Advertisement

Photosynthesis Research

, Volume 101, Issue 1, pp 59–67 | Cite as

What governs the reaction center excitation wavelength of photosystems I and II?

  • Ron Milo
Regular Paper

Abstract

The sun’s spectrum harvested through photosynthesis is the primary source of energy for life on earth. Plants, green algae, and cyanobacteria—the major primary producers on earth—utilize reaction centers that operate at wavelengths of 680 and 700 nm. Why were these wavelengths “chosen” in evolution? This study analyzes the efficiency of light conversion into chemical energy as a function of hypothetical reaction center absorption wavelengths given the sun’s spectrum and the overpotential cost associated with charge separation. Surprisingly, it is found here that when taking into account the empirical charge separation cost the range 680–720 nm maximizes the conversion efficiency. This suggests the possibility that the wavelengths of photosystem I and II were optimized at some point in their evolution for the maximal utilization of the sun’s spectrum.

Keywords

Reaction center Optimality Spectrum Efficiency Chlorophyll 

Abbreviations

RCE

Reaction center excitation energy

PS

Photosystem

Notes

Acknowledgments

The author thanks Eran Bouchbinder for generous help with the thermodynamic analysis and Michael Brenner, William Parson, Robert Knox, John Bolton, Govindjee, Mary Archer, Marc Kirschner, Mike Springer, Sallie Chisholm, Bernhard Loll, Jacques Dumais, Deepak Barua, and Rafael Rubio de Casas for helpful discussions of the analysis and manuscript.

Supplementary material

11120_2009_9465_MOESM1_ESM.ppt (433 kb)
Supplementary material 1 (PPT 433 kb)

References

  1. Archer MD, Bolton JR (1990) Requirements for ideal performance of photochemical and photovoltaic solar energy converters. J Phys Chem 94:8028–8036CrossRefGoogle Scholar
  2. Arntz AM, DeLucia EH et al (2000a) Fitness effects of a photosynthetic mutation across contrasting environments. J Evol Biol 13:792–803CrossRefGoogle Scholar
  3. Arntz AM, DeLucia EH et al (2000b) Variation in photosynthetic rate affects fecundity and survivorship. Ecology 81(9):2567–2576CrossRefGoogle Scholar
  4. ASTM G173-03e1 Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surfaceGoogle Scholar
  5. Bjorn LO, Papageorgiou GC et al (2009) A viewpoint: why chlorophyll a? Photosynth Res 99(2):85–98PubMedCrossRefGoogle Scholar
  6. Blankenship RB (2001) Molecular mechanisms of photosynthesis. Blackwell Science Ltd., OxfordGoogle Scholar
  7. Bolton JR, Hall DO (1991) The maximum efficiency of photosynthesis. Photochem Photobiol 53(4):545–548CrossRefGoogle Scholar
  8. Bolton JR, Strickler SJ et al (1985) Limiting and realizable efficiencies of solar photolysis of water. Nature 316:495–500CrossRefGoogle Scholar
  9. Buiteveld H, Hakvoort JMH et al (1994) The optical properties of pure water. SPIE Proc Ocean Opt XII 2258:174–183Google Scholar
  10. Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Annu Rev Plant Physiol 29:345–378CrossRefGoogle Scholar
  11. Connolly JS, Samuel SB et al (1982) Fluorescence lifetimes of chlorophyll a: solvent, concentration and oxygen dependence. Photochem Photobiol 36:565CrossRefGoogle Scholar
  12. Demmig-Adams B, Adams WW et al (2006) Photoprotection, photoinhibition, gene regulation, and environment. In Advances in photosynthesis and respiration, vol 21. Springer Press, The NetherlandsGoogle Scholar
  13. Falkowski PG, Raven JA (2007) Aquatic photosynthesis. Princeton University Press, PrincetonGoogle Scholar
  14. Forti G, Furia A et al (2003) In vivo changes of the oxidation-reduction state of NADP and of the ATP/ADP cellular ratio linked to the photosynthetic activity in Chlamydomonas reinhardtii. Plant Physiol 132(3):1464–1474PubMedCrossRefGoogle Scholar
  15. Gould SJ, Lewontin RC (1979) The Spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. In: Proc R Soc Lond Ser B 205(1161):581–598Google Scholar
  16. Gust D, Kramer D et al (2008) Engineered and artificial photosynthesis: human ingenuity enters the game. MRS Bull 33:383–387Google Scholar
  17. Hartl DL, Moriyama EN et al (1994) Selection intensity for codon bias. Genetics 138(1):227–234PubMedGoogle Scholar
  18. Jacob F (1977) Evolution and tinkering. Science 196(4295):1161–1166PubMedCrossRefGoogle Scholar
  19. Jennings RC, Belgio E et al (2007) Entropy consumption in primary photosynthesis. Biochim Biophys Acta 1767(10):1194–1197 discussion 1198–1199PubMedCrossRefGoogle Scholar
  20. Kiang NY, Segura A et al (2007a) Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology 7(1):252–274PubMedCrossRefGoogle Scholar
  21. Kiang NY, Siefert J et al (2007b) Spectral signatures of photosynthesis. I. Review of earth organisms. Astrobiology 7(1):222–251PubMedCrossRefGoogle Scholar
  22. Kirschner MW, Gerhart JC (2005) The plausability of life. Yale University Press, New HavenGoogle Scholar
  23. Knox RS (1969) Thermodynamics and the primary processes of photosynthesis. Biophys J 9(11):1351–1362PubMedCrossRefGoogle Scholar
  24. Knox RS (1978) Conversion of light into free energy. Light induced charge separation at interfaces in biological and chemical systems. Dahlem Workshop, Berlin, Verlag ChemieGoogle Scholar
  25. Knox RS, Parson WW (2007) Entropy production and the Second Law in photosynthesis. Biochim Biophys Acta 1767(10):1189–1193PubMedCrossRefGoogle Scholar
  26. Lavergne J, Joliot P (1996) Dissipation in bioenergetic electron transfer chains. Potosynth Res 48:127–138CrossRefGoogle Scholar
  27. Lavergne J, Joliot P (2000) Thermodynamics of the excited states of photosynthesis. Energy transduction in membranes. W. A. Cramer, Biophysical SocietyGoogle Scholar
  28. Lewis NS (2007) Toward cost-effective solar energy use. Science 315(5813):798–801PubMedCrossRefGoogle Scholar
  29. Long SP, Zhu XG et al (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330PubMedCrossRefGoogle Scholar
  30. Mauzerall D (1976) Chlorophyll and photosynthesis. Philos Trans R Soc B 273(924):287–294CrossRefGoogle Scholar
  31. Mauzerall D (1992) Light, iron, Sam Granick and the origin of life. Photosynth Res 33:163–170CrossRefGoogle Scholar
  32. Miller SR, Augustine S et al (2005) Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc Natl Acad Sci USA 102(3):850–855PubMedCrossRefGoogle Scholar
  33. Miyashita H, Adachi K et al (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38(3):274–281Google Scholar
  34. Nobel PS (2005) Physicochemical and environmental plant physiology. Elsevier, AmsterdamGoogle Scholar
  35. Olson JM, Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80:373–386PubMedCrossRefGoogle Scholar
  36. Page CC, Moser CC et al (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402(6757):47–52PubMedCrossRefGoogle Scholar
  37. Parker GA, Maynard-Smith J (1990) Optimality theory in evolutionary biology. Nature 348:27–33CrossRefGoogle Scholar
  38. Parson WW (1978) Thermodynamics of the primary reactions of photosynthesis. Photochem Photobiol 28:389–393CrossRefGoogle Scholar
  39. Ross RT, Calvin M (1967) Thermodynamics of light emission and free-energy storage in photosynthesis. Biophys J 7(5):595–614PubMedCrossRefGoogle Scholar
  40. Seelert H, Poetsch A et al (2000) Structural biology. Proton-powered turbine of a plant motor. Nature 405(6785):418–419PubMedCrossRefGoogle Scholar
  41. Sener MK, Lu D et al (2002) Robustness and optimality of light harvesting in cyanobacterial Photosystem I. J Phys Chem B 106:7948–7960CrossRefGoogle Scholar
  42. Shockley W, Queisser H (1961) Detailed balance limit of p-n junction solar cells. J Appl Phys 32(3):510–519CrossRefGoogle Scholar
  43. Smith H (1982) Light quality, photoperception, and plant strategy. Annu Rev Plant Biol 33:481–518Google Scholar
  44. Soffer BH, Lynch DK (1999) Some paradoxes, errors, and resolutions concerning the spectral optimization of human vision. Am J Phys 67(11):946–953CrossRefGoogle Scholar
  45. Stearns SC (1992) The evolution of life histories. Oxford university press, New YorkGoogle Scholar
  46. Tilman D (1982) Resource competition and community structure. Princeton University Press, PrincetonGoogle Scholar
  47. Vasil’ev S, Bruce D (2004) Optimization and evolution of light harvesting in photosynthesis: the role of antenna chlorophyll conserved between Photosystem II and Photosystem I. Plant Cell 16(11):3059–3068PubMedCrossRefGoogle Scholar
  48. Wagner A (2005) Energy constraints on the evolution of gene expression. Mol Biol Evol 22(6):1365–1374PubMedCrossRefGoogle Scholar
  49. Wang H, Lin S et al (2007) Protein dynamics control the kinetics of initial electron transfer in photosynthesis. Science 316(5825):747–750PubMedCrossRefGoogle Scholar
  50. Warren SG (1984) Optical constants of ice from the ultraviolet to the microwave. Appl Opt 23:1026–1225CrossRefGoogle Scholar
  51. Zolotarev VM, Mikhilov BA et al (1969) Dispersion and absorption of liquid water in the infrared and radio regions of the spectrum. Opt Spectrosc 27:430–432Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Plant SciencesWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations