Photosynthesis Research

, Volume 98, Issue 1–3, pp 479–488 | Cite as

The small CAB-like proteins of Synechocystis sp. PCC 6803 bind chlorophyll

In vitro pigment reconstitution studies on one-helix light-harvesting-like proteins
  • Patrik Storm
  • Miguel A. Hernandez-Prieto
  • Laura L. Eggink
  • J. Kenneth Hoober
  • Christiane FunkEmail author
Regular Paper


The large family of light-harvesting-like proteins contains members with one to four membrane spanning helices with significant homology to the chlorophyll a/b-binding antenna proteins of plants. From structural as well as evolutionary perspective, it is likely that the members of this family bind chlorophylls and carotenoids. However, undisputable evidence is still lacking. The cyanobacterial small CAB-like proteins (SCPs) are one-helix proteins with compelling similarity to the first and third transmembrane helix of LHCII (LHCIIb) including the chlorophyll-binding motifs. They have been proposed to act as chlorophyll-carrier proteins. Here, we analyze the in vivo absorption spectra of single scp deletion mutants in Synechocystis sp. PCC 6803 and compare the in vitro pigment binding ability of the SCP pairs ScpC/D and ScpB/E with the one of LHCII and a synthetic peptide containing the chlorophyll-binding motif (Eggink LL, Hoober JK (2000) J Biol Chem 275:9087–9090). We demonstrate that deletion of scpB alters the pigmentation in the cyanobacterial cell. Furthermore, we are able to show that chlorophylls and carotenoids interact in vitro with the pairs of ScpC/D and ScpB/E, demonstrated by fluorescence resonance energy transfer and circular dichroism.


Antenna Chlorophyll-binding protein Cyanobacteria Early-light-induced proteins (ELIPs) High-light-induced proteins (HLIPs) Light-harvesting complex Synechocystis sp. PCC 6803 



Chlorophyll a/b binding


Circular dichroism




Critical micellar concentration




Early-light-induced protein


Fluorescence resonance energy transfer


High-light-induced protein


Light-harvesting complex


Light-harvesting like


Matrix assisted laser desorption ionization time of flight mass spectrometry




Polyacrylamide gel electrophoresis




Reactive oxygen species


Room temperature


Small CAB-like protein


Sodium dodecyl sulfate



The authors would like to thank Harald Paulsen, University of Mainz, Germany, for providing the template vector for Lhcb_AB80 and for valuable discussions. The authors are also very grateful to the Royal Swedish Academy of Sciences (KVA) and to the Swedish Research Council (VR) for financial support.


  1. Adamska I (2001) The Elip family of stress proteins in the thylakoid membrane of pro- and eukaryota. In: Aro E-M, Andersson B (eds) Advances in photosynthesis and respiration: regulation of photosynthesis, vol 11. Kluwer Academic Publishers, Dordrecht, pp 487–505Google Scholar
  2. Adamska I, Roobol-Boza M, Lindahl M, Andersson B (1999) Isolation of pigment-binding early light-inducible proteins from pea. Eur J Biochem 260:453–460. doi: 10.1046/j.1432-1327.1999.00178.x PubMedCrossRefGoogle Scholar
  3. Bailey S (2004) Cyanophage infection and photoinhibition in marine cyanobacteria. Res Microbiol 155:720–725. doi: 10.1016/j.resmic.2004.06.002 PubMedCrossRefGoogle Scholar
  4. Bhaya D, Dufresne A, Vaulot D, Grossman A (2002) Analysis of the hli gene family in marine and freshwater cyanobacteria. FEMS Microbiol Lett 215:209–219. doi: 10.1111/j.1574-6968.2002.tb11393.x PubMedCrossRefGoogle Scholar
  5. Chen M, Eggink LL, Hoober JK, Larkum AWD (2005) Influence of structure on binding of chlorophylls to peptide ligands. J Am Chem Soc 127:2052–2053. doi: 10.1021/ja043462b PubMedCrossRefGoogle Scholar
  6. Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E, Green BR (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins with implications for plastid evolution. J Mol Evol 48:59–68. doi: 10.1007/PL00006445 PubMedCrossRefGoogle Scholar
  7. Eggink LL, Hoober JK (2000) Chlorophyll binding to peptide maquettes containing a retention motif. J Biol Chem 275:9087–9090. doi: 10.1074/jbc.275.13.9087 PubMedCrossRefGoogle Scholar
  8. Funk C (2001) The PsbS protein: a cab-protein with a function of its own. In: Aro E-M, Andersson B (eds) Advances in photosynthesis and respiration: regulation of photosynthesis, vol 11. Kluwer Academic Publishers, Dordrecht, pp 453–467Google Scholar
  9. Funk C, Vermaas W (1999) A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Biochemistry 38:9397–9404. doi: 10.1021/bi990545+ PubMedCrossRefGoogle Scholar
  10. Funk C, Schröder WP, Green BR, Renger G, Andersson B (1994) The intrinsic 22 kDa protein is a chlorophyll-binding subunit of photosystem II. FEBS Lett 342:261–266. doi: 10.1016/0014-5793(94)80513-X PubMedCrossRefGoogle Scholar
  11. Funk C, Adamska I, Green BR, Andersson B, Renger G (1995) The nuclear-encoded chlorophyll-binding photosystem II-S protein is stable in the absence of pigments. J Biol Chem 270:30141–30147. doi: 10.1074/jbc.270.50.30141 PubMedCrossRefGoogle Scholar
  12. Gadella TWJ Jr, van der Krogt GNM, Bisseling T (1999) GFP-based FRET microscopy in living plant cells. Trends Plant Sci 4:287–291. doi: 10.1016/S1360-1385(99)01426-0 PubMedCrossRefGoogle Scholar
  13. Gevaert K, Vandekerckhove J (2000) Protein identification methods in proteomics. Electrophoresis 21:1145–1154. doi:10.1002/(SICI)1522-2683(20000401)21:6<1145::AID-ELPS1145>3.0.CO;2-ZGoogle Scholar
  14. Green BR (2007) Evolution of light-harvesting antennas in an oxygen world. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea, vol 4. Academic Press, Burlington, USA, pp 38–55Google Scholar
  15. Green BR, Kühlbrandt W (1995) Sequence conservation of light-harvesting and stress-response proteins in relation to the three-dimensional molecular structure of LHCII. Photosynth Res 44:139–148. doi: 10.1007/BF00018304 CrossRefGoogle Scholar
  16. Havaux M, Guedeney G, He Q, Grossman AR (2003) Elimination of high-light-inducible polypeptides related to eukaryotic chlorophyll a/b-binding proteins results in aberrant photoacclimation in Synechocystis PCC6803. Biochim Biophys Acta 1557:21–33. doi: 10.1016/S0005-2728(02)00391-2 PubMedCrossRefGoogle Scholar
  17. He Q, Dolganov N, Bjorkman O, Grossman AR (2001) The high light-inducible polypeptides in Synechocystis PCC6803. Expression and function in high light. J Biol Chem 276:306–314. doi: 10.1074/jbc.M008686200 PubMedCrossRefGoogle Scholar
  18. Heddad M, Adamska I (2000) Light stress-regulated two-helix proteins in Arabidopsis thaliana related to the chlorophyll a/b-binding gene family. Proc Natl Acad Sci USA 97:3741–3746. doi: 10.1073/pnas.050391397 PubMedCrossRefGoogle Scholar
  19. Heddad M, Adamska I (2002) The evolution of light stress proteins in photosynthetic organisms. Comp Funct Genomics 3:504–510. doi: 10.1002/cfg.221 PubMedCrossRefGoogle Scholar
  20. Hellman U, Bhikhabhai R (2002) Easy amino acid sequencing of sulfonated peptides using post-source decay on a matrix assisted laser desorption/ionization time of flight mass spectrometer equipped with a variable voltage reflector. Rapid Commun Mass Spectrom 16:1851–1859. doi: 10.1002/rcm.805 PubMedCrossRefGoogle Scholar
  21. Hoober JK, Eggink LL (1999) Assembly of light-harvesting complex II and biogenesis of thylakoid membranes in chloroplasts. Photosynth Res 61:197–215. doi: 10.1023/A:1006313703640 CrossRefGoogle Scholar
  22. Horn R, Paulsen H (2002) Folding in vitro of light-harvesting chlorophyll a/b protein is coupled with pigment binding. J Mol Biol 318:547–556. doi: 10.1016/S0022-2836(02)00115-8 PubMedCrossRefGoogle Scholar
  23. Horn R, Paulsen H (2004) Early steps in the assembly of light-harvesting chlorophyll a/b complex. J Biol Chem 279:44400–44406. doi: 10.1074/jbc.M407188200 PubMedCrossRefGoogle Scholar
  24. Horn R, Grundmann G, Paulsen H (2007) Consecutive binding of chlorophylls a and b during the assembly in vitro of light-harvesting chlorophyll-a/b protein (LHCIIb). J Mol Biol 366:1045–1054. doi: 10.1016/j.jmb.2006.11.069 PubMedCrossRefGoogle Scholar
  25. Jansson S (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4:236–240. doi: 10.1016/S1360-1385(99)01419-3 PubMedCrossRefGoogle Scholar
  26. Jansson S (2005) A protein family saga: from photoprotection to light-harvesting (and back?). In: Demming-Adams B (ed) Photoprotection, photoinhibition, gene regulation and environment. Springer, The Netherlands, pp 145–153Google Scholar
  27. Jansson S, Andersson J, Kim SJ, Jackowski G (2000) An Arabidopsis thaliana protein homologous to cyanobacterial high-light-inducible proteins. Plant Mol Biol 42:345–351. doi: 10.1023/A:1006365213954 PubMedCrossRefGoogle Scholar
  28. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5Å resolution. Nature 411:909–917. doi: 10.1038/35082000 PubMedCrossRefGoogle Scholar
  29. Klimmek F, Sjödin A, Noutsos C, Leister D, Jansson S (2006) Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants. Plant Physiol 140:793–804. doi: 10.1104/pp.105.073304 PubMedCrossRefGoogle Scholar
  30. Kufryk G, Hernandez-Prieto MA, Kieselbach T, Miranda H, Vermaas W, Funk C (2008) Association of small CAB-like proteins (SCPs) of Synechocystis sp. PCC 6803 with Photosystem II. Photosynth Res 95:135–145. doi: 10.1007/s11120-007-9244-3 PubMedCrossRefGoogle Scholar
  31. Kühlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621. doi: 10.1038/367614a0 PubMedCrossRefGoogle Scholar
  32. Kwa SLS, Völker S, Tilly NT, van Grondelle R, Dekker JP (1994) Polarized site-selection spectroscopy of chlorophyll a in detergent. Photochem Photobiol 59:219–228. doi: 10.1111/j.1751-1097.1994.tb05026.x CrossRefGoogle Scholar
  33. Li XP, Bjorkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395. doi: 10.1038/35000131 PubMedCrossRefGoogle Scholar
  34. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic membranes. Methods Enzymol 148:350–382. doi: 10.1016/0076-6879(87)48036-1 CrossRefGoogle Scholar
  35. Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW (2004) Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci USA 101:11013–11018. doi: 10.1073/pnas.0401526101 PubMedCrossRefGoogle Scholar
  36. Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292. doi: 10.1038/nature02373 PubMedCrossRefGoogle Scholar
  37. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044. doi: 10.1038/nature04224 PubMedCrossRefGoogle Scholar
  38. Mikami K, Kanesaki Y, Suzuki I, Murata N (2002) The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp. PCC 6803. Mol Microbiol 46:905–915. doi: 10.1046/j.1365-2958.2002.03202.x PubMedCrossRefGoogle Scholar
  39. Morosinotto T, Caffarri S, Dall’Osto L, Bassi R (2003) Mechanistic aspects of the xanthophyll dynamics in higher plant thylakoids. Physiol Plant 119:347–354. doi: 10.1034/j.1399-3054.2003.00213.x CrossRefGoogle Scholar
  40. Niyogi KK, Li XP, Rosenberg V, Jung HS (2005) Three-dimensional model of zeaxanthin binding PsbS protein associated with nonphotochemical quenching of excess quanta of light energy absorbed by the photosynthetic apparatus. J Exp Bot 56:375–382. doi: 10.1093/jxb/eri056 PubMedCrossRefGoogle Scholar
  41. Ohta N, Matsuzaki M, Misumi O, Miyagishima SY, Nozaki H, Tanaka K, Shin IT, Kohara Y, Kuroiwa T (2003) Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res 10:67–77. doi: 10.1093/dnares/10.2.67 PubMedCrossRefGoogle Scholar
  42. Paulsen H, Rümler U, Rügiger W (1990) Reconstitution of pigment-containing complexes from light-harvesting chlorophyll a/b-binding proteins overexpressed in Escherichia coli. Planta 181:204–211. doi: 10.1007/BF02411539 CrossRefGoogle Scholar
  43. Promnares K, Komenda J, Bumba L, Nebesarova J, Vacha F, Tichy M (2006) Cyanobacterial small chlorophyll binding protein ScpD (HliB) is located on the periphery of photosystem II in the vicinity of PsbH and CP47 subunits. J Biol Chem 281:32705–32713. doi: 10.1074/jbc.M606360200 PubMedCrossRefGoogle Scholar
  44. Raghuraman H, Chattopadhyay A (2007) Melittin: a membrane-active peptide with diverse functions. Biosci Rep 27:189–223. doi: 10.1007/s10540-006-9030-z PubMedCrossRefGoogle Scholar
  45. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RT (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  46. Rossini S, Casazza AP, Engelmann EC, Havaux M, Jennings RC, Soave C (2006) Suppression of both ELIP1 and ELIP2 in Arabidopsis does not affect tolerance to photoinhibition and photooxidative stress. Plant Physiol 141:1264–1273. doi: 10.1104/pp.106.083055 PubMedCrossRefGoogle Scholar
  47. Rusconi F, Valton É, Nguyen R, Dufourc E (2001) Quantification of sodium dodecyl sulfate in microliter-volume biochemical samples by visible light spectroscopy. Anal Biochem 295:31–37. doi: 10.1006/abio.2001.5164 PubMedCrossRefGoogle Scholar
  48. Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution. EMBO J 24:919–928. doi: 10.1038/sj.emboj.7600585 PubMedCrossRefGoogle Scholar
  49. Teramoto H, Itoh T, Ono TA (2004) High-intensity-light-dependent and transient expression of new genes encoding distant relatives of light-harvesting chlorophyll-a/b proteins in Chlamydomonas reinhardtii. Plant Cell Physiol 45:1221–1232. doi: 10.1093/pcp/pch157 PubMedCrossRefGoogle Scholar
  50. Vavilin D, Yao D, Vermaas W (2007) Small Cab-like proteins retard degradation of photosystem II-associated chlorophyll in Synechocystis sp. PCC 6803: kinetic analysis of pigment labeling with 15 N and 13C. J Biol Chem 282:37660–37668. doi: 10.1074/jbc.M707133200 PubMedCrossRefGoogle Scholar
  51. Vermaas W, Charité J, Eggers B (1990) System for site-directed mutagenesis in the psbD1/C operon of Synechocystis sp. PCC 6803. In: Baltscheffsky M (ed) Current Research in Photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 231–238Google Scholar
  52. Xu H, Vavilin D, Vermaas W (2002a) The presence of chlorophyll b in Synechocystis sp.b PCC 6803 disturbs tetrapyrrole biosynthesis and enhances chlorophyll degradation. J Biol Chem 277:42726–42732. doi: 10.1074/jbc.M205237200 PubMedCrossRefGoogle Scholar
  53. Xu H, Vavilin D, Funk C, Vermaas W (2002b) Small Cab-like proteins regulating tetrapyrrole biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 49:149–160. doi: 10.1023/A:1014900806905 PubMedCrossRefGoogle Scholar
  54. Xu H, Vavilin D, Funk C, Vermaas W (2004) Multiple deletions of small Cab-like proteins in the cyanobacterium Synechocystis sp. PCC : consequences for pigment biosynthesis and accumulation. J Biol Chem 279:27971–27979. doi: 10.1074/jbc.M403307200 PubMedCrossRefGoogle Scholar
  55. Yao D, Kieselbach T, Komenda J, Promnares K, Prieto M, Tichy M, Vermaas W, Funk C (2007) Localization of the small CAB-like proteins in photosystem II. J Biol Chem 282:267–276. doi: 10.1074/jbc.M605463200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Patrik Storm
    • 1
  • Miguel A. Hernandez-Prieto
    • 1
  • Laura L. Eggink
    • 2
  • J. Kenneth Hoober
    • 2
  • Christiane Funk
    • 1
    Email author
  1. 1.Department of Chemistry and Umeå Plant Science CentreUmeå UniversityUmeåSweden
  2. 2.Faculty of Biomedicine and Biotechnology, School of Life SciencesArizona State UniversityTempeUSA

Personalised recommendations