Photosynthesis Research

, Volume 102, Issue 2–3, pp 197–211 | Cite as

Atomic force microscopy of the bacterial photosynthetic apparatus: plain pictures of an elaborate machinery



Photosynthesis both in the past and present provides the vast majority of the energy used on the planet. The purple photosynthetic bacteria are a group of organisms that are able to perform photosynthesis using a particularly simple system that has been much studied. The main molecular constituents required for photosynthesis in these organisms are a small number of transmembrane pigment–protein complexes. These are able to function together with a high quantum efficiency (about 95%) to convert light energy into chemical potential energy. While the structure of the various proteins have been solved for several years, direct studies of the supramolecular assembly of these complexes in native membranes needed maturity of the atomic force microscope (AFM). Here, we review the novel findings and the direct conclusions that could be drawn from high-resolution AFM analysis of photosynthetic membranes. These conclusions rely on the possibility that the AFM brings of obtaining molecular resolution images of large membrane areas and thereby bridging the resolution gap between atomic structures and cellular ultrastructure.


AFM Photosynthetic apparatus PSU ICM LH2 LH1 RC Supramolecular assembly Membrane structure 


  1. Allen JP, Feher G, Yeates TO, Komiya H et al (1987a) Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc Natl Acad Sci USA 84(16):5730–5734CrossRefPubMedGoogle Scholar
  2. Allen JP, Feher G, Yeates TO, Komiya H et al (1987b) Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. Proc Natl Acad Sci USA 84(17):6162–6166CrossRefPubMedGoogle Scholar
  3. Ando T, Kodera N, Takai E, Maruyama D et al (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci USA 98:12468–12472CrossRefPubMedGoogle Scholar
  4. Bahatyrova S, Frese RN, Siebert CA, Olsen JD et al (2004a) The native architecture of a photosynthetic membrane. Nature 430(7003):1058–1062CrossRefPubMedGoogle Scholar
  5. Bahatyrova S, Frese RN, van der Werf KO, Otto C et al (2004b) Flexibility and size heterogeneity of the lh1 light harvesting complex revealed by atomic force microscopy: functional significance for bacterial photosynthesis. J Biol Chem 279(20):21327–21333CrossRefPubMedGoogle Scholar
  6. Baksh MM, Jaros M, Groves JT (2004) Detection of molecular interactions at membrane surfaces through colloid phase transitions. Nature 427(6970):139–141CrossRefPubMedGoogle Scholar
  7. Berry EA, Huang LS, Saechao LK, Pon NG et al (2004) X-ray structure of Rhodobacter capsulatus cytochrome bc (1): comparison with its mitochondrial and chloroplast counterparts. Photosynth Res 81(3):251–275CrossRefPubMedGoogle Scholar
  8. Binning G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933CrossRefGoogle Scholar
  9. Binning G, Gerber C, Stoll E, Albrecht TR et al (1987) Atomic resolution with atomic force microscopy. Europhys Lett 3:1281–1286CrossRefGoogle Scholar
  10. Bowyer JR, Hunter CN, Ohnishi T, Niederman RA (1985) Photosynthetic membrane development in Rhodopseudomonas sphaeroides. Spectral and kinetic characterization of redox components of light-driven electron flow in apparent photosynthetic membrane growth initiation sites. J Biol Chem 260(6):3295–3304PubMedGoogle Scholar
  11. Broglie RM, Hunter CN, Delepelaire P, Niederman RA et al (1980) Isolation and characterization of the pigment-protein complexes of Rhodopseudomonas sphaeroides by lithium dodecyl sulfate/polyacrylamide gel electrophoresis. Proc Natl Acad Sci USA 77(1):87–91CrossRefPubMedGoogle Scholar
  12. Butt HJ (1992) Measuring local surface charge densities in electrolyte solutions with a scanning force microscope. Biophys J 63:578–582CrossRefPubMedGoogle Scholar
  13. Buzhynskyy N, Girmens JF, Faigle W, Scheuring S (2007a) Human cataract lens membrane at subnanometer resolution. J Mol Biol 374(1):162–169CrossRefPubMedGoogle Scholar
  14. Buzhynskyy N, Hite RK, Walz T, Scheuring S (2007b) The supramolecular architecture of junctional microdomains in native lens membranes. EMBO Rep 8(1):51–5CrossRefPubMedGoogle Scholar
  15. Cheung CL, Hafner JH, Lieber CM (2000) Carbon nanotube atomic force microscopy tips: direct growth by chemical vapor deposition and application to high-resolution imaging. Proc Natl Acad Sci USA 97:3809–3813CrossRefPubMedGoogle Scholar
  16. Cohen-Bazire G, Kunisawa R (1963) The fine structure of Rhodospirillum rubrum. J Cell Biol 16:401–419Google Scholar
  17. Comayras F, Jungas C, Lavergne J (2005) Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides. I. Quinone domains and excitation transfer in chromatophores and reaction center.antenna complexes. J Biol Chem 280(12):11203–11213CrossRefPubMedGoogle Scholar
  18. Deisenhofer J, Michel H (1989) The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. Biosci Rep 9(4):383–419CrossRefPubMedGoogle Scholar
  19. Deisenhofer J, Epp O, Miki K, Huber R et al (1984) X-ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180(2):385–398CrossRefPubMedGoogle Scholar
  20. Deisenhofer J, Epp O, Sinning I, Michel H (1995) Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol 246(3):429–457CrossRefPubMedGoogle Scholar
  21. Destainville N (2008) Cluster phases of membrane proteins. Phys Rev E Stat Nonlin Soft Matter Phys 77(1 Pt 1):011905PubMedGoogle Scholar
  22. Drews G (1960) Studies on the substructure of “chromatophores” of Rhodospirillum rubrum and Rhodospirillum molischianum. Arch Mikrobiol 36:99–108CrossRefPubMedGoogle Scholar
  23. Drews G, Giesbreacht P (1963) On the morphogenesis of bacterial “chromatophores” (thylakoids) and on the synthesis of bacteriochlorophyll in Rhodopseudomonas spheroides and Rhodospirillum rubrum. Zentralbl Bakteriol 190:508–535Google Scholar
  24. Engel A (2003) Robert feulgen lecture. microscopic assessment of membrane protein structure and function. Histochem Cell Biol 120:93–102CrossRefPubMedGoogle Scholar
  25. Esser L, Gong X, Yang S, Yu L et al (2006) Surface-modulated motion switch: capture and release of iron-sulfur protein in the cytochrome bc1 complex. Proc Natl Acad Sci USA 103(35):13045–13050CrossRefPubMedGoogle Scholar
  26. Esser L, Elberry M, Zhou F, Yu CA et al (2008) Inhibitor-complexed structures of the cytochrome bc1 from the photosynthetic bacterium Rhodobacter sphaeroides. J Biol Chem 283(5):2846–2857CrossRefPubMedGoogle Scholar
  27. Evans M, Hawthornthwaite AM, Cogdell RJ (1990) Isolation and characterisation of the different b800–850 light-harvesting complexes from low- and high-light grown cells of Rhodopseudomonas palustris, strain. Biochim Biophys Acta 1016:71–76CrossRefGoogle Scholar
  28. Fassioli F, Olaya-Castro A, Scheuring S, Sturgis JN et al (2009) Energy transfer in light-adapted photosynthetic membranes: from active to saturated photosynthesis. Proc Natl Acad Sci USA. submittedGoogle Scholar
  29. Fechner P, Boudier T, Mangenot S, Jaroslawski S et al (2009) Structural information, resolution and noise in high-resolution atomic force microscopy topographs. Biophys JGoogle Scholar
  30. Fotiadis D, Qian P, Philippsen A, Bullough PA et al (2004) Structural analysis of the reaction center light-harvesting complex I photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopy. J Biol Chem 279:2063–2068CrossRefPubMedGoogle Scholar
  31. Freer A, Prince S, Sauer K, Papiz M et al (1996) Pigment-pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. Structure 4(4):449–462CrossRefPubMedGoogle Scholar
  32. Frese RN, Pàmies JC, Olsen JD, Bahatyrova S et al (2008) Protein shape and crowding drive domain formation and curvature in biological membranes. Biophys J 94(2):640–647CrossRefPubMedGoogle Scholar
  33. Geyer T, Helms V (2006) A spatial model of the chromatophore vesicles of Rhodobacter sphaeroides and the position of the cytochrome bc1 complex. Biophys J 91(3):921–926CrossRefPubMedGoogle Scholar
  34. Glaser EG, Meinhardt SW, Crofts AR (1984) Reduction of cytochrome b-561 through the antimycin-sensitive site of the ubiquinol-cytochrome c2 oxidoreductase complex of Rhodopseudomonas sphaeroides. FEBS Lett 178(2):336–342CrossRefPubMedGoogle Scholar
  35. Goldsbury C, Scheuring S (2002) Introduction to atomic force microscopy (afm) in biology. Curr Protoc Protein Sci Chapter 17:Unit 17.7Google Scholar
  36. Goldsbury C, Kistler J, Aebi U, Arvinte T et al (1999) Watching amyloid fibrils grow by time-lapse atomic force microscopy. J Mol Biol 285(1):33–39CrossRefPubMedGoogle Scholar
  37. Gonçalves RP, Bernadac A, Sturgis JN, Scheuring S (2005) Architecture of the native photosynthetic apparatus of Phaeospirillum molischianum. J Struct Biol 152(3):221–228CrossRefPubMedGoogle Scholar
  38. Hansma HG, Hoh JH (1994) Biomolecular imaging with the atomic force microscope. Annu Rev Biophys Biomol Struct 23:115–139CrossRefPubMedGoogle Scholar
  39. Heberle J, Riesle J, Thiedemann G, Oesterhelt D et al (1994) Proton migration along the membrane surface and retarded surface to bulk transfer. Nature 370(6488):379–382CrossRefPubMedGoogle Scholar
  40. Hess S, Akesson E, Cogdell RJ, Pullerits T et al (1995) Energy transfer in spectrally inhomogeneous light-harvesting pigment-protein complexes of purple bacteria. Biophys J 69(6):2211–2225CrossRefPubMedGoogle Scholar
  41. Hu X, Schulten K (1998) Model for the light-harvesting complex I (B875) of Rhodobacter sphaeroides. Biophys J 75(2):683–694CrossRefPubMedGoogle Scholar
  42. Hu X, Ritz T, Damjanović A, Autenrieth F et al (2002) Photosynthetic apparatus of purple bacteria. Q Rev Biophys 35(1):1–62PubMedGoogle Scholar
  43. Hunter CN, Pennoyer JD, Sturgis JN, Farrelly D et al (1988) Oligomerization states and associations of light-harvesting pigment-protein complexes of Rhodobacter sphaeroides as analyzed by lithium dodecyl sulfate polyacrylamide gel electrophoresis. Biochemistry 27:3459–3467CrossRefGoogle Scholar
  44. Israelachvili J (1991) Intermolecular & surface forces. Academic Press, LondonGoogle Scholar
  45. Israelachvili J, Wennerstom H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379:219–225CrossRefPubMedGoogle Scholar
  46. Jaschke PR, Leblanc HN, Lang AS, Beatty JT (2008) The pucc protein of rhodobacter capsulatus mitigates an inhibitory effect of light-harvesting 2 alpha and beta proteins on light-harvesting complex 1. Photosynth Res 95(2-3):279–284CrossRefPubMedGoogle Scholar
  47. Karrasch S, Bullough PA, Ghosh R (1995) The 8.5 a projection map of the light-harvesting complex i from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J 14(4):631–638PubMedGoogle Scholar
  48. Koepke J, Hu X, Muenke C, Schulten K et al (1996) The crystal structure of the light-harvesting complex ii (b800-850) from rhodospirillum molischianum. Structure 4(5):581–597CrossRefPubMedGoogle Scholar
  49. Kurisu G, Zhang H, Smith JL, Cramer WA (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302(5647):1009–1014CrossRefPubMedGoogle Scholar
  50. Lancaster CR, Bibikova MV, Sabatino P, Oesterhelt D et al (2000) Structural basis of the drastically increased initial electron transfer rate in the reaction center from a Rhodopseudomonas viridis mutant described at 2.00 Å resolution. J Biol Chem 275(50):39364–39368CrossRefPubMedGoogle Scholar
  51. Lavergne J, Joliot P (1991) Restricted diffusion in photosynthetic membranes. Trends Biochem Sci 16(4):129–134CrossRefPubMedGoogle Scholar
  52. Mascle-Allemand C, Lavergne J, Bernadac A, Sturgis JN (2008) Organisation and function of Phaeospirillum molischianum photosynthetic apparatus. Biochim Biophys Acta 1777(12):1552–1559Google Scholar
  53. Mascle-Allemand C, Duquesne K, Lebrun R, Scheuring S et al (2009) Antenna mixing in photosynthetic membranes from Phaeospirillum molischianum (submitted)Google Scholar
  54. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, et al (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521CrossRefGoogle Scholar
  55. Monger TG, Parson WW (1977) Singlet-triplet fusion in Rhodopseudomonas sphaeroides chromatophores. A probe of the organization of the photosynthetic apparatus. Biochim Biophys Acta 460(3):393–407CrossRefPubMedGoogle Scholar
  56. Möller C, Allen M, Elings V, Engel A, Müller DJ (1999) Tapping mode atomic force microscopy produces faithful high-resolution images of protein surfaces. Biophys J 77:1050–1058CrossRefGoogle Scholar
  57. Müller DJ, Amrein M, Engel A (1997) Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol 119(2):172–188CrossRefPubMedGoogle Scholar
  58. Müller DJ, Baumeister W, Engel A (1999a) Controlled unzipping of a bacterial surface layer with atomic force microscopy. Proc Natl Acad Sci USA 96(23):13170–13174CrossRefPubMedGoogle Scholar
  59. Müller DJ, Fotiadis D, Scheuring S, Müller SA et al (1999b) Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. Biophys J 76(2):1101–1111CrossRefPubMedGoogle Scholar
  60. Müller DJ, Heymann JB, Oesterhelt F, Möller C et al (2000) Atomic force microscopy of native purple membrane. Biochim Biophys Acta 1460(1):27–38CrossRefPubMedGoogle Scholar
  61. Müller DJ, Sapra KT, Scheuring S, Kedrov A et al (2006) Single-molecule studies of membrane proteins. Curr Opin Struct Biol 16(4):489–495CrossRefPubMedGoogle Scholar
  62. Oelze J, Drews G (1972) Membranes of photosynthetic bacteria. Biochim Biophys Acta 265(2):209–239PubMedGoogle Scholar
  63. Qian P, Hunter CN, Bullough PA (2005) The 8.5 Å projection structure of the core rc-lh1-pufx dimer of Rhodobacter sphaeroides. J Mol Biol 349(5):948–960CrossRefPubMedGoogle Scholar
  64. Roszak AW, Howard TD, Southall J, Gardiner AT et al (2003) Crystal structure of the rc-lh1 core complex from Rhodopseudomonas palustris. Science 302(5652):1969–1972CrossRefPubMedGoogle Scholar
  65. Schabert FA, Engel A (1994) Reproducible acquisition of Escherichia coli porin surface topographs by atomic force microscopy. Biophys J 67(6):2394–2403CrossRefPubMedGoogle Scholar
  66. Schabert FA, Henn C, Engel A (1995) Native Escherichia coli ompf porin surfaces probed by atomic force microscopy. Science 268(5207):92–94CrossRefPubMedGoogle Scholar
  67. Scheuring S (2006) AFM studies of the supramolecular assembly of bacterial photosynthetic core-complexes. Curr Opin Chem Biol 10(5):387–393CrossRefPubMedGoogle Scholar
  68. Scheuring S, Sturgis JN (2005) Chromatic adaptation of photosynthetic membranes. Science 309(5733):484–487CrossRefPubMedGoogle Scholar
  69. Scheuring S, Sturgis JN (2006) Dynamics and diffusion in photosynthetic membranes from Rhodospirillum photometricum. Biophys J 91(10):3707–3717CrossRefPubMedGoogle Scholar
  70. Scheuring S, Reiss-Husson F, Engel A, Rigaud JL et al (2001) High resolution topographs of the Rubrivivax gelatinosus light-harvesting complex 2. EMBO J 20:3029–3035CrossRefPubMedGoogle Scholar
  71. Scheuring S, Seguin J, Marco S, Lévy D et al (2003a) AFM characterization of tilt and intrinsic flexibility of rhodobacter sphaeroides light harvesting complex 2 (LH2). J Mol Biol 325(3):569–580CrossRefPubMedGoogle Scholar
  72. Scheuring S, Seguin J, Marco S, Lévy D et al (2003b) Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM. atomic force microscopy. Proc Natl Acad Sci USA 100(4):1690–1693CrossRefPubMedGoogle Scholar
  73. Scheuring S, Francia F, Busselez J, Melandri BA et al (2004a) Structural role of pufx in the dimerization of the photosynthetic core complex of Rhodobacter sphaeroides. J Biol Chem 279(5):3620–3626CrossRefPubMedGoogle Scholar
  74. Scheuring S, Rigaud JL, Sturgis JN (2004b) Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum. EMBO J 23(21):4127–4133CrossRefPubMedGoogle Scholar
  75. Scheuring S, Sturgis JN, Prima V, Bernadac A et al (2004c) Watching the photosynthetic apparatus in native membranes. Proc Natl Acad Sci USA 101(31):11293–11297CrossRefPubMedGoogle Scholar
  76. Scheuring S, Busselez J, Lévy D (2005a) Structure of the dimeric pufx-containing core complex of Rhodobacter blasticus by in situ atomic force microscopy. J Biol Chem 280(2):1426–1431CrossRefPubMedGoogle Scholar
  77. Scheuring S, Lévy D, Rigaud JL (2005b) Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy. Biochim Biophys Acta 1712(2):109–127CrossRefPubMedGoogle Scholar
  78. Scheuring S, Gonçalves RP, Prima V, Sturgis JN (2006) The photosynthetic apparatus of Rhodopseudomonas palustris: structures and organization. J Mol Biol 358(1):83–96CrossRefPubMedGoogle Scholar
  79. Scheuring S, Boudier T, Sturgis JN (2007) From high-resolution AFM topographs to atomic models of supramolecular assemblies. J Struct Biol 159(2):268–76CrossRefPubMedGoogle Scholar
  80. Seelert H, Poetsch A, Dencher NA, Engel A et al (2000) Structural biology. Proton-powered turbine of a plant motor. Nature 405(6785):418–419CrossRefPubMedGoogle Scholar
  81. Sener MK, Schulten K (2008) From atomic-level structure to supramolecular organization in the photosynthetic unit of purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty TJ (eds) The purple phototrophic bacteria. Vol. 28 of Advances in photosynthesis and respiration. Springer, New York, pp 275–294Google Scholar
  82. Sener MK, Olsen JD, Hunter CN, Schulten K (2007) Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle. Proc Natl Acad Sci USA 104(40):15723–15728CrossRefPubMedGoogle Scholar
  83. Siebert CA, Qian P, Fotiadis D, Engel A et al (2004) Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: the role of pufx. EMBO J 23:690–700CrossRefPubMedGoogle Scholar
  84. Stamouli A, Kafi S, Klein DCG, Oosterkamp TH et al (2003) The ring structure and organization of light harvesting 2 complexes in a reconstituted lipid bilayer, resolved by atomic force microscopy. Biophys J 84(4):2483–2491CrossRefPubMedGoogle Scholar
  85. Stroebel D, Choquet Y, Popot JL, Picot D (2003) An atypical haem in the cytochrome b(6)f complex. Nature 426(6965):413–418CrossRefPubMedGoogle Scholar
  86. Sturgis JN, Niedermann RA (1996) The effect of different levels of the B800-850 light-harvesting complex on intracytoplasmic membrane development in Rhodobacter sphaeroides. Arch Microbiol 165(4):235–242CrossRefPubMedGoogle Scholar
  87. Sturgis JN, Niederman RA (2008) Atomic force microscopy reveals multiple patterns of antenna organization in purple bacteria: implications for energy transduction mechanisms and membrane modeling. Photosynth Res 95(2-3):269–278CrossRefPubMedGoogle Scholar
  88. Verméglio A, Joliot P (1999) The photosynthetic apparatus of Rhodobacter sphaeroides. Trends Microbiol 7(11):435–440CrossRefPubMedGoogle Scholar
  89. Viani MB, Pietrasanta LI, Thompson JB, Chand A et al (2000) Probing protein-protein interactions in real time. Nat Struct Biol 7(8):644–647CrossRefPubMedGoogle Scholar
  90. Walz T, Ghosh R (1997) Two-dimensional crystallization of the light-harvesting I-reaction centre photounit from Rhodospirillum rubrum. J Mol Biol 265(2):107–111CrossRefPubMedGoogle Scholar
  91. Xia D, Yu CA, Kim H, Xia JZ et al (1997) Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277(5322):60–66CrossRefPubMedGoogle Scholar
  92. Xia D, Esser L, Elberry M, Zhou F et al (2008) The road to the crystal structure of the cytochrome bc (1) complex from the anoxigenic, photosynthetic bacterium Rhodobacter sphaeroides. J Bioenerg Biomembr 40(5):485–492Google Scholar
  93. Yeates TO, Komiya H, Rees DC, Allen JP et al (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: membrane-protein interactions. Proc Natl Acad Sci USA 84(18):6438–6442CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institut Curie, UMR168-CNRSParisFrance
  2. 2.Laboratoire d’Ingenierie de Systèmes MacromoleculairesCNRS and Aix-Marseille UniversitéMarseilleFrance

Personalised recommendations