Photosynthesis Research

, Volume 97, Issue 3, pp 255–261

Tracking the molecular evolution of photosynthesis through characterization of atomic contents of the photosynthetic units

Regular Paper

Abstract

Oxygen molecules have a great impact on protein evolution. We have performed a comparative study of key photosynthetic proteins in order to seek the answer to the question; did the evolutionary substitution of oxygen- and nitrogen-containing residues in the photosynthetic proteins correspond to nutrient constraints and metabolic optimization? The D1 peptide in RC II complexes has higher oxygen-containing amino acid residues and PufL/PufM have lower oxygen content in their peptides. In this article, we also discuss the possible influences of micro-environment and the available nutrients on the protein structure and their atomic distribution.

Keywords

Evolution of photosynthesis Reaction center Light-harvesting protein Chlorophyll-binding protein Protein evolution 

Abbreviations

CBP

Accessory chlorophyll-binding proteins

CP43/CP47

Core antenna polypeptide of oxygenic photosynthetic reaction center II

D1/D2

Core polypeptides of oxygenic photosynthetic reaction center II

IsiA

Iron-stress induced protein A

Pcb

Prochlorophytes chlorophyll-binding protein

PS

Photosystem

PsaA/PsaB

Core polypeptides of oxygenic photosynthetic reaction center I

PscA

Core polypeptide of PSI-type reaction center in C. limicola

PufL/PufM

Core polypeptide of bacterial photosynthetic reaction center (Type II)

RC

Reaction center

PshA

Core polypeptide of PSI-type reaction center complex in H. mobilis

Refseq

NCBI reference sequences collection

References

  1. Acquisti C, Kleffe J, Collins S (2007) Oxygen content of transmembrane proteins over macroevolutionary time scales. Nature 445:47–52. doi:10.1038/nature05450 PubMedCrossRefGoogle Scholar
  2. Amunts A, Drory O, Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447:58–63. doi:10.1038/nature05687 PubMedCrossRefGoogle Scholar
  3. Barber J (2004) Water, water everywhere and its remarkable chemistry. Biochim Biophys Acta 1655:123–132. doi:10.1016/j.bbabio.2003.10.011 PubMedCrossRefGoogle Scholar
  4. Baudouin-Cornu P, Surdin-Kerjan Y, Marliere P, Thomas D (2001) Molecular evolution of protein atomic composition. Science 292:297–300. doi:10.1126/science.1061052 CrossRefGoogle Scholar
  5. Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426:630. doi:10.1038/nature02200 PubMedCrossRefGoogle Scholar
  6. Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Sciences, OxfordGoogle Scholar
  7. Bragg JG, Wagner A (2007) Protein carbon content evolves in response to carbon availability and may influence the fate of duplicated genes. Proc R Soc Lond B Biol Sci 274:1063–1070. doi:10.1098/rspb.2006.0290 CrossRefGoogle Scholar
  8. Büttner M, Xie DL, Nelson H, Pinther W, Hauska G, Nelson N (1992) Photosynthetic reaction center genes in green sulfur bacteria and in photosystem 1 are related. Proc Natl Acad Sci USA 89:8135–8139. doi:10.1073/pnas.89.17.8135 PubMedCrossRefGoogle Scholar
  9. Chen M, Hiller RG, Howe CJ, Larkum AWD (2005) Unique origin and lateral transfer of prokaryotic chlorophyll-b and chlorophyll-d light-harvesting systems. Mol Biol Evol 22:21–28. doi:10.1093/molbev/msh250 PubMedCrossRefGoogle Scholar
  10. Chen M, Zhang Y, Blankenship RE (2008) Nomenclature for membrane-bound light-harvesting complexes of cyanobacteria. Photosynth Res 95:147–154. doi:10.1007/s11120-007-9255-0 PubMedCrossRefGoogle Scholar
  11. Delano WL (2002) The PyMOL molecular graphics system. Delano scientific, Palo AltoGoogle Scholar
  12. Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A (2001) The origin of atmospheric oxygen on Earth: The innovation of oxygenic photosynthesis. Proc Natl Acad Sci USA 98:2170–2175. doi:10.1073/pnas.061514798 PubMedCrossRefGoogle Scholar
  13. Gavel Y, Steppuhn J, Herrmann R, von Heijne G (1991) The ‘positive-inside rule’ applies to thylakoid membrane proteins. FEBS Lett 282:41–46. doi:10.1016/0014-5793(91)80440-E PubMedCrossRefGoogle Scholar
  14. Goldbaltt C, Lenton TM, Waston AJ (2006) Bistability of atmospheric oxygen and the Great Oxidation. Nature 443:683–686. doi:10.1038/nature05169 CrossRefGoogle Scholar
  15. Guex N, Peitsch MC (1997) The Swiss-PdbViewer and SWISS-MODEL, an environment for comparative protein modelling. Electrophoresis 18:2714–2723. doi:10.1002/elps.1150181505 PubMedCrossRefGoogle Scholar
  16. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917. doi:10.1038/35082000 PubMedCrossRefGoogle Scholar
  17. Jordan IK, Kondrashov FA, Adzhudel IA, Wolf YI, Koonin EV, Kondrashov AS et al (2005) A universal trend of amino acid gain and loss in protein evolution. Nature 433:633–638. doi:10.1038/nature03306 PubMedCrossRefGoogle Scholar
  18. Kopp RE, Kirschvink JL, Hillburn IA, Nash CZ (2005) The paleoproterozoic snowball earth: a climate disaster trigged by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci USA 102:11131–11136. doi:10.1073/pnas.0504878102 PubMedCrossRefGoogle Scholar
  19. Kump LR, Barley ME (2007) Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448:1033–1036. doi:10.1038/nature06058 PubMedCrossRefGoogle Scholar
  20. La Roche J, van der Staay GWM, Partensky F, Ducret A, Aebersold R, Li R et al (1996) Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proc Natl Acad Sci USA 93:15244–15248. doi:10.1073/pnas.93.26.15244 PubMedCrossRefGoogle Scholar
  21. Mix LL, Harmer TL, Cavanaugh CM (2004) Sequence of core antenna domain from the anoxygenic phototroph heliophilum fasciatum: implication for diversity of reaction centre type I. Curr Microbiol 48:438–440. doi:10.1007/s00284-003-4221-3 PubMedCrossRefGoogle Scholar
  22. Mix LL, Haig D, Cavanaugh CM (2005) Phylogenetic analyses of the core antenna domain: investigation origin of photosystem I. J Mol Evol 60:153–163. doi:10.1007/s00239-003-0181-2 PubMedCrossRefGoogle Scholar
  23. Ohmoto H, Watanable Y, Ikemi H, Poulson SR, Taylor BE (2006) Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442:908–911. doi:10.1038/nature05044 PubMedCrossRefGoogle Scholar
  24. Olson JM, Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80:373–386. doi:10.1023/B:PRES.0000030457.06495.83 PubMedCrossRefGoogle Scholar
  25. Raymond J, Segrè D (2006) The effect of oxygen on biochemical networks and the evolution of complex life. Science 311:1764–1767. doi:10.1126/science.1118439 PubMedCrossRefGoogle Scholar
  26. Raymond JR, Zhaxybayeva O, Gerdes S, Gogarten JP, Blankenship RE (2002) Whole genome analysis of photosynthetic prokaryotes. Science 298:1616–1620. doi:10.1126/science.1075558 PubMedCrossRefGoogle Scholar
  27. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  28. Sadekar S, Raymond J, Blankenship RE (2006) Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core. Mol Biol Evol 23:2001–2007. doi:10.1093/molbev/msl079 PubMedCrossRefGoogle Scholar
  29. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385. doi:10.1093/nar/gkg520 PubMedCrossRefGoogle Scholar
  30. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  31. Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA 103:5442–5447. doi:10.1073/pnas.0600999103 PubMedCrossRefGoogle Scholar
  32. von Heijne G (1992) Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487–494. doi:10.1016/0022-2836(92)90934-C CrossRefGoogle Scholar
  33. Xiong J, Bauer CE (2002) Complex evolution of photosynthesis. Annu Rev Plant Biol 53:503–521. doi:10.1146/annurev.arplant.53.100301.135212 PubMedCrossRefGoogle Scholar
  34. Xiong J, Inoue K, Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci USA 95:14851–14856. doi:10.1073/pnas.95.25.14851 PubMedCrossRefGoogle Scholar
  35. Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730. doi:10.1126/science.289.5485.1724 PubMedCrossRefGoogle Scholar
  36. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Bioinformatics 13:555–556. doi:10.1093/bioinformatics/13.5.555 CrossRefGoogle Scholar
  37. Zhang Y, Chen M, Zhou BB, Jermiin LS, Larkum AWD (2007) Evolution of the inner light-harvesting antenna protein family of cyanobacteria, algae and plants. J Mol Evol 64:321–331. doi:10.1007/s00239-006-0058-2 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of SydneySydneyAustralia
  2. 2.School of Environmental SciencesBeijing Normal UniversityBeijingChina
  3. 3.School of Information TechnologiesUniversity of SydneySydneyAustralia

Personalised recommendations