Photosynthesis Research

, 102:157 | Cite as

Wide-field photon counting fluorescence lifetime imaging microscopy: application to photosynthesizing systems

  • Zdeněk Petrášek
  • Hann-Jörg Eckert
  • Klaus Kemnitz


Fluorescence lifetime imaging microscopy (FLIM) is a technique that visualizes the excited state kinetics of fluorescence molecules with the spatial resolution of a fluorescence microscope. We present a scanningless implementation of FLIM based on a time- and space-correlated single photon counting (TSCSPC) method employing a position-sensitive quadrant anode detector and wide-field illumination. The standard time-correlated photon counting approach leads to picosecond temporal resolution, making it possible to resolve complex fluorescence decays. This allows parallel acquisition of time-resolved images of biological samples under minimally invasive low-excitation conditions (<10mW/cm2). In this way unwanted photochemical reactions induced by high excitation intensities and distorting the decay kinetics are avoided. Comparably low excitation intensities are practically impossible to achieve with a conventional laser scanning microscope, where focusing of the excitation beam into a tight spot is required. Therefore, wide-field FLIM permits to study Photosystem II (PS II) in a way so far not possible with a laser scanning microscope. The potential of the wide-field TSCSPC method is demonstrated by presenting FLIM measurements of the fluorescence dynamics of photosynthetic systems in living cells of the chlorophyll d-containing cyanobacterium Acaryochloris marina.


Fluorescence lifetime imaging FLIM Time-correlated single photon counting QA detector Photosynthesis Chlorophyll Acaryochloris marina 



Fluorescence lifetime imaging microscopy


Foerster resonance energy transfer


Time-correlated single photon counting


Time- and space-correlated single photon counting


Photomultiplier tube


Multichannel plate


Quadrant anode


Delay line


Instrument response function


Excitation energy transfer


Photosystem I and photosystem II








3-(3,4-Dichlorophenyl)-1,1-dimethyl urea






Primary plastoquinone acceptor of PS II.


  1. Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85(1):15–32CrossRefPubMedGoogle Scholar
  2. Agronskaia AV, Tertoolen L, Gerritsen HC (2003) High frame rate fluorescence lifetime imaging. J Phys D Appl Phys 36(14):1655–1662CrossRefGoogle Scholar
  3. Ameloot M, Boens N, Andriessen R, Van den Bergh V, De Schryver FC (1991) Non a priori analysis of fluorescence decay surfaces of excited-state processes .1. theory. J Phys Chem 95(5):2041–2047CrossRefGoogle Scholar
  4. Angelier N, Tramier M, Louvet E, Coppey-Moisan M, Savino TM, De Mey JR, Hernandez-Verdun D (2005) Tracking the interactions of rRNA processing proteins during nucleolar assembly in living cells. Mol Biol Cell 16(6):2862–2871CrossRefPubMedGoogle Scholar
  5. Barzda V (2008) Non-linear contrast mechanisms for optical microscopy. In: Amesz J, Hoff AJ (eds) Biophysical techniques in photosynthesis, vol 26 of Advances in photosynthesis and respiration, Springer, The Netherlands, pp 35–54. ISSN 0166-8595Google Scholar
  6. Barzda V, de Grauw CJ, Vroom J, Kleima FJ, van Grondelle R, van Amerongen H, Gerritsen HC (2001a) Fluorescence lifetime heterogeneity in aggregates of LHCII revealed by time-resolved microscopy. Biophys J 81(1):538–546CrossRefPubMedGoogle Scholar
  7. Barzda V, Gulbinas V, Kananavicius R, Cervinskas V, van Amerongen H, van Grondelle R, Valkunas L (2001b) Singlet–singlet annihilation kinetics in aggregates and trimers of LHCII. Biophys J 80(5):2409–2421CrossRefPubMedGoogle Scholar
  8. Becker W (2005) Advanced time-correlated single photon counting techniques. Springer Series in Chemical physics, Springer. ISBN 3540260471Google Scholar
  9. Becker W, Bergmann A, Hink MA, Konig K, Benndorf K, Biskup C (2004) Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech 63(1):58–66CrossRefPubMedGoogle Scholar
  10. Becker W, Bergmann A, Haustein E, Petrášek Z, Schwille P, Biskup C, Kelbauskas L, Benndorf K, Klocker N, Anhut T, Riemann I, König K (2006) Fluorescence lifetime images and correlation spectra obtained by multidimensional time-correlated single photon counting. Microsc Res Tech 69(3):186–195CrossRefPubMedGoogle Scholar
  11. Bergmann A, Eichler HJ, Eckert H-J, Renger G (1998) Picosecond laser-fluorometer with simultaneous time and wavelength resolution for monitoring decay spectra of photoinhibited Photosystem II particles at 277 K and 10 K. Photosynth Res 58(3):303–310CrossRefGoogle Scholar
  12. Breton J, Geacintov NE (1980) Picosecond fluorescence kinetics and fast energy-transfer processes in photosynthetic membranes. Biochim Biophys Acta 594(1):1–32PubMedGoogle Scholar
  13. Chen Y, Mills JD, Periasamy A (2003) Protein localization in living cells and tissues using FRET and FLIM. Differentiation 71(9–10):528–541CrossRefPubMedGoogle Scholar
  14. Clegg RM (2009) Photosynth Res (this issue)Google Scholar
  15. Cole MJ, Siegel J, Webb SED, Jones R, Dowling K, Dayel MJ, Parsons-Karavassilis D, French PMW, Lever MJ, Sucharov LOD, Neil MAA, Juskaitis R, Wilson T (2001) Time-domain whole-field fluorescence lifetime imaging with optical sectioning. J Microsc 203:246–257CrossRefPubMedGoogle Scholar
  16. Cox G, Matz M, Salih A (2007) Fluorescence lifetime imaging of coral fluorescent proteins. Microsc Res Tech 70(3):243–251CrossRefPubMedGoogle Scholar
  17. Czasch A, Dangendorf V, Milnes J, Schossler S, Lauck R, Spillmann U, Howorth J, Jagutzki O (2007a) Position and time sensitive photon counting detector with image charge delay-line readout. Proc Soc Photo Opt Instrum Eng 6771:67710WGoogle Scholar
  18. Czasch A, Milnes J, Hay N, Wicking W, Jagutzki O (2007b) Position- and time-sensitive single photon detector with delay-line readout. Nucl Instrum Methods Phys Res A 580(2):1066–1070CrossRefGoogle Scholar
  19. Delbarre E, Tramier M, Coppey-Moisan M, Gaillard C, Courvalin JC, Buendia B (2006) The truncated prelamin A in Hutchinson-Gilford progeria syndrome alters segregation of A-type and B-type lamin homopolymers. Hum Mol Genet 15(7):1113–1122CrossRefPubMedGoogle Scholar
  20. Desportes S, Yatabe Z, Baumlin S, Genot V, Lefevre JP, Ushiki H, Delaire JA, Pansu RB (2007) Fluorescence lifetime imaging microscopy for in situ observation of the nanocrystallization of rubrene in a microfluidic set-up. Chem Phys Lett 446(1–3):212–216CrossRefGoogle Scholar
  21. Eckert H-J, Wiese N, Bernarding J, Eichler HJ, Renger G (1988) Analysis of the electron transfer from Pheo to QA in PS-II membrane fragments from spinach by time resolved 325 nm absorption changes in the picosecond domain. FEBS Lett 240(1–2):153–158CrossRefPubMedGoogle Scholar
  22. Eckert H-J, Geiken B, Bernarding J, Napiwotzki A, Eichler HJ, Renger G (1991) Two sites of photoinhibition of the electron transfer in oxygen evolving and Tris-treated PS-II membrane fragments from spinach. Photosynth Res 27(2):97–108CrossRefGoogle Scholar
  23. Eckert H-J, Petrášek Z, Kemnitz K (2006) Application of novel low-intensity nonscanning fluorescence lifetime imaging microscopy for monitoring excited state dynamics in individual chloroplasts and living cells of photosynthetic organisms. Proc Soc Photo Opt Instrum Eng 6372:637207Google Scholar
  24. Emiliani V, Sanvitto D, Tramier M, Piolot T, Petrášek Z, Kemnitz K, Durieux C, Coppey-Moisan M (2003) Low-intensity two-dimensional imaging of fluorescence lifetimes in living cells. Appl Phys Lett 83(12):2471–2473CrossRefGoogle Scholar
  25. Esposito A, Gerritsen HC, Wouters FS (2007) Optimizing frequency-domain fluorescence lifetime sensing for high-throughput applications: photon economy and acquisition speed. J Opt Soc Am A 24(10):3261–3273CrossRefGoogle Scholar
  26. Festy F, Ameer-Beg SM, Ng T, Suhling K (2007) Imaging proteins in vivo using fluorescence lifetime microscopy. Mol Biosyst 3(6):381–391CrossRefPubMedGoogle Scholar
  27. Geacintov NE, Breton J (1982) Exciton annihilation and nonlinear high-intensity excitation effects. In: Alfano RR (ed) Biological events probed by ultrafast laser spectroscopy. Academic Press, Dublin, pp 157–191. ISBN-10: 0120499509Google Scholar
  28. Govindjee, Amesz J, Fork DC (eds) (1986) Light emission by plants and bacteria. Academic Press, Dublin. ISBN 0122943104Google Scholar
  29. Gratton E, Breusegem S, Sutin J, Ruan QQ (2003) Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods. J Biomed Opt 8(3):381–390CrossRefPubMedGoogle Scholar
  30. Holub O, Seufferheld MJ, Gohlke C, Govindjee, Clegg RM (2000) Fluorescence lifetime imaging (FLI) in real-time—a new technique in photosynthesis research. Photosynthetica 38(4):581–599CrossRefGoogle Scholar
  31. Holub O, Seufferheld MJ, Govindjee CG, Heiss GJ, Clegg RM (2007) Fluorescence lifetime imaging microscopy of Chlamydomonas reinhardtii: non-photochemical quenching mutants and the effect of photosynthetic inhibitors on the slow chlorophyll fluorescence transient. J Microsc 226(2):90–120CrossRefPubMedGoogle Scholar
  32. Holzwarth A (1996) Data analysis of time-resolved measurements. In: Amesz J, Hoff AJ (eds) Biophysical techniques in photosynthesis, vol 3 of Advances in photosynthesis and respiration. Kluwer Academic Publishers, Dordrecht, pp 75–92. ISBN 978-0-7923-3642-6Google Scholar
  33. Hu Q, Marquardt J, Iwasaki I, Miyashita H, Kurano N, Morschel E, Miyachi S (1999) Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic prokaryote Acaryochloris marina. Biochim Biophys Acta Bioenerg 1412(3):250–261CrossRefGoogle Scholar
  34. Jose M, Nair DK, Reissner C, Hartig R, Zuschratter W (2007) Photophysics of clomeleon by FLIM: discriminating excited state reactions along neuronal development. Biophys J 92(6):2237–2254CrossRefPubMedGoogle Scholar
  35. Jose M, Nair DK, Altrock WD, Dresbach T, Gundelfinger ED, Zuschratter W (2008) Investigating interactions mediated by the presynaptic protein Bassoon in living cells by Foerster’s resonance energy transfer and fluorescence lifetime imaging microscopy. Biophys J 94(4):1483–1496CrossRefPubMedGoogle Scholar
  36. Kemnitz K, Pfeifer L, Paul R, Coppey-Moisan M (1997) Novel detector for fluorescence lifetime imaging on the picosecond time scale. J Fluoresc 7(1):93–98CrossRefGoogle Scholar
  37. Kinoshita K, Goryo K, Takada M, Tomokuni Y, Aso T, Okuda H, Shuin T, Fukumura H, Sogawa K (2007) Ternary complex formation of pVHL, elongin B and elongin C visualized in living cells by a fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy technique. FEBS J 274(21):5567–5575CrossRefPubMedGoogle Scholar
  38. Knutson JR, Beechem JM, Brand L (1983) Simultaneous analysis of multiple fluorescence decay curves—a global approach. Chem Phys Lett 102(6):501–507CrossRefGoogle Scholar
  39. Köllner M, Wolfrum J (1992) How many photons are necessary for fluorescence-lifetime measurements? Chem Phys Lett 200(1, 2):199–204CrossRefGoogle Scholar
  40. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Berlin. ISBN-10: 0387312781Google Scholar
  41. Lampton M, Malina RF (1976) Quadrant anode image sensor. Rev Sci Instrum 47(11):1360–1362CrossRefGoogle Scholar
  42. Larkum AWD, Kuhl M (2005) Chlorophyl d: the puzzle resolved. Trends Plant Sci 10(8):355–357CrossRefPubMedGoogle Scholar
  43. Lukins PB, Rehman S, Stevens GB, George D (2005) Time-resolved spectroscopic fluorescence imaging, transient absorption and vibrational spectroscopy of intact and photo-inhibited photosynthetic tissue. Luminescence 20(3):143–151CrossRefPubMedGoogle Scholar
  44. Marquardt J, Senger H, Miyashita H, Miyachi S, Morschel E (1997) Isolation and characterization of biliprotein aggregates from Acaryochloris marina, a Prochloron-like prokaryote containing mainly chlorophyll d. FEBS Lett 410(2-3):428–432CrossRefPubMedGoogle Scholar
  45. Michalet X, Siegmund OHW, Vallerga JV, Jelinsky P, Millaud JE, Weiss S (2006) Photon-counting H33D detector for biological fluorescence imaging. Nucl Instrum Methods Phys Res A 567(1):133–136CrossRefGoogle Scholar
  46. Michalet X, Siegmund OHW, Vallerga JV, Jelinsky P, Millaud JE, Weiss S (2007) Detectors for single-molecule fluorescence imaging and spectroscopy. J Mod Opt 54(2–3):239–281CrossRefGoogle Scholar
  47. Millington M, Grindlay GJ, Altenbach K, Neely RK, Kolch W, Bencina M, Read ND, Jones AC, Dryden DTF, Magennis SW (2007) High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein. Biophys Chem 127(3):155–164CrossRefPubMedGoogle Scholar
  48. Mimuro M, Akimoto S, Yamazaki I, Miyashita H, Miyachi S (1999) Fluorescence properties of chlorophyll d-dominating prokaryotic alga, Acaryochloris marina: studies using time-resolved fluorescence spectroscopy on intact cells. Biochim Biophys Acta Bioenerg 1412(1):37–46CrossRefGoogle Scholar
  49. Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383(6599):402–402CrossRefGoogle Scholar
  50. Nair DK, Jose M, Kuner T, Zuschratter W, Hartig R (2006) FRET-FLIM at nanometer spectral resolution from living cells. Opt Express 14(25):12217–12229CrossRefPubMedGoogle Scholar
  51. Napiwotzki A (1997) Zeitaufgelöste Fluoreszenz- und Absorptionsspektroskopie zur Untersuchung des Anregungsenergietransfers und der Photoinhibition im Photosystem II, PhD thesis, Technische Universität Berlin. ISBN 3-89574-274-0Google Scholar
  52. Napiwotzki A, Bergmann A, Decker K, Legall H, Eckert H-J, Eichler HJ, Renger G (1997) Acceptor side photoinhibition in PS II: On the possible effects of the functional integrity of the PS II donor side on photoinhibition of stable charge separation. Photosynth Res 52(3):199–213CrossRefGoogle Scholar
  53. Niclass C, Favi C, Kluter T, Gersbach M, Charbon E (2008) A 128 × 128 single-photon image sensor with column-level 10-bit time-to-digital converter array. IEEE J Sol State Circuits 43(12):2977–2989CrossRefGoogle Scholar
  54. O’Connor DV, Phillips D (1984) Time-correlated single photon counting. Academic Press, Dublin. ISBN 0125241402Google Scholar
  55. Pelet S, Previte MJR, Laiho LH, So PTC (2004) A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation. Biophys J 87(4):2807–2817CrossRefPubMedGoogle Scholar
  56. Petrášek Z, Schmitt FJ, Theiss C, Huyer J, Chen M, Larkum A, Eichler HJ, Kemnitz K, Eckert H-J (2005) Excitation energy transfer from phycobiliprotein to chlorophyll d in intact cells of Acaryochloris marina studied by time- and wavelength-resolved fluorescence spectroscopy. Photochem Photobiol Sci 4(12):1016–1022CrossRefPubMedGoogle Scholar
  57. Purschke M, Nuxoll W, Gaul G, Santo R (1987) An improved quadrant anode image sensor with microchannel plates. Nucl Instrum Methods Phys Res A 261(3):537–539CrossRefGoogle Scholar
  58. Ramadass R, Bereiter-Hahn J (2008) How DASPMI reveals mitochondrial membrane potential: fluorescence decay kinetics and steady-state anisotropy in living cells. Biophys J 95(8):4068–4076CrossRefPubMedGoogle Scholar
  59. Ramadass R, Becker D, Jendrach M, Bereiter-Hahn J (2007) Spectrally and spatially resolved fluorescence lifetime imaging in living cells: TRPV4–microfilament interactions. Arch Biochem Biophys 463(1):27–36CrossRefPubMedGoogle Scholar
  60. Renger G, Eckert H-J, Bergmann A, Bernarding J, Liu B, Napiwotzki A, Reifarth F, Eichler HJ (1995) Fluorescence and spectroscopic studies of exciton trapping and electron transfer in photosystem II of higher plants. Aust J Plant Physiol 22(2):167–181CrossRefGoogle Scholar
  61. Roelofs TA, Lee CH, Holzwarth AR (1992) Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts. A new approach to the characterization of the primary processes in photosystem-II α- and β-units. Biophys J 61(5):1147–1163CrossRefPubMedGoogle Scholar
  62. Sauer K, Debreczeny M (1996) Fluorescence. In: Amesz J, Hoff AJ (eds) Biophysical techniques in photosynthesis, vol 3 of Advances in photosynthesis and respiration. Kluwer Academic Publishers, Dordrecht, pp 41–61. ISBN 978-0-7923-3642-6Google Scholar
  63. Schatz GH, Brock H, Holzwarth AR (1988) Kinetic and energetic model for the primary processes in photosystem-II. Biophys J 54(3):397–405CrossRefPubMedGoogle Scholar
  64. Schmitt FJ, Theiss C, Wache K, Fuesers J, Andree S, Handojo A, Karradt A, Kiekebusch D, Eichler HJ, Eckert H-J (2006) Investigation of the excited states dynamics in the Chl d-containing cyanobacterium Acaryochloris marina by time- and wavelength correlated single-photon counting. Proc Soc Photo Opt Instrum Eng 6386:638607Google Scholar
  65. Spitz JA, Yasukuni R, Sandeau N, Takano M, Vachon JJ, Meallet-Renault R, Pansu RB (2008) Scanning-less wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy. J Microsc 229(1):104–114CrossRefPubMedGoogle Scholar
  66. Suhling K (2006) Fluorescence lifetime imaging. In: Stephens D (ed) Cell imaging, 1st edn. Scion Publishing, Bloxham, pp 219–245Google Scholar
  67. Suhling K, French PMW, Phillips D (2005) Time-resolved fluorescence microscopy. Photochem Photobiol Sci 4(1):13–22CrossRefPubMedGoogle Scholar
  68. Tramier M, Gautier I, Piolot T, Ravalet S, Kemnitz K, Coppey J, Durieux C, Mignotte V, Coppey-Moisan M (2002) Picosecond-hetero-FRET microscopy to probe protein-protein interactions in live cells. Biophys J 83(6):3570–3577CrossRefPubMedGoogle Scholar
  69. van Amerongen H, Dekker J (2003) Light-harvesting in photosystem II. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis, vol 13 of Advances in photosynthesis and respiration. Kluwer Academic Publishers, Dordrecht, pp 219–251. ISBN 0-7923-6335-3Google Scholar
  70. van Grondelle R, Amesz J (1986) Excitation energy transfer in photosynthetic systems. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Dublin, pp 191–223. ISBN-10:0122943104Google Scholar
  71. van Grondelle R, Dekker JP, Gillbro T, Sundstrom V (1994) Energy-transfer and trapping in photosynthesis. Biochim Biophys Acta Bioenerg 1187(1):1–65CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Zdeněk Petrášek
    • 1
  • Hann-Jörg Eckert
    • 2
  • Klaus Kemnitz
    • 3
  1. 1.Biophysics group, Biotechnologisches ZentrumTechnische Universität DresdenDresdenGermany
  2. 2.Max-Volmer-Laboratory for Biophysical ChemistryTechnische Universität BerlinBerlinGermany
  3. 3.Europhoton GmbH, BerlinBerlinGermany

Personalised recommendations