Photosynthesis Research

, Volume 98, Issue 1–3, pp 687–700 | Cite as

Designing photosystem II: molecular engineering of photo-catalytic proteins

  • Brendon Conlan


Biological photosynthesis utilizes membrane-bound pigment/protein complexes to convert light into chemical energy through a series of electron-transfer events. In the unique photosystem II (PSII) complex these electron-transfer events result in the oxidation of water to molecular oxygen. PSII is an extremely complex enzyme and in order to exploit its unique ability to convert sunlight into chemical energy it will be necessary to make a minimal model. Here we will briefly describe how PSII functions and identify those aspects that are essential in order to catalyze the oxidation of water into O2, and review previous attempts to design simple photo-catalytic proteins and summarize our current research exploiting the E. coli bacterioferritin protein as a scaffold into which multiple cofactors can be bound, to oxidize a manganese metal center upon illumination. Through the reverse engineering of PSII and light driven water splitting reactions it may be possible to provide a blueprint for catalysts that can produce clean green fuel for human energy needs.


Artificial photosynthesis Photosystem II Manganese Electron transfer Protein engineering Bacterioferritin Zinc chlorin e6 Water splitting 





ZincII chlorin e6


Zinc protoporphyrin




Bacterial reaction center




Coenzyme Q without the hydrophobic tail




Midpoint redox potential


Tetranuclear manganese/calcium cluster


Oxygen evolving complex


Reaction center chlorophyll complex


Photosystem II




Redox-active tyrosine


Electron donor


Electron acceptor



Financial assistance was provided by a grant from the Australian Research Council (ARC DP0450421) and ANU Postgraduate Scholarship. Thanks to Tom Wydrzynski for advice and review of the manuscript.


  1. Ahmad I, Cusanovich MA, Tollin G (1981) Laser flash-photolysis studies of electron-transfer between semi-quinone and fully reduced free flavins and horse heart cytochrome-c. Proc Natl Acad Sci USA 78:6724–6728. doi: 10.1073/pnas.78.11.6724 PubMedCrossRefGoogle Scholar
  2. Allen JP, Williams JC (1995) Relationship between the oxidation potential of the bacteriochlorophyll dimer and electron-transfer in photosynthetic reaction centers. J Bioenerg Biomembr 27:275–283. doi: 10.1007/BF02110097 PubMedCrossRefGoogle Scholar
  3. Armstrong FA (2008) Why did nature choose manganese to make oxygen? Philos Trans R Soc Lond B Biol Sci 363:1263–1270. doi: 10.1098/rstb.2007.2223 PubMedCrossRefGoogle Scholar
  4. Arnesano F, Banci L, Bertini I, Faraone-Mennella J, Rosato A, Barker PD et al (1999) The solution structure of oxidized Escherichia coli cytochrome b(562). Biochemistry 38:8657–8670. doi: 10.1021/bi982785f PubMedCrossRefGoogle Scholar
  5. Barker PD, Nerou EP, Cheesman MR, Thomson AJ, deOliveira P, Hill HAO (1996) Bis-methionine ligation to heme iron in mutants of cytochrome b(562). 1. Spectroscopic and electrochemical characterization of the electronic properties’. Biochemistry 35:13618–13626. doi: 10.1021/bi961127x PubMedCrossRefGoogle Scholar
  6. Bellelli A, Brzezinski P, Arese M, Cutruzzola F, Silvestrini MC, Brunori M (1996) Electron transfer in zinc-reconstituted nitrite reductase from Pseudomonas aeruginosa. Biochem J 319:407–410PubMedGoogle Scholar
  7. Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science Ltd, OxfordGoogle Scholar
  8. Boussac A, Rappaport F, Carrier P, Verbavatz JM, Gobin R, Kirilovsky D et al (2004) Biosynthetic Ca2+/Sr2+ exchange in the photosystem II oxygen-evolving enzyme of Thermosynechococcus elongatus. J Biol Chem 279:22809–22819. doi: 10.1074/jbc.M401677200 PubMedCrossRefGoogle Scholar
  9. Chang IJ, Gray HB, Winkler JR (1991) High-driving-force electron-transfer in metalloproteins—intramolecular oxidation of ferrocytochrome-c by Ru(2, 2′-Bpy)2(Im)(His-33)3+. J Am Chem Soc 113:7056–7057. doi: 10.1021/ja00018a064 CrossRefGoogle Scholar
  10. Cheesman MR, Thomson AJ, Greenwood C, Moore GR, Kadir F (1990) Bis-methionine axial ligation of heme in bacterioferritin from Pseudomonas-aeruginosa. Nature 346:771–773. doi: 10.1038/346771a0 PubMedCrossRefGoogle Scholar
  11. Chen M, Eggink LL, Hoober JK, Larkum AWD (2005) Influence of structure on binding of chlorophylls to peptide ligands. J Am Chem Soc 127:2052–2053. doi: 10.1021/ja043462b PubMedCrossRefGoogle Scholar
  12. Chenbarrett Y, Harrison PM, Treffry A, Quail MA, Arosio P, Santambrogio P et al (1995) Tyrosyl radical formation during the oxidative deposition of iron in human apoferritin. Biochemistry 34:7847–7853. doi: 10.1021/bi00024a008 CrossRefGoogle Scholar
  13. Cheung E, Taylor K, Kornblatt JA, English AM, McLendon G, Miller JR (1986) Direct measurements of intramolecular electron-transfer rates between cytochrome-c and cytochrome-c peroxidase—effects of exothermicity and primary sequence on rate. Proc Natl Acad Sci USA 83:1330–1333. doi: 10.1073/pnas.83.5.1330 PubMedCrossRefGoogle Scholar
  14. Clausen J, Debus RJ, Junge W (2004) Time-resolved oxygen production by PSII: chasing chemical intermediates. Biochim Biophys Acta 1655:184–194. doi: 10.1016/j.bbabio.2003.06.001 PubMedCrossRefGoogle Scholar
  15. Conlan B, Wydrzynski T, Hillier W (2007) Designing artificial photosynthesis: engineering bacterioferritin for light-activated electron transfer. Photosynth Res 91:281Google Scholar
  16. Connick WB, DiBilio AJ, Hill MG, Winkler JR, Gray HB (1995) Tricarbonyl(1, 1O-phenanthroline)(imidazole)rhenium(I): a powerful photooxidant for investigations of electron tunneling in proteins. Inorg Chim Acta 240:169–173. doi: 10.1016/0020-1693(95)04532-5 CrossRefGoogle Scholar
  17. Cowan JA (1996) Inorganic biochemistry—an introduction. Wiley-VCH, New YorkGoogle Scholar
  18. Cowan JA, Gray HB (1989) Synthesis and properties of metal-substituted myoglobins. Inorg Chem 28:2074–2078. doi: 10.1021/ic00310a013 CrossRefGoogle Scholar
  19. Dasgupta J, Tyryshkin AM, Kozlov YN, Klimov VV, Dismukes GC (2006) Carbonate complexation of Mn2+ in the aqueous phase: Redox behavior and ligand binding modes by electrochemistry and EPR spectroscopy. J Phys Chem B 110:5099–5111. doi: 10.1021/jp055213v PubMedCrossRefGoogle Scholar
  20. Dau H, Haumann M (2008) The manganese complex of photosystem II in its reaction cycle—basic framework and possible realization at the atomic level. Coord Chem Rev 252:273–295. doi: 10.1016/j.ccr.2007.09.001 CrossRefGoogle Scholar
  21. Dautant A, Meyer JB, Yariv J, Precigoux G, Sweet RM, Kalb AJ et al (1998) Structure of a monoclinic crystal form of cytochrome b1 (bacterioferritin) from E-coli. Acta Crystallogr D 54:16–24. doi: 10.1107/S0907444997006811 PubMedCrossRefGoogle Scholar
  22. Debus RJ (2005) The catalytic manganese cluster: implications from spectroscopy. In: Wydrzynski T, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Springer, Dordrecht, pp 261–284Google Scholar
  23. Di Bilio AJ, Dennison C, Gray HB, Ramirez BE, Sykes AG, Winkler JR (1998) Electron transfer in ruthenium-modified plastocyanin. J Am Chem Soc 120:7551–7556. doi: 10.1021/ja972625b CrossRefGoogle Scholar
  24. Di Bilio AJ, Crane BR, Wehbi WA, Kiser CN, Abu-Omar MM, Carlos RM et al (2001) Properties of photogenerated tryptophan and tyrosyl radicals in structurally characterized proteins containing rhenium(I) tricarbonyl diimines. J Am Chem Soc 123:3181–3182. doi: 10.1021/ja0043183 PubMedCrossRefGoogle Scholar
  25. Diner BA, Britt RD (2005) The redox-active tyrosines YZ and YD. In: Wydrzynski T, Satoh K (eds) Photosystem II—the light driven water:plastoquinone oxidoreductase. Springer, Dordrecht, pp 207–233Google Scholar
  26. Eggink LL, Hoober JK (2000) Chlorophyll binding to peptide maquettes containing a retention motif. J Biol Chem 275:9087–9090. doi: 10.1074/jbc.275.13.9087 PubMedCrossRefGoogle Scholar
  27. Fahnenschmidt M, Bittl R, Schlodder E, Haehnel W, Lubitz W (2001) Characterization of de novo synthesized four-helix bundle proteins with metalloporphyrin cofactors. Phys Chem Chem Phys 3:4082–4090. doi: 10.1039/b103033g CrossRefGoogle Scholar
  28. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838. doi: 10.1126/science.1093087 PubMedCrossRefGoogle Scholar
  29. Frolow F, Kalb AJ, Yariv J (1994) Structure of a unique twofold symmetrical heme-binding site. Nat Struct Biol 1:453–460. doi: 10.1038/nsb0794-453 PubMedCrossRefGoogle Scholar
  30. Furukawa Y, Ishimori K, Morishima I (2000) Electron transfer reactions in Zn-substituted cytochrome P450cam. Biochemistry 39:10996–11004. doi: 10.1021/bi000874y PubMedCrossRefGoogle Scholar
  31. Grabolle M, Dau H (2005) Energetics of primary and secondary electron transfer in photosystem II membrane particles of spinach revisited on basis of recombination-fluorescence measurements. Biochim Biophys Acta 1708:209–218. doi: 10.1016/j.bbabio.2005.03.007 PubMedCrossRefGoogle Scholar
  32. Gray HB, Winkler JR (1996) Electron transfer in proteins. Annu Rev Biochem 65:537–561. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  33. Gunner MR (1991) The reaction center protein from purple bacteria—structure and function. Curr Top Bioenerg 16:319–367Google Scholar
  34. Hamada K, Bethge PH, Mathews FS (1995) Refined structure of cytochrome b(562) from Escherichia-coli at 1.4 Angstrom resolution. J Mol Biol 247:947–962. doi: 10.1006/jmbi.1995.0192 PubMedCrossRefGoogle Scholar
  35. Haumann M, Liebisch P, Muller C, Barra M, Grabolle M, Dau H (2005) Photosynthetic O-2 formation tracked by time-resolved X-ray experiments. Science 310:1019–1021. doi: 10.1126/science.1117551 PubMedCrossRefGoogle Scholar
  36. Hay S, Wallace BB, Smith TA, Ghiggino KP, Wydrzynski T (2004) Protein engineering of cytochrome b562 for quinone binding and light-induced electrons transfer. Proc Natl Acad Sci USA 101:17675–17680. doi: 10.1073/pnas.0406192101 PubMedCrossRefGoogle Scholar
  37. Hendry G, Wydrzynski T (2003) O-18 isotope exchange measurements reveal that calcium is involved in the binding of one substrate-water molecule to the oxygen-evolving complex in photosystem II. Biochemistry 42:6209–6217. doi: 10.1021/bi034279i PubMedCrossRefGoogle Scholar
  38. Hersleth HP, Ryde U, Rydberg P, Gorbitz CH, Andersson KK (2006) Structures of the high-valent metal-ion haem-oxygen intermediates in peroxidases, oxygenases and catalases. J Inorg Biochem 100:460–476. doi: 10.1016/j.jinorgbio.2006.01.018 PubMedCrossRefGoogle Scholar
  39. Ho FM, Styring S (2008) Access channels and methanol binding site to the CaMn4 cluster in photosystem II based on solvent accessibility simulations, with implications for substrate water access. Biochim Biophys Acta 1777:140–153. doi: 10.1016/j.bbabio.2007.08.009 PubMedCrossRefGoogle Scholar
  40. Ho PS, Sutoris C, Liang N, Margoliash E, Hoffman BM (1985) Species specificity of long-range electron-transfer within the complex between zinc-substituted cytochrome-c peroxidase and cytochrome-c. J Am Chem Soc 107:1070–1071. doi: 10.1021/ja00290a059 CrossRefGoogle Scholar
  41. Hughes JL, Razeghifard R, Logue M, Oakley A, Wydrzynski T, Krausz E (2006) Magneto-optic spectroscopy of a protein tetramer binding two exciton-coupled chlorophylls. J Am Chem Soc 128:3649–3658. doi: 10.1021/ja056576b PubMedCrossRefGoogle Scholar
  42. Ioannidis N, Zahariou G, Petrouleas V (2008) The EPR spectrum of tyrosine Z, and its decay kinetics in O2-evolving photosystem II preparations. Biochemistry 47:6292–6300. doi: 10.1021/bi800390r PubMedCrossRefGoogle Scholar
  43. Jiang W, Yun D, Saleh L, Barr EW, Xing G, Hoffart LM et al (2007) A manganese(IV)/iron(III) cofactor in chlamydia trachomatis ribonucleotide reductase. Science 316:1188–1191. doi: 10.1126/science.1141179 PubMedCrossRefGoogle Scholar
  44. Johnson ET, Parson WW (2002) Electrostatic interactions in an integral membrane protein. Biochemistry 41:6483–6494. doi: 10.1021/bi012131y PubMedCrossRefGoogle Scholar
  45. Kalman L, LoBrutto R, Allen JP, Williams JC (1999) Modified reaction centres oxidize tyrosine in reactions that mirror photosystem II. Nature 402:696–699. doi: 10.1038/45300 CrossRefGoogle Scholar
  46. Kalman L, Williams J, Allen J (2005) Mimicking the properties of photosystem II in bacterial reaction centers. In: Wydrzynski T, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Springer, Dordrecht, pp 715–727Google Scholar
  47. Kalman L, LoBrutto R, Williams JC, Allen JP (2006) Iron as a bound secondary electron donor in modified bacterial reaction centers. Biochemistry 45:13869–13874. doi: 10.1021/bi061104a PubMedCrossRefGoogle Scholar
  48. Kaneko Y, Tamura M, Yamazaki I (1980) Formation of porphyrin-Pi cation radical in zinc-substituted horseradish-peroxidase. Biochemistry 19:5795–5799. doi: 10.1021/bi00566a020 PubMedCrossRefGoogle Scholar
  49. Kehoe JW, Meadows KA, Parkes-Loach PS, Loach PA (1998) Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 2. Determination of structural features that stabilize complex formation and their implications for the structure of the subunit complex. Biochemistry 37:3418–3428. doi: 10.1021/bi9722709 PubMedCrossRefGoogle Scholar
  50. Kozlov YN, Zharmukhamedov SK, Tikhonov KG, Dasgupta J, Kazakova AA, Dismukes GC et al (2004) Oxidation potentials and electron donation to photosystem II of manganese complexes containing bicarbonate and carboxylate ligands. Phys Chem Chem Phys 6:4905–4911. doi: 10.1039/b406569g CrossRefGoogle Scholar
  51. Krishtalik LI (1986) Energetics of multielectron reactions—photosynthetic oxygen evolution. Biochim Biophys Acta 849:162–171. doi: 10.1016/0005-2728(86)90107-6 CrossRefGoogle Scholar
  52. Kruse O, Rupprecht J, Mussgnug JR, Dismukes GC, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4:957–970. doi: 10.1039/b506923h PubMedCrossRefGoogle Scholar
  53. Kulik LV, Epel B, Lubitz W, Messinger J (2007) Electronic structure of the Mn4OxCa cluster in the S0 and S2 states of the oxygen-evolving complex of photosystem II based on pulse 55Mn-ENDOR and EPR spectroscopy. J Am Chem Soc 129:13421–13435. doi: 10.1021/ja071487f PubMedCrossRefGoogle Scholar
  54. LeBrun NE, Andrews SC, Guest JR, Harrison PM, Moore GR, Thomson AJ (1995a) Identification of the ferroxidase center of Escherichia-coli bacterioferritin. Biochem J 312:385–392Google Scholar
  55. LeBrun NE, Moore GR, Thomson AJ (1995b) Magnetic circular-dichroism spectroscopy of the iron cores of ferritin and bacterioferritin. Mol Phys 85:1061–1068. doi: 10.1080/00268979500101661 CrossRefGoogle Scholar
  56. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103:15729–15735. doi: 10.1073/pnas.0603395103 PubMedCrossRefGoogle Scholar
  57. Li WW, Heinze J, Haehnel W (2005) Site-specific binding of quinones to proteins through thiol addition and addition–elimination reactions. J Am Chem Soc 127:6140–6141. doi: 10.1021/ja050974x PubMedCrossRefGoogle Scholar
  58. Limburg J, Vrettos JS, Liable-Sands LM, Rheingold AL, Crabtree RH, Brudvig GW (1999) A functional model for O–O bond formation by the O-2-evolving complex in photosystem II. Science 283:1524–1527. doi: 10.1126/science.283.5407.1524 PubMedCrossRefGoogle Scholar
  59. Limburg J, Vrettos JS, Chen HY, de Paula JC, Crabtree RH, Brudvig GW (2001) Characterization of the O-2-evolving reaction catalyzed by [(terpy)(H2O)Mn-III(O)(2)Mn-IV(OH2)(terpy)](NO3) (terpy=2,2′: 6,2″-terpyridine). J Am Chem Soc 123:423–430. doi: 10.1021/ja001090a PubMedCrossRefGoogle Scholar
  60. Lin X, Murchison HA, Nagarajan V, Parson WW, Allen JP, Williams JC (1994) Specific alteration of the oxidation potential of the electron-donor in reaction centers from Rhodobacter-sphaeroides. Proc Natl Acad Sci USA 91:10265–10269. doi: 10.1073/pnas.91.22.10265 PubMedCrossRefGoogle Scholar
  61. Lin RJ, Lin KS, Chang IJ (1996) Photophysical properties of tricarbonyl(histidine)(diimine)rhenium(I) complexes in aqueous solution. Inorg Chim Acta 242:179–183. doi: 10.1016/0020-1693(96)04864-5 CrossRefGoogle Scholar
  62. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Angstrom resolution structure of photosystem II. Nature 438:1040–1044. doi: 10.1038/nature04224 PubMedCrossRefGoogle Scholar
  63. Lubitz W, Lendzian F, Bittl R (2002) Radicals, radical pairs and triplet states in photosynthesis. Acc Chem Res 35:313–320. doi: 10.1021/ar000084g PubMedCrossRefGoogle Scholar
  64. Magner E, McLendon G (1989) Ground-state and excited-state electron-transfer reactions of zinc cytochrome-c. J Phys Chem 93:7130–7134. doi: 10.1021/j100357a021 CrossRefGoogle Scholar
  65. Marcus RA (1956) On the theory of oxidation–reduction reactions involving electron transfer. I. J Chem Phys 24:966–978. doi: 10.1063/1.1742723 CrossRefGoogle Scholar
  66. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta Rev Bioenerg 811:265–322. doi: 10.1016/0304-4173(85)90014-X Google Scholar
  67. McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106:4455–4483. doi: 10.1021/cr0204294 PubMedCrossRefGoogle Scholar
  68. McEvoy JP, Gascon JA, Batista VS, Brudvig GW (2005) The mechanism of photosynthetic water splitting. Photochem Photobiol Sci 4:940–949. doi: 10.1039/b506755c PubMedCrossRefGoogle Scholar
  69. McGourty JL, Petersonkennedy SE, Ruo WY, Hoffman BM (1987) Characterization of long-range electron-transfer in mixed-metal [Zinc, Iron] hybrid hemoglobins. Biochemistry 26:8302–8312. doi: 10.1021/bi00399a042 PubMedCrossRefGoogle Scholar
  70. McLendon GL, Winkler JR, Nocera DG, Mauk MR, Mauk AG, Gray HB (1985) Quenching of zinc-substituted cytochrome-c excited-states by cytochrome-b5. J Am Chem Soc 107:739–740. doi: 10.1021/ja00289a055 CrossRefGoogle Scholar
  71. Meadows KA, Parkes-Loach PS, Kehoe JW, Loach PA (1998) Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 1. Minimal requirements for subunit formation. Biochemistry 37:3411–3417. doi: 10.1021/bi972269+ PubMedCrossRefGoogle Scholar
  72. Mennenga A, Gartner W, Lubitz W, Gorner H (2006) Effects of noncovalently bound quinones on the ground and triplet states of zinc chlorins in solution and bound to de novo synthesized peptides. Phys Chem Chem Phys 8:5444–5453. doi: 10.1039/b612056c PubMedCrossRefGoogle Scholar
  73. Messinger J (2004) Evaluation of different mechanistic proposals for water oxidation in photosynthesis on the basis of Mn4OxCa structures for the catalytic site and spectroscopic data. Phys Chem Chem Phys 6:4764–4771. doi: 10.1039/b406437b CrossRefGoogle Scholar
  74. Messinger J, Badger M, Wydrzynski T (1995) Detection of one slowly exchanging substrate water molecule in the S-3 state of photosystem-II. Proc Natl Acad Sci USA 92:3209–3213. doi: 10.1073/pnas.92.8.3209 PubMedCrossRefGoogle Scholar
  75. Messinger J, Robblee JH, Bergmann U, Fernandez C, Glatzel P, Visser H et al (2001) Absence of Mn-centered oxidation in the S-2→S-3 transition: implications for the mechanism of photosynthetic water oxidation. J Am Chem Soc 123:7804–7820. doi: 10.1021/ja004307+ PubMedCrossRefGoogle Scholar
  76. Miller JE, Di Bilio AJ, Wehbi WA, Green MT, Museth AK, Richards JR et al (2004) Electron tunneling in rhenium-modified Pseudomonas aeruginosa azurins. Biochim Biophys Acta 1655:59–63. doi: 10.1016/j.bbabio.2003.06.010 PubMedCrossRefGoogle Scholar
  77. Moore GR, Williams RJP, Peterson J, Thomson AJ, Mathews FS (1985) A spectroscopic investigation of the structure and redox properties of Escherichia-coli cytochrome b-562. Biochim Biophys Acta 829:83–96PubMedGoogle Scholar
  78. Moser C, Dutton PL (1992) Engineering protein structure for electron transfer function in photosynthetic reaction centers. Biochim Biophys Acta 1101:171–176PubMedGoogle Scholar
  79. Moser C, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron-transfer. Nature 355:796–802. doi: 10.1038/355796a0 PubMedCrossRefGoogle Scholar
  80. Murray JW, Barber J (2007) Structural characteristics of channels and pathways in photosystem II including the identification of an oxygen channel. J Struct Biol 159:228–237. doi: 10.1016/j.jsb.2007.01.016 PubMedCrossRefGoogle Scholar
  81. Narvaez AJ, Kalman L, LoBrutto R, Allen JP, Williams JC (2002) Influence of the protein environment on the properties of a tyrosyl radical in reaction centers from Rhodobacter sphaeroides. Biochemistry 41:15253–15258. doi: 10.1021/bi0264566 PubMedCrossRefGoogle Scholar
  82. Noy D, Dutton PL (2006) Design of a minimal polypeptide unit for bacteriochlorophyll binding and self-assembly based on photosynthetic bacterial light-harvesting proteins. Biochemistry 45:2103–2113. doi: 10.1021/bi052175x PubMedCrossRefGoogle Scholar
  83. Noy D, Discher BM, Rubtsov IV, Hochstrasser RA, Dutton PL (2005) Design of amphiphilic protein maquettes: enhancing maquette functionality through binding of extremely hydrophobic cofactors to lipophilic domains. Biochemistry 44:12344–12354. doi: 10.1021/bi050696e PubMedCrossRefGoogle Scholar
  84. Noy D, Moser CC, Dutton PL (2006) Design and engineering of photosynthetic light-harvesting and electron transfer using length, time, and energy scales. Biochim Biophys Acta 1757:90–105. doi: 10.1016/j.bbabio.2005.11.010 PubMedCrossRefGoogle Scholar
  85. Page CC, Moser CC, Chen XX, Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation–reduction. Nature 402:47–52. doi: 10.1038/46972 PubMedCrossRefGoogle Scholar
  86. Page CC, Moser CC, Dutton PL (2003) Mechanism for electron transfer within and between proteins. Curr Opin Chem Biol 7:551–556. doi: 10.1016/j.cbpa.2003.08.005 PubMedCrossRefGoogle Scholar
  87. Petersonkennedy SE, McGourty JL, Hoffman BM (1984) Temperature-dependence of long-range electron-transfer in [Zn, Fe-III] hybrid hemoglobin. J Am Chem Soc 106:5010–5012. doi: 10.1021/ja00329a066 CrossRefGoogle Scholar
  88. Poulsen AK, Rompel A, McKenzie CJ (2005) Water oxidation catalyzed by a dinuclear Mn complex: a functional model for the oxygen-evolving center of photosystem II. Angew Chem Int Ed 44:6916–6920. doi: 10.1002/anie.200502114 CrossRefGoogle Scholar
  89. Qin L, Kostic NM (1994) Photoinduced electron-transfer from the triplet-state of zinc cytochrome-c to ferricytochrome b5 is gated by configurational fluctuations of the diprotein complex. Biochemistry 33:12592–12599. doi: 10.1021/bi00208a009 PubMedCrossRefGoogle Scholar
  90. Rabanal F, Gibney BR, DeGrado WF, Moser CC, Dutton PL (1996) Engineering photosynthesis: synthetic redox proteins. Inorg Chim Acta 243:213–218. doi: 10.1016/0020-1693(95)04910-X CrossRefGoogle Scholar
  91. Rappaport F, Diner BA (2008) Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in photosystem II. Coord Chem Rev 252:259–272. doi: 10.1016/j.ccr.2007.07.016 CrossRefGoogle Scholar
  92. Rau HK, Snigula H, Struck A, Robert B, Scheer H, Haehnel W (2001) Design, synthesis and properties of synthetic chlorophyll proteins. Eur J Biochem 268:3284–3295. doi: 10.1046/j.1432-1327.2001.02231.x PubMedCrossRefGoogle Scholar
  93. Razeghifard AR, Wydrzynski T (2003) Binding of Zn-chlorin to a synthetic four-helix bundle peptide through histidine ligation. Biochemistry 42:1024–1030. doi: 10.1021/bi026787i PubMedCrossRefGoogle Scholar
  94. Redfearn E (1965) Biochemistry of quinones. Academic Press, New YorkGoogle Scholar
  95. Rehm D, Weller A (1970) Kinetics of fluorescence quenching by electron and H-atom transfer. Isr J Chem 8:259Google Scholar
  96. Robinson CR, Liu YF, Thomson JA, Sturtevant JM, Sligar SG (1997) Energetics of heme binding to native and denatured states of cytochrome b(562). Biochemistry 36:16141–16146. doi: 10.1021/bi971470h PubMedCrossRefGoogle Scholar
  97. Satoh R, Ohba Y, Yamauchi S, Iwaizumi M, Kimura C, Tsukahara K (1997) Photoinduced electron transfer from zinc myoglobin to benzoquinone studied by FT-EPR. J Chem Soc Faraday 93:537–544. doi: 10.1039/a605622i CrossRefGoogle Scholar
  98. Satoh H, Uchida A, Nakayama K, Okada M (2001) Water-soluble chlorophyll protein in Brassicaceae plants is a stress-induced chlorophyll-binding protein. Plant Cell Physiol 42:906–911. doi: 10.1093/pcp/pce117 PubMedCrossRefGoogle Scholar
  99. Sauer K, Yano J, Yachandra VK (2005) X-ray spectroscopy of the Mn4Ca cluster in the water-oxidation complex of photosystem II. Photosynth Res 85:73–86. doi: 10.1007/s11120-005-0638-9 PubMedCrossRefGoogle Scholar
  100. Sharp RE, Moser CC, Rabanal F, Dutton PL (1998) Design, synthesis, and characterization of a photoactivatable flavocytochrome molecular maquette. Proc Natl Acad Sci USA 95:10465–10470. doi: 10.1073/pnas.95.18.10465 PubMedCrossRefGoogle Scholar
  101. Siegbahn PEM (2006) O–O bond formation in the S-4 state of the oxygen-evolving complex in photosystem II. Chem Eur J 12:9217–9227. doi: 10.1002/chem.200600774 CrossRefGoogle Scholar
  102. Siegbahn PEM (2008) Mechanism and energy diagram for O–O bond formation in the oxygen-evolving complex in photosystem II. Philos Trans R Soc Lond B Biol Sci 363:1221–1228. doi: 10.1098/rstb.2007.2218 PubMedCrossRefGoogle Scholar
  103. Simolo KP, McLendon GL, Mauk MR, Mauk AG (1984) Photoinduced electron-transfer within a protein protein complex formed between physiological redox partners—reduction of ferricytochrome-b5 by the hemoglobin derivative alpha-2zn-beta-2fe-IIICN. J Am Chem Soc 106:5012–5013. doi: 10.1021/ja00329a067 CrossRefGoogle Scholar
  104. Smith JMA, Quirk AV, Plank RWH, Diffin FM, Ford GC, Harrison PM (1988) The Identity of Escherichia-coli bacterioferritin and cytochrome-b1. Biochem J 255:737–740PubMedGoogle Scholar
  105. Springs SL, Bass SE, Bowman G, Nodelman I, Schutt CE, McLendon GL (2002) A multigeneration analysis of cytochrome b(562) redox variants: evolutionary strategies for modulating redox potential revealed using a library approach. Biochemistry 41:4321–4328. doi: 10.1021/bi012066s PubMedCrossRefGoogle Scholar
  106. Sproviero EM, Gascon JA, McEvoy JP, Brudvig GW, Batista VS (2006) QM/MM models of the O-2-evolving complex of photosystem II. J Chem Theory Comput 2:1119–1134. doi: 10.1021/ct060018l CrossRefGoogle Scholar
  107. Su JH, Lubitz W, Messinger J (2008) Probing mode and site of substrate water binding to the oxygen-evolving complex in the S-2 state of photosystem II by O-17-HYSCORE spectroscopy. J Am Chem Soc 130:786–787. doi: 10.1021/ja076620i PubMedCrossRefGoogle Scholar
  108. Sudha BP, Dixit N, Moy VT, Vanderkooi JM (1984) Reactions of excited-state cytochrome-c derivatives—delayed fluorescence and phosphorescence of zinc, tin, and metal-free cytochrome-c at room-temperature. Biochemistry 23:2103–2107. doi: 10.1021/bi00304a035 CrossRefGoogle Scholar
  109. Tagore R, Crabtree RH, Brudvig GW (2008) Oxygen evolution catalysis by a dimanganese complex and its relation to photosynthetic water oxidation. Inorg Chem 47:1815–1823. doi: 10.1021/ic062218d PubMedCrossRefGoogle Scholar
  110. Teale FWJ (1959) Cleavage of the haem-protein link by acid methylethylketone. Biochim Biophys Acta 35:543. doi: 10.1016/0006-3002(59)90407-X PubMedCrossRefGoogle Scholar
  111. Thielges M, Uyeda G, Camara-Artigas A, Kalman L, Williams JC, Allen JP (2005) Design of a redox-linked active metal site: manganese bound to bacterial reaction centers at a site resembling that of photosystem II. Biochemistry 44:7389–7394. doi: 10.1021/bi050377n PubMedCrossRefGoogle Scholar
  112. Tommos C, Skalicky JJ, Pilloud DL, Wand AJ, Dutton PL (1999) De novo proteins as models of radical enzymes. Biochemistry 38:9495–9507. doi: 10.1021/bi990609g PubMedCrossRefGoogle Scholar
  113. Twitchett MB, Ferrer JC, Siddarth P, Mauk AG (1997) Intramolecular electron transfer kinetics of a synthetic flavocytochrome c. J Am Chem Soc 119:435–436. doi: 10.1021/ja963086y CrossRefGoogle Scholar
  114. Vanderkooi JM, Adar F, Erecinska M (1976) Metallocytochromes c: characterization of electronic absorption and emission spectra of Sn4+ and Zn2+ cytochromes c. Eur J Biochem 64:381–387. doi: 10.1111/j.1432-1033.1976.tb10312.x PubMedCrossRefGoogle Scholar
  115. Weng TC, Hsieh WY, Uffelman ES, Gordon-Wylie SW, Collins TJ, Pecoraro VL et al (2004) XANES evidence against a manganyl species in the S-3 state of the oxygen-evolving complex. J Am Chem Soc 126:8070–8071. doi: 10.1021/ja0494104 PubMedCrossRefGoogle Scholar
  116. Whittaker MM, Barynin VV, Igarashi T, Whittaker JW (2003) Outer sphere mutagenesis of Lactobacillus plantarum manganese catalase disrupts the cluster core—mechanistic implications. Eur J Biochem 270:1102–1116. doi: 10.1046/j.1432-1033.2003.03459.x PubMedCrossRefGoogle Scholar
  117. Williams JC, Haffa ALM, McCulley JL, Woodbury NW, Allen JP (2001) Electrostatic interactions between charged amino acid residues and the bacteriochlorophyll dimer in reaction centers from Rhodobacter sphaeroides. Biochemistry 40:15403–15407. doi: 10.1021/bi011574z PubMedCrossRefGoogle Scholar
  118. Winkler JR, Gray HB (1997) Electron tunneling in proteins: role of the intervening medium. J Biol Inorg Chem 2:399–404. doi: 10.1007/s007750050150 CrossRefGoogle Scholar
  119. Winkler JR, Di Bilio AJ, Farrow NA, Richards JH, Gray HB (1999) Electron tunneling in biological molecules. Pure Appl Chem 71:1753–1764. doi: 10.1351/pac199971091753 CrossRefGoogle Scholar
  120. Wydrzynski T, Satoh K (2005) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Springer, DordrechtGoogle Scholar
  121. Wydrzynski T, Hillier W, Messinger J (1996) On the functional significance of substrate accessibility in the photosynthetic water oxidation mechanism. Physiol Plant 96:342–350. doi: 10.1111/j.1399-3054.1996.tb00224.x CrossRefGoogle Scholar
  122. Wydrzynski T, Hillier W, Conlan B (2007) Engineering model proteins for photosystem II function. Photosynth Res 94:225–233. doi: 10.1007/s11120-007-9271-0 PubMedCrossRefGoogle Scholar
  123. Yachandra VK (2005) The catalytic manganese cluster: organization of the metal ions. In: Satoh K, Wydrzynski T (eds) Photosystem II—the light driven water:plastoquinone oxidoreductase. Springer, Dordrecht, pp 235–260Google Scholar
  124. Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J et al (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314:821–825. doi: 10.1126/science.1128186 PubMedCrossRefGoogle Scholar
  125. Yariv J, Kalb AJ, Sperling R, Bauminger ER, Cohen SG, Ofer S (1981) The composition and the structure of bacterioferritin of Escherichia-coli. Biochem J 197:171–175PubMedGoogle Scholar
  126. Zemel H, Hoffman BM (1981) Long-range triplet-triplet energy-transfer within metal-substituted hemoglobins. J Am Chem Soc 103:1192–1201. doi: 10.1021/ja00395a033 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Research School of Biological ScienceAustralian National UniversityCanberraAustralia

Personalised recommendations