Photosynthesis Research

, Volume 100, Issue 1, pp 7–17 | Cite as

Phycobiliprotein diffusion in chloroplasts of cryptophyte Rhodomonas CS24

  • Tihana Mirkovic
  • Krystyna E. Wilk
  • Paul M. G. Curmi
  • Gregory D. Scholes
Regular Paper


Unicellular cryptophyte algae employ antenna proteins with phycobilin chromophores in their photosynthetic machinery. The mechanism of light harvesting in these organisms is significantly different than the energy funneling processes in phycobilisomes utilized by cyanobacteria and red algae. One of the most striking features of cryptophytes is the location of the water-soluble phycobiliproteins, which are contained within the intrathylakoid spaces and are not on the stromal side of the lamellae as in the red algae and cyanobacteria. Studies of mobility of phycobiliproteins at the lumenal side of the thylakoid membranes and how their diffusional behavior may influence the energy funneling steps in light harvesting are reported. Confocal microscopy and fluorescence recovery after photobleaching (FRAP) are used to measure the diffusion coefficient of phycoerythrin 545 (PE545), the primary light harvesting protein of Rhodomonas CS24, in vivo. It is concluded that the diffusion of PE545 in the lumen is inhibited, suggesting possible membrane association or aggregation as a potential source of mobility hindrance.


Cryptophyte Phycobiliprotein Diffusion Fluorescence recovery after photobleaching Thylakoid membrane Energy transfer 



Phycoerythrin 545


Fluorescence recovery after photobleaching




Photosystem I


Photosystem II


Light harvesting complex


Green fluorescent protein


Transmission electron microscopy




15, 16-dihydrobiliverdin


Optical density



The Natural Sciences and Engineering Research Council of Canada are gratefully acknowledged for support of this research. G.D.S. acknowledges the support of an E.W.R. Steacie Memorial Fellowship. This research is supported by grants from the Australian Research Council.

Supplementary material

11120_2009_9412_MOESM1_ESM.pdf (357 kb)
Supplementary material 1 (PDF 357 kb)


  1. Allen JF, Forsberg J (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6:317–326. doi: 10.1016/S1360-1385(01)02010-6 PubMedCrossRefGoogle Scholar
  2. Aspinwall CL, Sarcina M, Mullineaux CW (2004) Phycobilisome mobility in the cyanobacterium Synechococcus sp. PCC7942 is influenced by the trimerisatio of Photosystem I. Photosynth Res 79:179–187. doi: 10.1023/B:PRES.0000015399.43503.95 PubMedCrossRefGoogle Scholar
  3. Baksh MM, Jaros M, Groves JT (2004) Detection of molecular interactions at membrane surfaces through colloid phase transitions. Nature 427:139–141. doi: 10.1038/nature02209 PubMedCrossRefGoogle Scholar
  4. Bauer C (2004) Regulation of photosystem synthesis in Rhodobacter capsulatus. Photosynth Res 80:353–360. doi: 10.1023/B:PRES.0000030440.99968.68 PubMedCrossRefGoogle Scholar
  5. Brejc K, Fickner R, Huber R, Steinbacher S (1995) Isolation, crystallization, crystal-structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 Angstrom resolution. J Mol Biol 249:424–440. doi: 10.1006/jmbi.1995.0307 PubMedCrossRefGoogle Scholar
  6. Bruce D, Biggins J, Steiner T, Thewalt M (1986) Excitation-energy transfer in the crypotphytes-fluorescence excitation-spectra and picosecond time-resolved emission-spectra of intact algae at 77K. Photochem Photobiol 44:519–525. doi: 10.1111/j.1751-1097.1986.tb04702.x CrossRefGoogle Scholar
  7. Dayel MJ, Hom EFY, Verkman AS (1999) Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmatic reticulum. Biophys J 76:2843–2851. doi: 10.1016/S0006-3495(99)77438-2 PubMedCrossRefGoogle Scholar
  8. Doust AB, Marai CNG, Harrop SJ, Wilk KE, Curmi PMG, Scholes GD (2004) Developing a structure-function model for the cryptophyte phycoerythrin 545 using ultrahigh resolution crystallography and ultrafast laser spectroscopy. J Mol Biol 344:135–153. doi: 10.1016/j.jmb.2004.09.044 PubMedCrossRefGoogle Scholar
  9. Elowitz MB, Surette MG, Wolf PE, Stock JB, Leibler S (1999) Protein mobility in the cytoplasm of Escherichia coli. J Bacteriol 181:197–203PubMedGoogle Scholar
  10. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of photosynthetic oxygen-evolving center. Science 303:1831–1838. doi: 10.1126/science.1093087 PubMedCrossRefGoogle Scholar
  11. Gantt E (1981) Phycobilisomes. Annu Rev Plant Physiol Plant Mol Biol 32:327–347Google Scholar
  12. Gardiner AT, Cogdell RJ, Takaichi S (1993) The effect of growth-conditions on the light-harvesting apparatus in Rhodopseudomonas acidophila. Photosynth Res 38:159–167. doi: 10.1007/BF00146415 CrossRefGoogle Scholar
  13. Harnischfeger G, Herold B (1981) Aspects of energy-transfer between phycobilins and chlorophyll in chroomonas spec (crypotphycea). Ber Dtsch Bot Ges 94:65–73Google Scholar
  14. Ingram K, Hiller RG (1983) Isolation and characterization of a major chlorophyll-a/c2 light-harvesting protein from a Chroomonas species (Cryptophyceae). Biochim Biophys Acta 722:310–319. doi: 10.1016/0005-2728(83)90078-6 CrossRefGoogle Scholar
  15. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 angstrom resolution. Nature 441:909–917. doi: 10.1038/35082000 CrossRefGoogle Scholar
  16. Joshua S, Mullineaux CW (2004) Phycobilisome diffusion is required for light-state transitions in cyanobacteria. Plant Physiol 135:2112–2119. doi: 10.1104/pp.104.046110 PubMedCrossRefGoogle Scholar
  17. Kirchhoff H, Mukherjee U, Galla HJ (2002) Molecular architecture of the thylakoid membrane: lipid diffusion space for plastoquinone. Biochemistry 41:4872–4882. doi: 10.1021/bi011650y PubMedCrossRefGoogle Scholar
  18. Kirchhoff H, Haferkamp S, Allen JF, Epstein DBA, Mullineaux CW (2008) Protein diffusion and macromolecular crowding in thylakoid membranes. Plant Physiol 146:1571–1578. doi: 10.1104/pp.107.115170 PubMedCrossRefGoogle Scholar
  19. Kurisu G, Zhang HM, Smith JL, Cramer WA (2003) Structure of cytochrome b(6)f complex of oxygenic photosynthesis: tuning the cavity. Science 302:1009–1014. doi: 10.1126/science.1090165 PubMedCrossRefGoogle Scholar
  20. Lichtle C (1979) Effects of nitrogen deficiency and light of high intensity on Cryptomonas rufescens (Cryptophyceae) I. Cell and photosynthetic apparatus transformations and encystment. Protoplasma 101:283–299. doi: 10.1007/BF01276969 CrossRefGoogle Scholar
  21. Lichtle C (1980) Effects of nitrogen deficiency and light of high intensity on Cryptomonas rufescens (Cryptophyceae) II. Excystment. Protoplasma 102:11–19. doi: 10.1007/BF01276944 CrossRefGoogle Scholar
  22. Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2(6):444–456. doi: 10.1038/35073068 PubMedCrossRefGoogle Scholar
  23. Ludwig M, Gibbs SP (1989) Localization of phycoerythrin at the lumenal surface of the thylakoid membrane in Rhodomonas-lens. J Cell Biol 108:875–884. doi: 10.1083/jcb.108.3.875 PubMedCrossRefGoogle Scholar
  24. Mimuro M, Tamai N, Murakami A, Watanabe M, Erata M, Watanabe MM, Tokutomi M, Yamazaki I (1998) Multiple pathways of excitation energy flow in the photosynthetic pigment system of a cryptophyte, Cryptomonassp. (CR-1)*. Psychol Res 46:155–164Google Scholar
  25. Mirkovic T, Doust AB, Kim J, Wilk KE, Curutchet C, Mennucci B, Cammi R, Curmi PMG, Scholes GD (2007) Ultrafast light harvesting dynamics in the cryptophyte phycocyanin 645. Photochem Photobiol Sci 6:964–975PubMedGoogle Scholar
  26. Mörschel E, Wehrmeyer W (1979) Elektronenmikroskopische Feinstrukturanalyse von nativen Biliproteidaggregaten und deren räumliche Ordnung. Ber Dtsch Bot Ges 92:393–402Google Scholar
  27. Mullineaux CW (2004) FRAP analysis of photosynthetic membranes. J Exp Bot 55:1207–1211. doi: 10.1093/jxb/erh106 PubMedCrossRefGoogle Scholar
  28. Mullineaux CW, Tobin MJ, Jones GR (1997) Mobility of photosynthetic complexes in thylakoid membranes. Nature 390:421–424. doi: 10.1038/37157 CrossRefGoogle Scholar
  29. Mullineaux CW, Nenninger A, Ray N, Robionson C (2006) Diffusion of green fluorescent protein in three cell environments in Escherichia coli. J Bacteriol 188:3442–3448. doi: 10.1128/JB.188.10.3442-3448.2006 PubMedCrossRefGoogle Scholar
  30. Mustardy L, Garab G (2003) Granum revisited. A three-dimensional model where things fall into place. Trends Plant Sci 8:117–122. doi: 10.1016/S1360-1385(03)00015-3 PubMedCrossRefGoogle Scholar
  31. Nagle JF (1992) Long tail kinetics in biophysics. Biophys J 63:366–370. doi: 10.1016/S0006-3495(92)81602-8 PubMedCrossRefGoogle Scholar
  32. Partikian A, Ölveczky B, Swaminathan R, Li Y, Verkman AS (1998) Rapid diffusion of green fluorescent protein in the mitochondrial matrix. J Cell Biol 140:821–829. doi: 10.1083/jcb.140.4.821 PubMedCrossRefGoogle Scholar
  33. Potma EO, de Boeij WP, Bosgraaf L, Roelofs J, van Haastert PJM, Wiersma DA (2001) Reduced protein diffusion rate by cytoskeleton in vegetative and polarized Dictyostelium cells. Biophys J 81(4):2010–2019. doi: 10.1016/S0006-3495(01)75851-1 PubMedCrossRefGoogle Scholar
  34. Santore MM, Kozlova N (2007) Micrometer scale adhesion on nanometer-scale patchy surfaces: adhesion rates, adhesion thresholds, and curvature-based selectivity. Langmuir 23:4782–4791. doi: 10.1021/la063546t PubMedCrossRefGoogle Scholar
  35. Sarcina M, Mullineaux CW (2004) Mobility of the IsiA chlorophyll-binding protein in cyanobacterial thylakoid membranes. J Biol Chem 279:36514–36518. doi: 10.1074/jbc.M405881200 PubMedCrossRefGoogle Scholar
  36. Sarcina M, Tobin MJ, Mullineaux CW (2001) Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942. J Biol Chem 50:46830–46834. doi: 10.1074/jbc.M107111200 CrossRefGoogle Scholar
  37. Scholes GD, Rumbles G (2006) Excitons in nanoscale systems. Nat Mater 5:683–696. doi: 10.1038/nmat1710 PubMedCrossRefGoogle Scholar
  38. Scholes GD, Jordanides XJ, Fleming GR (2001) Adapting the Förster theory of energy transfer for modeling dynamics in aggregated molecular assemblies. J Phys Chem B 105:1640–1651. doi: 10.1021/jp003571m CrossRefGoogle Scholar
  39. Sheetz MP (1993) Glycoprotein motility and dynamic domains in fluid plasma-membranes. Annu Rev Biophys Biomol Struct 22:417–431. doi: 10.1146/ Google Scholar
  40. Smith H (2000) Phytochromes and light signal perception by plants—an emerging synthesis. Nature 407:585–591. doi: 10.1038/35036500 PubMedCrossRefGoogle Scholar
  41. Spear-Bernstein L, Miller KR (1985) Are the photosynthetic membranes of cryptophyte algae inside out. Protoplasma 129:1–9. doi: 10.1007/BF01282300 CrossRefGoogle Scholar
  42. Spear-Bernstein L, Miller KR (1989) Unique location of the phycobiliprotein light-harvesting pigment in the cryptophyceae. J Phycol 25:412–419. doi: 10.1111/j.1529-8817.1989.tb00245.x CrossRefGoogle Scholar
  43. Ston J, Kosakowska A (2002) Phytoplankton pigments designation—an application of RP-HPLC in qualitative and quantitative analysis. J Appl Phycol 14:205–210. doi: 10.1023/A:1019928411436 CrossRefGoogle Scholar
  44. Sundström V, Pullerits T, van Grondelle R (1999) Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B 103:2327–2346. doi: 10.1021/jp983722+ CrossRefGoogle Scholar
  45. Swaminathan R, Hoang CP, Verkman AS (1997) Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J 72:1900–1907. doi: 10.1016/S0006-3495(97)78835-0 PubMedCrossRefGoogle Scholar
  46. van Amerongen H, Valkunas L, van Grondelle R (2000) Photosynthetic excitons. World Scientific, SingaporeGoogle Scholar
  47. van der Weij-De CD, Doust AB, van Stokkum IHM, Dekker JP, Wilk KE, Curmi PMG, Scholes GD, van Grondelle R (2006) How energy funnels from the phycoerythrin antenna complex to photosystem I and photosystem II in cryptophyte Rhodomonas CS24 cells. J Phys Chem B 110:25066–25073. doi: 10.1021/jp061546w CrossRefGoogle Scholar
  48. van Grondelle R (1985) Excitation energy transfer, trapping and annihilation in photosynthetic systems. Biochim Biophys Acta Rev Bioenerg 811:147–195. doi: 10.1016/0304-4173(85)90017-5 Google Scholar
  49. Vesk M, Dwarte D, Fowler S, Hiller RG (1992) Freeze fracture immunocytochemistry of light-harvesting pigment complexes in a cryptophyte. Protoplasma 170:166–176. doi: 10.1007/BF01378791 CrossRefGoogle Scholar
  50. Wilk KE, Harrop SJ, Jankova L, Edler D, Keenan G, Sharples F, Hiller RG, Curmi PMG (1999) Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: crystal structure of a cryptophyte phycoerythrin at 1.63-angstrom resolution. Proc Natl Acad Sci USA 96:8901–8906. doi: 10.1073/pnas.96.16.8901 PubMedCrossRefGoogle Scholar
  51. Yang SZ, Su ZQ, Li H, Feng JJ, Xie J, Xia AD, Gong YD, Zhao JQ (2007) Demonstration of phycoblilsome mobility by the time- and space-correlated fluorescence imaging of a cyanobacterial cell. Biochim Biophys Acta-Bioenerg 1767:15–21CrossRefGoogle Scholar
  52. Yi ZW, Huang H, Kuang TY, Sui SF (2005) Three-dimensional architecture of phycobilisomes from Nostoc flagelliforme revealed by single particle electron microscopy. FEBS Lett 579(17):3569–3573. doi: 10.1016/j.febslet.2005.05.033 PubMedCrossRefGoogle Scholar
  53. Zhang F, Lee GM, Jacobson K (1993) Protein lateral mobility as a reflection of membrane microstructure. Bioessays 15:579–588. doi: 10.1002/bies.950150903 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Tihana Mirkovic
    • 1
  • Krystyna E. Wilk
    • 2
  • Paul M. G. Curmi
    • 2
  • Gregory D. Scholes
    • 1
  1. 1.Department of Chemistry, Institute for Optical Sciences, Centre for Quantum Information and Quantum ControlUniversity of TorontoTorontoCanada
  2. 2.School of Physics and Centre for ImmunologyThe University of New South WalesSydneyAustralia

Personalised recommendations