys J 92:473–481PubMedGoogle Scholar
  77. Mchaourab HS, Hyde JS (1993) Dependence of the multiple-quantum EPR signal on the spin–lattice relaxation time. Effect of oxygen in spin-labeled membranes. J Magn Reson B 101:178–184Google Scholar
  78. Mchaourab HS, Perozo E (2000) Determination of protein folds and conformational dynamics using spin labeling EPR spectroscopy. In: Berliner LJ, Eaton SS, Eaton GR (eds) Distance measurements in biological systems by EPR. Kluwer, New York, pp 155–218Google Scholar
  79. Mchaourab HS, Lietzow MA, Hideg K, Hubbell WL (1996) Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry 35:7692–7704PubMedGoogle Scholar
  80. Mendel D, Cornish VW, Schultz PG (1995) Site-directed mutagenesis with an expanded genetic code. Annu Rev Biophys Biomol Struct 24:435–462PubMedGoogle Scholar
  81. Merrifield B (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154Google Scholar
  82. Monaco V, Formaggio F, Crisma M, Toniolo C, Hanson P, Millhauser GL et al (1999) Determining the occurence of a 310-helix and an α-helix in two different segments of a lipopeptaibol antibiotic using TOAC, a nitroxide spin-labeled Cα-tetrasubstituted α-aminoacid. Bioorg Med Chem 7:119–131PubMedGoogle Scholar
  83. Nielsen RD, Canaan S, Gladden JA, Gelb MH, Mailer C, Robinson BH (2004) Comparing continuous wave progressive saturation EPR and time domain saturation recovery EPR over the entire motional range of nitroxide spin labels. J Magn Reson 169:129–163PubMedGoogle Scholar
  84. O’Donnell MJ, Bennett WD, Wu S (1989) The stereoselective synthesis of α-amino acids by phase-transfer catalysis. J Am Chem Soc 111:2353–2355Google Scholar
  85. Oganesyan VS (2007) A novel approach to the simulation of nitroxide spin label EPR spectra from a single truncated dynamical trajectory. J Magn Reson 188:196–205PubMedGoogle Scholar
  86. Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) Dead-time free measurement of dipole–dipole interactions between electron spins. J Magn Reson 142:331–340PubMedGoogle Scholar
  87. Perozo E, Cortes DM, Cuello LG (1998) Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nat Struct Biol 5:459–469PubMedGoogle Scholar
  88. Piton N, Schiemann O, Mu Y, Stock G, Prisner T, Engels JW (2005) Synthesis of spin-labeled RNAS for long range distance measurements by PELDOR. Nucleosides Nucleotides Nucleic Acids 24:771–775PubMedGoogle Scholar
  89. Piton N, Mu Y, Stock G, Prisner TF, Schiemann O, Engels JW (2007) Base-specific spin-labeling of RNA for structure determination. Nucleic Acids Res 35:3128–3143PubMedGoogle Scholar
  90. Plato M, Steinhoff HJ, Wegener C, Törring JT, Savitsky A, Möbius K (2002) Molecular orbital study of polarity and hydrogen bonding effects on the g and hyperfine tensors of site directed NO spin labelled bacteriorhodopsin. Mol Phys 100:3711–3721Google Scholar
  91. Poluektov OG, Utschig LM, Dalosto S, Thurnauer MC (2003) Probing local dynamics of the photosynthetic bacterial reaction center with a cysteine specific spin label. J Phys Chem B 107:6239–6244Google Scholar
  92. Pyka J, Ilnicki J, Altenbach C, Hubbell WL, Froncisz W (2005) Accessibility and dynamics of nitroxide side chains in T4 lysozyme measured by saturation recovery EPR. Biophys J 89:2059–2068PubMedGoogle Scholar
  93. Qin PZ, Hideg K, Feigon J, Hubbell WL (2003) Monitoring RNA base structure and dynamics using site-directed spin labeling. Biochemistry 42:6772–6783PubMedGoogle Scholar
  94. Rabenstein MD, Shin YK (1995) Determination of the distance between 2 spin labels attached to a macromolecule. Proc Natl Acad Sci USA 92:8239–8243PubMedGoogle Scholar
  95. Rassat A, Rey P (1967) Nitroxides, 23: preparation of amino-acid free radicals and their complex salts. Bull Soc Chim Fr 3:815–818PubMedGoogle Scholar
  96. Sale KL, Song L (2005) Explicit treatment of spin labels in modeling of distance constraints from dipolar EPR and DEER. J Am Chem Soc 127:9334–9335PubMedGoogle Scholar
  97. Schiemann O, Prisner TF (2007) Long-range distance determinations in biomacromolecules by EPR spectroscopy. Q Rev Biophys 40:1–53PubMedGoogle Scholar
  98. Schiemann O, Piton N, Plackmeyer J, Bode BE, Prisner TF, Engels JW (2007) Spin labeling of oligonucleotides with the nitroxide TPA and use of PELDOR, a pulse EPR method, to measure intramolecular distances. Nat Protoc 2:904–923PubMedGoogle Scholar
  99. Sezer D, Freed JH, Roux B (2008a) Parametrization, molecular dynamics simulation, and calculation of electron spin resonance spectra of a nitroxide spin label on a polyalanine α-helix. J Phys Chem B 112:5755–5767PubMedGoogle Scholar
  100. Sezer D, Freed JH, Roux B (2008b) Simulating electron spin resonance spectra of nitroxide spin labels from molecular dynamics and stochastic trajectories. J Chem Phys 128:165106–165116PubMedGoogle Scholar
  101. Shafer AM, Kalai T, Qiao Bin Lui S, Hideg K, Voss JC (2004) Site-specific insertion of spin-labeled l-amino acids in xenopus oocytes. Biochemistry 43:8470–8472PubMedGoogle Scholar
  102. Shin Y-K, Hubbell WL (1992) Determination of electrostatic potentials at biological interfaces using electron–electron double resonance. Biophys J 61:1443–1453PubMedGoogle Scholar
  103. Smirnov AF, Ruuge A, Reznikov VA, Voinov MA, Grigor’ev IA (2004) Site-directed electrostatic measurements with a thiol-specific pH-sensitive nitroxide: differentiating local pK and polarity effects by high-field EPR. J Am Chem Soc 126:8872–8873PubMedGoogle Scholar
  104. Spaltenstein A, Robinson BH, Hopkins PB (1988) A rigid and nonperturbing probe for duplex DNA motion. J Am Chem Soc 110:1299–1301Google Scholar
  105. Spaltenstein A, Robinson BH, Hopkins PB (1989) Sequence- and structure-dependent DNA base dynamics: synthesis, structure, and dynamics of site, and sequence specifically spin-labeled DNA. Biochemistry 28:9484–9495PubMedGoogle Scholar
  106. Steinhoff H-J, Hubbell WL (1996) Calculation of electron paramagnetic resonance spectra from Brownian dynamics trajectories: application to nitroxide side chains in proteins. Biophys J 71:2201–2212PubMedGoogle Scholar
  107. Steinhoff H-J, Dombrowsky O, Karim C, Schneiderhahn C (1991) Two dimensional diffusion of small molecules on protein surfaces: an EPR study of the restricted translational diffusion of protein-bound spin labels. Eur Biophys J 20:293–303PubMedGoogle Scholar
  108. Steinhoff H-J, Mollaaghababa R, Altenbach C, Hideg K, Krebs MP, Khorana HG, Hubbell WL (1994) Time-resolved detection of structural changes during the photocycle of spin-labeled bacteriorhodopsin. Science 266:105–107PubMedGoogle Scholar
  109. Steinhoff H-J, Radzwill N, Thevis W, Lenz V, Brandenburg D, Antson A et al (1997) Determination of interspin distances between spin labels attached to insulin: comparison of electron paramagnetic resonance data with the X-ray structure. Biophys J 73:3287–3298PubMedGoogle Scholar
  110. Steinhoff H-J, Müller M, Beier C, Pfeiffer M (2000a) Molecular dynamics simulation and EPR spectroscopy of nitroxide side chains in bacteriorhodopsin. J Mol Liq 84:17–27Google Scholar
  111. Steinhoff HJ, Savitsky A, Wegener C, Pfeiffer M, Plato M, Möbius K (2000b) High-field EPR studies of the structure and conformational changes of site-directed spin labeled bacteriorhodopsin. Biochim Biophys Acta 1457:253–262PubMedGoogle Scholar
  112. Thorgeirsson TE, Xiao W, Brown LS, Needleman R, Lanyi JK, Shin Y-K (1997) Transient channel-opening in bacteriorhodopsin: an EPR study. J Mol Biol 273:951–957PubMedGoogle Scholar
  113. Vasquez V, Sotomayor M, Marien Cortes D, Roux B, Schulten K, Perozo E (2008) Three-dimensional architecture of membrane-embedded MscS in the closed conformation. J Mol Biol 378:55–70PubMedGoogle Scholar
  114. Voinov MA, Ruuge A, Reznikov VA, Grigor’ev IA, Smirnov AI (2008) Mapping local protein electrostatics by EPR of pH-sensitive thiol-specific nitroxide. Biochemistry 47:5626–5637PubMedGoogle Scholar
  115. Volkov A, Dockter C, Bund T, Paulsen H, Jeschke G (2009) Pulsed EPR determination of water accessibility to spin-labeled amino acid residues in LHCIIb. Biophys J 96:1124–1141PubMedGoogle Scholar
  116. Ward R, Keeble DJ, El-Mkami H, Norman DG (2007) Distance determination in heterogeneous DNA model systems by pulsed EPR. ChemBioChem 8:1957–1964PubMedGoogle Scholar
  117. Wegener AA, Chizhov I, Engelhard M, Steinhoff H-J (2000) Time-resolved detection of transient movement of helix F in spin-labelled pharaonis sensory rhodopsin II. J Mol Biol 301:881–891PubMedGoogle Scholar
  118. Wegener AA, Klare JP, Engelhard M, Steinhoff H-J (2001) Structural insights into the early steps of receptor–transducer signal transfer in archaeal phototaxis. EMBO J 20:5312–5319PubMedGoogle Scholar
  119. Yin JJ, Pasenkiewicz-Gierula M, Hyde JS (1987) Lateral diffusion of lipids in membranes by pulse saturation recovery electron spin resonance. Proc Natl Acad Sci USA 84:964–968PubMedGoogle Scholar
  120. Zhou Y, Bowler BE, Lynch K, Eaton SS, Eaton GR (2000) Interspin distances in spin-labeled metmyoglobin variants determined by saturation recovery EPR. Biophys J 79:1039–1052PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of OsnabrückOsnabrückGermany

Personalised recommendations