Photosynthesis Research

, Volume 100, Issue 1, pp 29–43 | Cite as

Photosynthetic electron transport and proton flux under moderate heat stress

  • Ru Zhang
  • Thomas D. SharkeyEmail author
Regular Paper


Moderate heat stress has been reported to increase PSI cyclic electron flow (CEF). We subjected leaves of Arabidopsis (Arabidopsis thaliana) mutants disrupted in the regulation of one or the other pathway of CEF flow—crr2 (chlororespiratory reduction, deficient in regulation of chloroplast NAD(P)H dehydrogenase-dependent CEF) and pgr5 (proton gradient regulation, proposed to have reduced efficiency of antimycin-A-sensitive-CEF regulation) to moderate heat stress. Light-adapted leaves were switched from 23 to 40°C in 2 min. Gas exchange, chlorophyll fluorescence, the electrochromic shift (ECS), and P700 were measured. Photosynthesis of crr2 and pgr5 was more sensitive to heat and had less ability to recover than the genetic background gl. The proton conductance in light was increased by heat and it was twice as much in pgr5, which had much smaller light-induced proton motive force. We confirmed that P700 becomes more reduced at high temperature and show that, in contrast, the proportion of PSII open centers (with Q A oxidized) increases. The two mutants had much slower P700+ reduction rate during and after heat than gl. The proportion of light absorbed by PSI versus PSII was increased in gl and crr2 during and after heat treatment, but not in pgr5. We propose that heat alters the redox balance away from PSII and toward PSI and that the regulation of CEF helps photosynthesis tolerate heat stress.


Chlorophyll fluorescence Cyclic electron transport around PSI Electrochromic shift Gas exchange Moderate heat stress P700 measurement 







PSII quantum efficiency


Non-photochemical quenching


Electrochromic shift


Cyclic electron flow around PSI


Chloroplast NAD(P)H dehydrogenase


Transthylakoid pH gradient


Transthylakoid electrical potential


Transthylakoid proton motive force


Primary electron acceptor of PSII


A parameter estimating the fraction of PSII centers in the open state (with Q A oxidized)


Photochemical quenching coefficient, non-linearly related to the proportion of PSII centers in the open state



We thank Dr. Toshiharu Shikanai and Dr. Archie Portis for mutant seeds. Dr. Stephen Schrader and Dr. Dafu Wang are thanked for the help on gas exchange machine build-up and the suggestions on planting mutants, respectively. We are grateful to Dr. David Kramer for excellent advice on our ECS measurements. We also appreciate the chlorophyll fluorescence equipment loaned by Dr. Robert Wise and the information from Dr. Cécile Ané about statistical analysis. The project was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number 2004-35100-14860.


  1. Armond PA, Björkman O, Staehelin HA (1980) Dissociation of supramolecular complexes in chloroplast membranes. A manifestation of heat damage to the photosynthetic apparatus. Biochim Biophys Acta 601:433–442. doi: 10.1016/0005-2736(80)90547-7 PubMedCrossRefGoogle Scholar
  2. Avenson TJ, Cruz JA, Kramer DM (2004) Modulation of energy dependent quenching of excitons (qE) in antenna of higher plants. Proc Natl Acad Sci USA 101:5530–5535. doi: 10.1073/pnas.0401269101 PubMedCrossRefGoogle Scholar
  3. Avenson TJ, Cruz JA, Kanazawa A, Kramer DM (2005a) Regulating the proton budget of higher plant photosynthesis. Proc Natl Acad Sci USA 102:9709–9713. doi: 10.1073/pnas.0503952102 PubMedCrossRefGoogle Scholar
  4. Avenson TJ, Kanazawa A, Cruz JA, Takizawa K, Ettinger WE, Kramer DM (2005b) Integrating the proton circuit into photosynthesis: progress and challenges. Plant Cell Environ 28:97–109. doi: 10.1111/j.1365-3040.2005.01294.x CrossRefGoogle Scholar
  5. Baker NR, Oxborough K (2004) In chlorophyll a fluorescence: a signature of photosynthesis. Chlorophyll fluorescence as a probe of photosynthetic productivity. Springer, Dordrecht, pp 65–82Google Scholar
  6. Baker NR, Harbinson J, Kramer DM (2007) Determining the limitations and regulations of photosynthetic energy transduction in leaves. Plant Cell Environ 30:107–125. doi: 10.1111/j.1365-3040.2007.01680.x CrossRefGoogle Scholar
  7. Berry JA, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543. doi: 10.1146/annurev.pp.31.060180.002423 CrossRefGoogle Scholar
  8. Bukhov NG, Wiese C, Neimanis S, Heber U (1999) Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynth Res 59:81–93. doi: 10.1023/A:1006149317411 CrossRefGoogle Scholar
  9. Bukhov NG, Samson G, Carpentier R (2000) Nonphotosynthetic reduction of the intersystem electron transport chain of chloroplasts following heat stress. Steady-state rate. Photochem Photobiol 72:351–357. doi: 10.1562/0031-8655(2000)072<0351:NROTIE>2.0.CO;2 PubMedCrossRefGoogle Scholar
  10. Cen YP, Sage RF (2005) The regulation of rubisco activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiol 139:979–990. doi: 10.1104/pp.105.066233 PubMedCrossRefGoogle Scholar
  11. Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci USA 97:13430–13435. doi: 10.1073/pnas.230451497 PubMedCrossRefGoogle Scholar
  12. Cruz JA, Sacksteder CA, Kanazawa A, Kramer DM (2001) Contribution of electric field ΔΨ to steady-state transthylakoid proton motive force in vitro and in vivo. Control of pmf parsing into ΔΨ and ΔpH by counterion fluxes. Biochemistry 40:1226–1237. doi: 10.1021/bi0018741 PubMedCrossRefGoogle Scholar
  13. DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schünemann D, Finazzi G, Joliot P, Barbato R, Leister D (2008) A complex containing PGRL1 and PGR5 Is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–285. doi: 10.1016/j.cell.2007.12.028 PubMedCrossRefGoogle Scholar
  14. Egorova EA, Bukhov NG, Heber U, Samson G, Carpentier R (2003) Effect of the pool size of stromal reductants on the alternative pathway of electron transfer to photosystem I in chloroplasts of intact leaves. Russ J Plant Physiol 50:431–440. doi: 10.1023/A:1024700202498 CrossRefGoogle Scholar
  15. Endo T, Shikanai T, Takabayashi A, Asada K, Sato F (1999) The role of chloroplastic NAD(P)H dehydrogenase in photoprotection. FEBS Lett 457:5–8. doi: 10.1016/S0014-5793(99)00989-8 PubMedCrossRefGoogle Scholar
  16. Farquhar GD, Von Caemmerer S (1982) Modelling of photosynthetic response to environmental conditions. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology I. Encyclopedia of plant physiology new series. Springer-Verlag, Berlin, pp 549–589Google Scholar
  17. Feller U, Crafts-Brandner SJ, Salvucci ME (1998) Moderately high temperatures inhibit ribulose-1, 5-bisphosphate carboxylase/oxygenase (rubisco) activase-mediated activation of rubisco. Plant Physiol 116:539–546. doi: 10.1104/pp.116.2.539 PubMedCrossRefGoogle Scholar
  18. Gounaris K, Brain APR, Quinn PJ, Williams WP (1984) Structural reorganization of chloroplast thylakoid membranes in response to heat stress. Biochim Biophys Acta 766:198–208. doi: 10.1016/0005-2728(84)90232-9 CrossRefGoogle Scholar
  19. Haldimann P, Gallé A, Feller U (2008) Impact of an exceptionally hot dry summer on photosynthetic traits in oak (Quercus pubescens) leaves. Tree Physiol 28:785–795PubMedGoogle Scholar
  20. Hashimoto M, Endo T, Peltier G, Tasaka M, Shikanai T (2003) A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. Plant J 36:541–549. doi: 10.1046/j.1365-313X.2003.01900.x PubMedCrossRefGoogle Scholar
  21. Havaux M (1996) Short-term responses of photosystem I to heat stress—induction of a PS II-independent electron transport through PS I fed by stromal components. Photosynth Res 47:85–97. doi: 10.1007/BF00017756 CrossRefGoogle Scholar
  22. Havaux M, Greppin H, Strasser RJ (1991) Functioning of photosystems I and II in pea leaves exposed to heat stress in the presence or absence of light. Planta 186:88–98. doi: 10.1007/BF00201502 CrossRefGoogle Scholar
  23. Havaux M, Tardy F, Ravenel J, Chanu D, Parot P (1996) Thylakoid membrane stability to heat stress studied by flash spectroscopic measurements of the electrochromic shift in intact potato leaves: influence of the xanthophyll content. Plant Cell Environ 19:1359–1368. doi: 10.1111/j.1365-3040.1996.tb00014.x CrossRefGoogle Scholar
  24. Horváth EM, Peter SO, Joét T, Rumeau D, Cournac L, Horváth GV, Kavanagh TA, Schäfer C, Peltier G, Medgyesy P (2000) Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol 123:1337–1349. doi: 10.1104/pp.123.4.1337 PubMedCrossRefGoogle Scholar
  25. Joliot P, Joliot A (2005) Quantification of cyclic and linear flows in plants. Proc Natl Acad Sci USA 102:4913–4918. doi: 10.1073/pnas.0501268102 PubMedCrossRefGoogle Scholar
  26. Klughammer C, Schreiber U (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192:261–268. doi: 10.1007/BF01089043 CrossRefGoogle Scholar
  27. Kobza J, Edwards GE (1987) Influences of leaf temperature on photosynthetic carbon metabolism in wheat. Plant Physiol 83:69–74. doi: 10.1104/pp.83.1.69 PubMedCrossRefGoogle Scholar
  28. Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218. doi: 10.1023/B:PRES.0000015391.99477.0d PubMedCrossRefGoogle Scholar
  29. Laisk A, Oja V, Rasulov B, Rämma H, Eichelmann H, Kasparova I, Pettai H, Padu E, Vapaavuori E (2002) A computer-operated routine of gas exchange and optical measurements to diagnose photosynthetic apparatus in leaves. Plant Cell Environ 25:923–943. doi: 10.1046/j.1365-3040.2002.00873.x CrossRefGoogle Scholar
  30. Lichtenthaler HK (1987) Chlorophylls and carotenoids:pigments of photosynthetic biomembranes. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic Press, San Diego, pp 350–382Google Scholar
  31. Long TA, Okegawa Y, Shikanai T, Schmidt GW, Covert SF (2008) Conserved role of PROTON GRADIENT REGULATION 5 in the regulation of PSI cyclic electron transport. Planta 228:907–918. doi: 10.1007/s00425-008-0789-y PubMedCrossRefGoogle Scholar
  32. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. doi: 10.1093/jexbot/51.345.659 PubMedCrossRefGoogle Scholar
  33. Mohanty P, Vani B, Prakash JS (2002) Elevated temperature treatment induced alteration in thylakoid membrane organization and energy distribution between the two photosystems in Pisum sativum. Z Naturforsch 57c:836–842Google Scholar
  34. Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic eletron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371. doi: 10.1016/S0092-8674(02)00867-X PubMedCrossRefGoogle Scholar
  35. Munekage Y, Hashimoto M, Miyaka C, Tomizawa KI, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582. doi: 10.1038/nature02598 PubMedCrossRefGoogle Scholar
  36. Munné-Bosch S, Shikanai T, Asada K (2005) Enhanced ferredoxin-dependent cyclic electron flow around photosystem I and a-tocopherol quinone accumulation in water-stressed ndhB-inactived tobacco mutants. Planta 222:502–511. doi: 10.1007/s00425-005-1548-y PubMedCrossRefGoogle Scholar
  37. Nandha B, Finazzi G, Joliot P, Hald S, Johnson GN (2007) The role of PGR5 in the redox poising of photosynthetic electron transport. Biochim Biophys Acta 1767:1252–1259. doi: 10.1016/j.bbabio.2007.07.007 PubMedCrossRefGoogle Scholar
  38. Okegawa Y, Long TA, Iwano M, Takayama S, Kobayashi Y, Covert SF, Shikanai T (2007) A balanced PGR5 level is required for chloroplast development and optimum operation of cyclic electron transport around photosystem I. Plant Cell Physiol 48:1462–1471. doi: 10.1093/pcp/pcm116 PubMedCrossRefGoogle Scholar
  39. Ovaska J, Mäenpää P, Nurmi A, Aro E (1990) Distribution of chlorophyll–protein complexes during chilling in the light compared with heat-induced modifications. Plant Physiol 93:48–54. doi: 10.1104/pp.93.1.48 PubMedCrossRefGoogle Scholar
  40. Partenskii MB, Dorman VL, Jordan PC (1998) Membrane stability under electrical stress: a nonlocal electrostatic treatment. J Chem Phys 109:10361–10371. doi: 10.1063/1.477691 CrossRefGoogle Scholar
  41. Pastenes C, Horton P (1996) Effect of high temperature on photosynthesis in beans. 1. Oxygen evolution and chlorophyll fluorescence. Plant Physiol 112:1245–1251PubMedGoogle Scholar
  42. Pastenes C, Horton P (1999) Resistance of photosynthesis to high temperature in two bean varieties (Phaseolus vulgaris L.). Photosynth Res 62:197–203CrossRefGoogle Scholar
  43. Raffy S, Teissié J (1999) Control of lipid membrane stability by cholesterol content. Biophys J 76:2072–2080. doi: 10.1016/S0006-3495(99)77363-7 PubMedCrossRefGoogle Scholar
  44. Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051. doi: 10.1111/j.1365-3040.2007.01675.x PubMedCrossRefGoogle Scholar
  45. Sacksteder CA, Kanazawa A, Jacoby ME, Kramer DM (2000) The proton to electron stoichiometry of steady-state photosynthesis in living plants: a proton-pumping Q cycle is continuously engaged. Proc Natl Acad Sci USA 97:14283–14288. doi: 10.1073/pnas.97.26.14283 PubMedCrossRefGoogle Scholar
  46. Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106. doi: 10.1111/j.1365-3040.2007.01682.x PubMedCrossRefGoogle Scholar
  47. Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of rubisco as a limiting factor in photosynthesis. Physiol Plant 120:179–186. doi: 10.1111/j.0031-9317.2004.0173.x PubMedCrossRefGoogle Scholar
  48. Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, Vierling E (2001) Exceptional sensitivity of rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol 127:1053–1064. doi: 10.1104/pp.010357 PubMedCrossRefGoogle Scholar
  49. Sazanov LA, Burrow PA, Nixon PJ (1998) The chloroplast Ndh complex mediates the dark reduction of the plastoquinone pool in response to heat stress in tobacco leaves. FEBS Lett 429:115–118. doi: 10.1016/S0014-5793(98)00573-0 PubMedCrossRefGoogle Scholar
  50. Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD (2004) Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant Cell Environ 27:725–735. doi: 10.1111/j.1365-3040.2004.01172.x CrossRefGoogle Scholar
  51. Sharkey TD, Schrader SM (2008) High temperature stress. In: Rao KVM, Raghavendra AS, Reddy KJ (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 101–130Google Scholar
  52. Sharkey TD, Badger MR, Von Caemmerer S, Andrews TJ (2001) Increased heat sensitivity of photosynthesis in tobacco plants with reduced rubisco activase. Photosynth Res 67:147–156. doi: 10.1023/A:1010633823747 PubMedCrossRefGoogle Scholar
  53. Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040. doi: 10.1111/j.1365-3040.2007.01710.x PubMedCrossRefGoogle Scholar
  54. Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217. doi: 10.1146/annurev.arplant.58.091406.110525 PubMedCrossRefGoogle Scholar
  55. Siebke K, Von Caemmerer S, Badger M, Furbank RT (1997) Expressing an RbcS antisense gene in transgenic Flaveria bidentis leads to an increased quantum requirement for CO2 fixed in photosystems I and II. Plant Physiol 115:1163–1174PubMedGoogle Scholar
  56. Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye J, Mi H (2006) Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 141:465–474PubMedCrossRefGoogle Scholar
  57. Weis E (1980) Reversible heat-inactivation of the Calvin cycle: a possible mechanism of the temperature regulation of photosynthesis. Planta 151:33–39. doi: 10.1007/BF00384234 CrossRefGoogle Scholar
  58. Weis E (1981) Reversible effects of high, sublethal temperatures on light-induced light scattering changes and electrochromic pigment absorption shift in spinach leaves. Z Pflanzenphysiol 101:169–178Google Scholar
  59. Weis E (1982) Influence of light on the heat sensitivity of the photosynthetic apparatus in isolated spinach chloroplasts. Plant Physiol 70:1530–1534. doi: 10.1104/pp.70.5.1530 PubMedCrossRefGoogle Scholar
  60. Wellburn AR, Lichtenthaler H (1984) Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents. In: Sybesma C (ed) Advances in photosynthesis research, vol 2. Martinus Mijhoff, The Hague, pp 9–12Google Scholar
  61. Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ 27:717–724. doi: 10.1111/j.1365-3040.2004.01171.x CrossRefGoogle Scholar
  62. Witt HT (1979) Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. The central role of the electric field. Biochim Biophys Acta 505:355–427PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of BotanyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUSA

Personalised recommendations