Photosynthesis Research

, Volume 98, Issue 1–3, pp 677–685 | Cite as

Artificial photoactive proteins

  • Reza RazeghifardEmail author


Solar power is the most abundant source of renewable energy. In this respect, the goal of making photoactive proteins is to utilize this energy to generate an electron flow. Photosystems have provided the blueprint for making such systems, since they are capable of converting the energy of light into an electron flow using a series of redox cofactors. Protein tunes the redox potential of the cofactors and arranges them such that their distance and orientation are optimal for the creation of a stable charge separation. The aim of this review is to present an overview of the literature with regard to some elegant functional structures that protein designers have created by introducing cofactors and photoactivity into synthetic proteins.


Protein design Photosystem Cofactor binding Chlorophyll Electron transfer Reaction center 





Chlorin e6






Electron transfer


Iron–sulfur cluster


Light-harvesting complex


Primary electron donor




Photosystem I


Photosystem II


n-Octyl β-d-glycopyranoside


Reaction centre


Water-soluble Chl binding proteins



This work was supported in part by Nova Southeastern University Faculty Research and Development Grant.


  1. Barber J (2006) Photosystem II: an enzyme of global significance. Biochem Soc Trans 34:619–631. doi: 10.1042/BST0340619 PubMedCrossRefGoogle Scholar
  2. Barber J, Archer MD (2001) P680, the primary electron donor of photosystem II. J Photochem Photobiol Chem 142:97–106. doi: 10.1016/S1010-6030(01)00503-2 CrossRefGoogle Scholar
  3. Bassi R, Croce R, Cugini D et al (1999) Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc Natl Acad Sci USA 96:10056–10061. doi: 10.1073/pnas.96.18.10056 PubMedCrossRefGoogle Scholar
  4. Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426:630–635. doi: 10.1038/nature02200 PubMedCrossRefGoogle Scholar
  5. Bender GM, Lehmann A, Zou H et al (2007) De novo design of a single-chain diphenylporphyrin metalloprotein. J Am Chem Soc 129:10732–10740. doi: 10.1021/ja071199j PubMedCrossRefGoogle Scholar
  6. Blackledge MJ, Guerlesquin F, Marion D (1996) Comparison of low oxidoreduction potential cytochrome c553 from Desulfovibrio vulgaris with the class I cytochrome c family. Proteins 24:178–194. doi:10.1002/(SICI)1097-0134(199602)24:2<178::AID-PROT5>3.0.CO;2-FPubMedCrossRefGoogle Scholar
  7. Blanchard L, Marion D, Pollock B et al (1993) Overexpression of Desulfovibrio vulgaris Hildenborough cytochrome c553 in Desulfovibrio desulfuricans G200. Evidence of conformational heterogeneity in the oxidized protein by NMR. Eur J Biochem 218:293–301PubMedCrossRefGoogle Scholar
  8. Calhoun JR, Nastri F, Maglio O et al (2005) Artificial diiron proteins: from structure to function. Biopolymers 80:264–278. doi: 10.1002/bip.20230 PubMedCrossRefGoogle Scholar
  9. Chamorovsky SK, Cherepanov DA, Chamorovsky CS et al (2007) Correlation of electron transfer rate in photosynthetic reaction centers with intraprotein dielectric properties. Biochim Biophys Acta 1767:441–448. doi: 10.1016/j.bbabio.2007.01.008 PubMedCrossRefGoogle Scholar
  10. Chirino AJ, Lous EJ, Huber M et al (1994) Crystallographic analyses of site-directed mutants of the photosynthetic reaction centre from Rhodobacter sphaeroides. Biochemistry 33:4584–4593. doi: 10.1021/bi00181a020 PubMedCrossRefGoogle Scholar
  11. Costanzo LD, Wade H, Geremia S et al (2001) Toward the de novo design of a catalytically active helix bundle: a substrate-accessible carboxylate-bridged dinuclear metal centre. J Am Chem Soc 123:12749–12757. doi: 10.1021/ja010506x PubMedCrossRefGoogle Scholar
  12. Cristian L, Piotrowiak P, Farid RS (2003) Mimicking photosynthesis in a computationally designed synthetic metalloprotein. J Am Chem Soc 125:11814–11815. doi: 10.1021/ja0292142 PubMedCrossRefGoogle Scholar
  13. Dai Q-H, Tommos C, Fuentes EJ et al (2002) Structure of a de novo designed protein model of radical enzymes. J Am Chem Soc 124:10952–10953. doi: 10.1021/ja0264201 PubMedCrossRefGoogle Scholar
  14. Daugherty RG, Wasowicz T, Gibney BR et al (2002) Design and spectroscopic characterization of peptide models for the plastocyanin copper-binding Loop. Inorg Chem 41:2623–2632. doi: 10.1021/ic010555a PubMedCrossRefGoogle Scholar
  15. DeGrado WF, Summa CM, Pavone V et al (1999) De novo design and structural characterisation of proteins and metalloproteins. Annu Rev Biochem 68:779–819. doi: 10.1146/annurev.biochem.68.1.779 PubMedCrossRefGoogle Scholar
  16. DeGrado WF, Costanzo LD, Geremia S et al (2003) Sliding helix and change of coordination geometry in a model di-MnII protein. Angew Chem Int Ed 42:417–420. doi: 10.1002/anie.200390127 CrossRefGoogle Scholar
  17. Deisenhofer J, Epp O, Sinning I et al (1995) Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol 246:429–457. doi: 10.1006/jmbi.1994.0097 PubMedCrossRefGoogle Scholar
  18. Discher BM, Koder RL, Moser CC et al (2003) Hydrophilic to amphiphilic design in redox protein maquettes. Curr Opin Chem Biol 7:741–748. doi: 10.1016/j.cbpa.2003.10.013 PubMedCrossRefGoogle Scholar
  19. Dismukes GC (1996) Manganese enzymes with binuclear active sites. Chem Rev 96:2909–2926. doi: 10.1021/cr950053c PubMedCrossRefGoogle Scholar
  20. Dudkowiak A, Kusumi T, Nakamura C et al (1999) Chlorophyll a aggregates stabilized by a synthesized peptide. J Photochem Photobiol B Biol 129:51–55. doi: 10.1016/S1010-6030(99)00185-9 CrossRefGoogle Scholar
  21. Eggink LL, Hoober JK (2000) Chlorophyll binding to peptide maquettes containing a retention motif. J Biol Chem 275:9087–9090. doi: 10.1074/jbc.275.13.9087 PubMedCrossRefGoogle Scholar
  22. Fahnenschmidt M, Bittl R, Schlodder E et al (2001) Characterization of de novo synthesized four-helix bundle proteins with metalloporphyrin cofactors. Phys Chem Chem Phys 3:4082–4090. doi: 10.1039/b103033g CrossRefGoogle Scholar
  23. Ferreira KN, Iverson TM, Maghlaoui K et al (2004) Architecture of the photosynthetic oxygen-evolving centre. Science 303:1831–1838. doi: 10.1126/science.1093087 PubMedCrossRefGoogle Scholar
  24. Gibney BR, Dutton PL (2001) De novo design and synthesis of heme proteins. Adv Inorg Chem 51:409–455. doi: 10.1016/S0898-8838(00)51008-3 CrossRefGoogle Scholar
  25. Gibney BR, Mulholland SE, Rabanal F et al (1996) Ferredoxin and ferredoxin-heme maquettes. Proc Natl Acad Sci USA 93:15041–15046. doi: 10.1073/pnas.93.26.15041 PubMedCrossRefGoogle Scholar
  26. Gibney BR, Rabanal F, Skalicky JJ et al (1999) Iterative protein design. J Am Chem Soc 121:4952–4960. doi: 10.1021/ja9833117 CrossRefGoogle Scholar
  27. Gray HB, Malmstrom BG, Williams RJP (2000) Copper coordination in blue proteins. J Biol Inorg Chem 5:551–559. doi: 10.1007/s007750000146 PubMedCrossRefGoogle Scholar
  28. Groot ML, Pawlowicz NP, van Wilderen LJGW et al (2005) Initial electron donor and acceptor in isolated photosystem II reaction centers identified with femtosecond mid-IR spectroscopy. Proc Natl Acad Sci USA 102:13087–13092. doi: 10.1073/pnas.0503483102 PubMedCrossRefGoogle Scholar
  29. Hay S, Wallace BB, Smith TA et al (2004) Protein engineering of cytochrome b(562) for quinone binding and light-induced electrons transfer. Proc Natl Acad Sci USA 101:17675–17680. doi: 10.1073/pnas.0406192101 PubMedCrossRefGoogle Scholar
  30. Hill RB, DeGrado W (1998) Solution structure of a2D, a nativelike de novo designed protein. J Am Chem Soc 120:1138–1145. doi: 10.1021/ja9733649 CrossRefGoogle Scholar
  31. Hobe S, Fey H, Rogl H et al (2003) Determination of relative chlorophyll binding affinities in the major light-harvesting chlorophyll a/b complex. J Biol Chem 278:5912–5919. doi: 10.1074/jbc.M211145200 PubMedCrossRefGoogle Scholar
  32. Hofmann E, Wrench PM, Sharples FP et al (1996) Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science 272:1788–1791. doi: 10.1126/science.272.5269.1788 PubMedCrossRefGoogle Scholar
  33. Holzwarth AR, Muller MG, Reus M et al (2006) Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: pheophytin is the primary electron acceptor. Proc Natl Acad Sci USA 103:6895–6900. doi: 10.1073/pnas.0505371103 PubMedCrossRefGoogle Scholar
  34. Horigome D, Satoh H, Itoh N et al (2007) Structural mechanism and photoprotective function of water-soluble chlorophyll-binding protein. J Biol Chem 282:6525–6531. doi: 10.1074/jbc.M609458200 PubMedCrossRefGoogle Scholar
  35. Hu Q, Miyashita H, Iwasaki I et al (1998) A photosystem I reaction centre driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95:13319–13323. doi: 10.1073/pnas.95.22.13319 PubMedCrossRefGoogle Scholar
  36. Huang SS, Koder RL, Lewis M et al (2004) The HP-1 maquette: from an apoprotein structure to a structured hemoprotein designed to promote redox-coupled proton exchange. Proc Natl Acad Sci USA 101:5536–5541. doi: 10.1073/pnas.0306676101 PubMedCrossRefGoogle Scholar
  37. Hughes JL, Razeghifard R, Logue M et al (2006) Magneto-optic spectroscopy of a protein tetramer binding two exciton-coupled chlorophylls. J Am Chem Soc 128:3649–3658. doi: 10.1021/ja056576b PubMedCrossRefGoogle Scholar
  38. Iverson TM (2006) Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis. Curr Opin Chem Biol 10:91–100. doi: 10.1016/j.cbpa.2006.02.013 PubMedCrossRefGoogle Scholar
  39. Jaschke PR, Beatty JT (2007) The photosystem of Rhodobacter sphaeroides assembles with zinc bacteriochlorophyll in a bchD (magnesium chelatase) mutant. Biochemistry 46:12491–12500. doi: 10.1021/bi701407k PubMedCrossRefGoogle Scholar
  40. Kálmán L, LoBrutto R, Allen JP et al (1999) Modified reaction centers oxidize tyrosine in reactions that mirror photosystem II. Nature 402:696–699. doi: 10.1038/45300 CrossRefGoogle Scholar
  41. Kálmán L, LoBrutto R, Allen JP et al (2003) Manganese oxidation by modified reaction centers from Rhodobacter sphaeroides. Biochemistry 42:11016–11022. doi: 10.1021/bi034747o PubMedCrossRefGoogle Scholar
  42. Kamtekar S, Schiffer JM, Xiong H et al (1993) Protein design by binary pattering of polar and nonpolar amino acids. Science 262:1680–1685. doi: 10.1126/science.8259512 PubMedCrossRefGoogle Scholar
  43. Karlin S, Zhu Z-Y, Karlin KD (1997) The extended environment of mononuclear metal centers in protein structures. Proc Natl Acad Sci USA 94:14225–14230. doi: 10.1073/pnas.94.26.14225 PubMedCrossRefGoogle Scholar
  44. Kashiwada A, Nishino N, Wang Z-Y et al (1999) Molecular assembly of bacteriochlorophyll a and its analogues by synthetic 4α-helix polypeptides. Chem Lett 2:1301–1302. doi: 10.1246/cl.1999.1301 CrossRefGoogle Scholar
  45. Kehoe JW, Meadows KA, Parkesloach PS et al (1998) Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 2. Determination of structural features that stabilize complex formation and their implications for the structure of the subunit complex. Biochemistry 37:3418–3428. doi: 10.1021/bi9722709 PubMedCrossRefGoogle Scholar
  46. Loll B, Kern J, Saenger W et al (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044. doi: 10.1038/nature04224 PubMedCrossRefGoogle Scholar
  47. Meadows KA, Parkes-Loach PS, Kehoe JW et al (1998) Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 1. Minimal requirements for subunit formation. Biochemistry 37:3411–3417. doi: 10.1021/bi972269+ PubMedCrossRefGoogle Scholar
  48. Millett F, Durham B (2002) Design of photoactive ruthenium complexes to study interprotein electron transfer. Biochemistry 41:11315–11324. doi: 10.1021/bi0262956 PubMedCrossRefGoogle Scholar
  49. Noy D, Dutton PL (2006) Design of a minimal polypeptide unit for bacteriochlorophyll binding and self-assembly based on photosynthetic bacterial light-harvesting proteins. Biochemistry 45:2103–2113. doi: 10.1021/bi052175x PubMedCrossRefGoogle Scholar
  50. Pröll S, Wilhelm B, Robert B et al (2006) Myoglobin with modified tetrapyrrole chromophores: binding specificity and photochemistry. Biochim Biophys Acta 1757:750–763. doi: 10.1016/j.bbabio.2006.03.026 PubMedCrossRefGoogle Scholar
  51. Rabanal F, Gibney BR, DeGrado WF et al (1996) Engineering photosynthesis: synthetic redox proteins. Inorg Chim Acta 243:213–218. doi: 10.1016/0020-1693(95)04910-X CrossRefGoogle Scholar
  52. Raszewski G, Diner BA, Schlodder E et al (2008) Spectroscopic properties of reaction center pigments in photosystem II core complexes: revision of the multimer model. Biophys J 95:105–119. doi: 10.1529/biophysj.107.123935 PubMedCrossRefGoogle Scholar
  53. Rau HK, DeJonge N, Haehnel W (1998) Molecular synthesis of de novo-designed metalloproteins for light-induced electron transfer. Proc Natl Acad Sci USA 95:11526–11531. doi: 10.1073/pnas.95.20.11526 PubMedCrossRefGoogle Scholar
  54. Rau HK, Snigula H, Struck A et al (2001) Design, synthesis and properties of synthetic chlorophyll proteins. Eur J Biochem 268:3284–3295. doi: 10.1046/j.1432-1327.2001.02231.x PubMedCrossRefGoogle Scholar
  55. Razeghifard MR, Wydrzynski TJ (2003) Binding of Zn-chlorin to a synthetic four-helix bundle peptide through histidine ligation. Biochemistry 42:1024–1030. doi: 10.1021/bi026787i PubMedCrossRefGoogle Scholar
  56. Regan L, DeGrado WF (1988) Characterization of a helical protein designed from first principles. Science 241:976–978. doi: 10.1126/science.3043666 PubMedCrossRefGoogle Scholar
  57. Rosenblatt MM, Wang J, Suslick KS (2003) De novo designed cyclic-peptide heme complexes. Proc Natl Acad Sci USA 100:13140–13145. doi: 10.1073/pnas.2231273100 PubMedCrossRefGoogle Scholar
  58. Satoh H, Nakayama K, Okada M (1998) Molecular cloning and functional expression of a water-soluble chlorophyll protein, a putative carrier of chlorophyll molecules in cauliflower. J Biol Chem 273:30568–30575. doi: 10.1074/jbc.273.46.30568 PubMedCrossRefGoogle Scholar
  59. Satoh H, Uchida A, Nakayama K et al (2001) Water-soluble chlorophyll protein in Brassicaceae plants is a stress-induced chlorophyll-binding protein. Plant Cell Physiol 42:906–911. doi: 10.1093/pcp/pce117 PubMedCrossRefGoogle Scholar
  60. Schafmeister CE, Miercke LJ, Stroud RM (1993) Structure at 2.5 A of a designed peptide that maintains solubility of membrane proteins. Science 262:734–738. doi: 10.1126/science.8235592 PubMedCrossRefGoogle Scholar
  61. Schafmeister CE, LaPorte SL, Miercke LJ et al (1997) A designed four helix bundle protein with native-like structure. Nat Struct Biol 4:1039–1046. doi: 10.1038/nsb1297-1039 PubMedCrossRefGoogle Scholar
  62. Schmidt K, Fufezan C, Krieger-Liszkay A et al (2003) Recombinant water-soluble chlorophyll protein from Brassica oleracea var. Botrys binds various chlorophyll derivatives. Biochemistry 42:7427–7433. doi: 10.1021/bi034207r PubMedCrossRefGoogle Scholar
  63. Scott MP, Biggins J (1997) Introduction of a [4Fe-4S (S-cys)4] + 1 + 2 iron-sulfur centre into a four-α helix protein using design parameters from the domain of the Fx cluster in the photosystem I reaction centre. Protein Sci 6:340–346PubMedCrossRefGoogle Scholar
  64. Sharp RE, Moser CC, Rabanal F et al (1998) Design, synthesis, and characterization of a photoactivable flavocytochrome molecular maquette. Proc Natl Acad Sci USA 95:10465–10470. doi: 10.1073/pnas.95.18.10465 PubMedCrossRefGoogle Scholar
  65. Sheridan RP, Levy RM, Salemme FR (1982) alpha-Helix dipole model and electrostatic stabilization of 4-alpha-helical proteins. Proc Natl Acad Sci USA 79:4545–4549. doi: 10.1073/pnas.79.15.4545 PubMedCrossRefGoogle Scholar
  66. Shifman JM, Gibney BR, Sharp RE et al (2000) Heme redox potential control in de novo designed four-α-helix bundle proteins. Biochemistry 39:14813–14821. doi: 10.1021/bi000927b PubMedCrossRefGoogle Scholar
  67. Skalicky JJ, Gibney BR, Rabanal F et al (1999) Solution structure of a designed four-α-helix bundle maquette scaffold. J Am Chem Soc 121:4941–4951. doi: 10.1021/ja983309f CrossRefGoogle Scholar
  68. Sow TC, Pedersen MV, Christensen HEM et al (1996) Total synthesis of a miniferredoxin. Biochem Biophys Res Commun 223:360–364. doi: 10.1006/bbrc.1996.0899 PubMedCrossRefGoogle Scholar
  69. Theiss C, Trostmann I, Andree S et al (2007) Pigment-pigment and pigment-protein interactions in recombinant water-soluble chlorophyll proteins (WSCP) from cauliflower. J Phys Chem B 111:13325–13335. doi: 10.1021/jp0723968 PubMedCrossRefGoogle Scholar
  70. Tommos C, Skalicky JJ, Pilloud DL et al (1999) De novo proteins as models of radical enzymes. Biochemistry 38:9495–9507. doi: 10.1021/bi990609g PubMedCrossRefGoogle Scholar
  71. Wakao N, Yokoi N, Isoyama N et al (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol 37:889–893Google Scholar
  72. Wydrzynski T, Hillier W, Conlan B (2007) Engineering model proteins for photosystem II function. Photosynth Res 94:225–233. doi: 10.1007/s11120-007-9271-0 PubMedCrossRefGoogle Scholar
  73. Xiong L, Seibert M, Gusev AV et al (2004) Substitution of a chlorophyll into the inactive branch pheophytin-binding site impairs charge separation in photosystem II. J Phys Chem B 108:16904–16911. doi: 10.1021/jp040262d CrossRefGoogle Scholar
  74. Xue Y, Okvist M, Hansson O et al (1998) Crystal structure of spinach plastocyanin at 1.7 Å resolution. Protein Sci 7:2099–2105PubMedCrossRefGoogle Scholar
  75. Yano J, Kern J, Sauer K et al (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314:821–825. doi: 10.1126/science.1128186 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Division of Math, Science, and Technology, Farquhar College of Arts & ScienceNova Southeastern UniversityFort LauderdaleUSA

Personalised recommendations