Photosynthesis Research

, 98:657 | Cite as

Oxygen activation by cytochrome P450 monooxygenase



Unlike photosystem II (PSII) that catalyzes formation of the O–O bond, the cytochromes P450 (P450), members of a superfamily of hemoproteins, catalyze the scission of the O–O bond of dioxygen molecules and insert a single oxygen atom into unactivated hydrocarbons through a hydrogen abstraction-oxygen rebound mechanism. Hydroxylation of the unactivated hydrocarbons at physiological temperatures is vital for many cellar processes such as the biosynthesis of many endogenous compounds and the detoxification of xenobiotics in humans and plants. Even though it carries out the opposite of the water splitting reaction, P450 may share similarities to PSII in proton delivery networks, oxygen and water access channels, and consecutive electron transfer processes. In this article, we review recent advances in understanding the molecular mechanisms by which P450 activates dioxygen.


P450 Oxygen intermediate Oxygen splitting Hydroxylation P450 reductase 



Cytochrome P450

cyt b5

Cytochrome b5


Cytochrome P450 reductase



Cpd I

Compound I


Nicotinamide adenine dinucleotide phosphate


Photosystem II


  1. Akhtar M, Calder MR, Corina DL, Wright JN (1982) Mechanistic studies on C-19 demethylation in oestrogen biosynthesis. Biochem J 201:569–580PubMedGoogle Scholar
  2. Brewer CB, Peterson JA (1988) Single turnover kinetics of the reaction between oxycytochrome P-450cam and reduced putidaredoxin. J Biol Chem 263:791–798PubMedGoogle Scholar
  3. Daff SN, Chapman SK, Turner KL, Holt RA, Govindaraj S, Poulos TL et al (1997) Redox control of the catalytic cycle of flavocytochrome P-450 BM3. Biochemistry 36:13816–13823. doi:10.1021/bi971085s PubMedCrossRefGoogle Scholar
  4. Davydov R, Macdonald ID, Makris TM, Sligar S, Hoffman BM (1999) EPR and ENDOR of catalytic intermediates in cryoreduced native and mutant oxy-cytochromes P450cam: mutation-induced changes in the proton delivery system. J Am Chem Soc 121:10654–10655. doi:10.1021/ja9918829 CrossRefGoogle Scholar
  5. Davydov R, Makris TM, Kofman V, Werst DE, Sligar SG, Hoffman BM (2001) Hydroxylation of camphor by reduced oxy-cytochrome P450cam: mechanistic implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes. J Am Chem Soc 123:1403–1415. doi:10.1021/ja003583l PubMedCrossRefGoogle Scholar
  6. Denisov IG, Makris TM, Sligar SG (2001) Cryotrapped reaction intermediates of cytochrome p450 studied by radiolytic reduction with phosphorus-32. J Biol Chem 276:11648–11652. doi:10.1074/jbc.M010219200 PubMedCrossRefGoogle Scholar
  7. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochrome P450. Chem Rev 105:2253–2277. doi:10.1021/cr0307143 PubMedCrossRefGoogle Scholar
  8. Denisov IG, Grinkova YV, Baas BJ, Sligar SG (2006) The ferrous-dioxygen intermediate in human cytochrome P450 3A4. Substrate dependence of formation and decay kinetics. J Biol Chem 281:23313–23318. doi:10.1074/jbc.M605511200 PubMedCrossRefGoogle Scholar
  9. Di Primo C, Deprez E, Hoa GH, Douzou P (1995) Antagonistic effects of hydrostatic pressure and osmotic pressure on cytochrome P-450cam spin transition. Biophys J 68:2056–2061PubMedCrossRefGoogle Scholar
  10. Dolphin D, Forman A, Borg DC, Fajer J, Felton RH (1971) Compounds I of catalase and horse radish peroxidase: pi-cation radicals. Proc Natl Acad Sci USA 68:614–618. doi:10.1073/pnas.68.3.614 PubMedCrossRefGoogle Scholar
  11. Egawa T, Shimada H, Ishimura Y (1994) Evidence for compound I formation in the reaction of cytochrome P450cam with m-chloroperbenzoic acid. Biochem Biophys Res Commun 201:1464–1469. doi:10.1006/bbrc.1994.1868 PubMedCrossRefGoogle Scholar
  12. Furukawa Y, Morishima I (2001) The role of water molecules in the association of cytochrome P450cam with putidaredoxin. An osmotic pressure study. J Biol Chem 276:12983–12990. doi:10.1074/jbc.M010217200 PubMedCrossRefGoogle Scholar
  13. Gerber N, Sligar S (1992) Catalytic mechanism of cytochrome-P450: evidence for a distal charge relay. J Am Chem Soc 114:8742–8743. doi:10.1021/ja00048a081 CrossRefGoogle Scholar
  14. Groves JT, McClusky GA (1976) Aliphatic hydroxylation via oxygen rebound. Oxygen transfer catalyzed by iron. J Am Chem Soc 98:859–861. doi:10.1021/ja00419a049 CrossRefGoogle Scholar
  15. Guengerich FP (2001) Uncommon P450-catalyzed reactions. Curr Drug Metab 2:93–115. doi:10.2174/1389200013338694 PubMedCrossRefGoogle Scholar
  16. Guengerich FP, Krauser JA, Johnson WW (2004) Rate-limiting steps in oxidations catalyzed by rabbit cytochrome P450 1A2. Biochemistry 43:10775–10788. doi:10.1021/bi0491393 PubMedCrossRefGoogle Scholar
  17. Harris DL, Loew G (1998) Theoretical investigation of the proton assisted pathway to formation of cytochrome P450 compound I. J Am Chem Soc 120:8941–8948. doi:10.1021/ja981059x CrossRefGoogle Scholar
  18. Harris DL, Loew G, Waskell L (1998) Structure and spectra of ferrous dioxygen and reduced ferrous dioxygen model cytochrome P450. J Am Chem Soc 120:4308–4318. doi:10.1021/ja974110q CrossRefGoogle Scholar
  19. He X, de Montellano PR (2004) Radical rebound mechanism in cytochrome P-450-catalyzed hydroxylation of the multifaceted radical clocks alpha- and beta-thujone. J Biol Chem 279:39479–39484. doi:10.1074/jbc.M406838200 PubMedCrossRefGoogle Scholar
  20. Hintz MJ, Peterson JA (1981) The kinetics of reduction of cytochrome P-450cam by reduced putidaredoxin. J Biol Chem 256:6721–6728PubMedGoogle Scholar
  21. Ho FM, Styring S (2008) Access channels and methanol binding site to the CaMn4 cluster in Photosystem II based on solvent accessibility simulations, with implications for substrate water access. Biochim Biophys Acta 1777:140–153. doi:10.1016/j.bbabio.2007.08.009 PubMedCrossRefGoogle Scholar
  22. Hollenberg PF, Kent UM, Bumpus NN (2008) Mechanism-based inactivation of human cytochromes p450s: experimental characterization, reactive intermediates, and clinical implications. Chem Res Toxicol 21:189–205. doi:10.1021/tx7002504 PubMedCrossRefGoogle Scholar
  23. Jin S, Makris TM, Bryson TA, Sligar SG, Dawson JH (2003) Epoxidation of olefins by hydroperoxo-ferric cytochrome P450. J Am Chem Soc 125:3406–3407. doi:10.1021/ja029272n PubMedCrossRefGoogle Scholar
  24. Koppenol WH (2007) Oxygen activation by cytochrome p450: a thermodynamic analysis. J Am Chem Soc 129:9686–9690. doi:10.1021/ja071546p PubMedCrossRefGoogle Scholar
  25. Kuznetsov VY, Poulos TL, Sevrioukova IF (2006) Putidaredoxin-to-cytochrome P450cam electron transfer: differences between the two reductive steps required for catalysis. Biochemistry 45:11934–11944. doi:10.1021/bi0611154 PubMedCrossRefGoogle Scholar
  26. Lipscomb JD (1980) Electron paramagnetic resonance detectable states of cytochrome P-450cam. Biochemistry 19:3590–3599. doi:10.1021/bi00556a027 PubMedCrossRefGoogle Scholar
  27. Lipscomb JD, Sligar SG, Namtvedt MJ, Gunsalus IC (1976) Autooxidation and hydroxylation reactions of oxygenated cytochrome P-450cam. J Biol Chem 251:1116–1124PubMedGoogle Scholar
  28. Mak PJ, Denisov IG, Victoria D, Makris TM, Deng T, Sligar SG et al (2007) Resonance Raman detection of the hydroperoxo intermediate in the cytochrome P450 enzymatic cycle. J Am Chem Soc 129:6382–6383. doi:10.1021/ja071426h PubMedCrossRefGoogle Scholar
  29. Makris TM, von Koenig K, Schlichting I, Sligar SG (2007) Alteration of P450 distal pocket solvent leads to impaired proton delivery and changes in heme geometry. Biochemistry 46:14129–14140. doi:10.1021/bi7013695 PubMedCrossRefGoogle Scholar
  30. Martinis SA, Atkins WM, Stayton PS, Sligar S (1989) A conserved residue of cytochrome P-450 is involved in heme-oxygen stability and activation. J Am Chem Soc 111:9252–9253. doi:10.1021/ja00208a031 CrossRefGoogle Scholar
  31. Murray J, Barber J (2007) Structural characteristics of channels and pathways in photosysyem II including the identification of an oxygen channel. J Struct Biol 159:228–237. doi:10.1016/j.jsb.2007.01.016 PubMedCrossRefGoogle Scholar
  32. Nagano S, Cupp-Vickery JR, Poulos TL (2005) Crystal structures of the ferrous dioxygen complex of wild-type cytochrome P450eryF and its mutants, A245S and A245T: investigation of the proton transfer system in P450eryF. J Biol Chem 280:22102–22107. doi:10.1074/jbc.M501732200 PubMedCrossRefGoogle Scholar
  33. Nelson DR (2006) Cytochrome P450 nomenclature, 2004. Methods Mol Biol 320:1–10PubMedGoogle Scholar
  34. Newcomb M, Zhang R, Chandrasena RE, Halgrimson JA, Horner JH, Makris TM et al (2006) Cytochrome p450 compound I. J Am Chem Soc 128:4580–4581. doi:10.1021/ja060048y PubMedCrossRefGoogle Scholar
  35. Newcomb M, Halgrimson JA, Horner JH, Wasinger EC, Chen LX, Sligar SG (2008) X-ray absorption spectroscopic characterization of a cytochrome P450 compound II derivative. Proc Natl Acad Sci USAGoogle Scholar
  36. Ogliaro F, Harris N, Cohen MS, Filatov M, de Visser SP, Shaik S (2000) A model “rebound” mechanism of hydroxylation of hydroxylation by cytochrome p450: a theoretical investigation of the iron(III)-hydroperoxo species and its epoxidation pathways. J Am Chem Soc 122:8977–8989. doi:10.1021/ja991878x CrossRefGoogle Scholar
  37. Ogliaro F, de Visser SP, Cohen S, Sharma PK, Shaik S (2002) Searching for the second oxidant in the catalytic cycle of cytochrome P450: a theoretical investigation of the iron(III)-hydroperoxo species and its epoxidation pathways. J Am Chem Soc 124:2806–2817. doi:10.1021/ja0171963 PubMedCrossRefGoogle Scholar
  38. Ortiz de Montellano P (2005) Cytochrome P450: structure, mechanism, and biochemistry, Third edn. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  39. Ortiz de Montellano P, Stearns RA (1987) Timing of the radical recombination step in cytochrome P-450 catalysis with ring-strained probes. J Am Chem Soc 109:3415–3420. doi:10.1021/ja00245a037 CrossRefGoogle Scholar
  40. Ost TW, Miles CS, Munro AW, Murdoch J, Reid GA, Chapman SK (2001) Phenylalanine 393 exerts thermodynamic control over the heme of flavocytochrome P450 BM3. Biochemistry 40:13421–13429. doi:10.1021/bi010716m PubMedCrossRefGoogle Scholar
  41. Pochapsky SS, Pochapsky TC, Wei JW (2003) A model for effector activity in a highly specific biological electron transfer complex: the cytochrome P450(cam)-putidaredoxin couple. Biochemistry 42:5649–5656. doi:10.1021/bi034263s PubMedCrossRefGoogle Scholar
  42. Pompon D, Coon MJ (1984) On the mechanism of action of cytochrome P-450. Oxidation and reduction of the ferrous dioxygen complex of liver microsomal cytochrome P-450 by cytochrome b5. J Biol Chem 259:15377–15385PubMedGoogle Scholar
  43. Porter TD (2002) The roles of cytochrome b5 in cytochrome P450 reactions. J Biochem Mol Toxicol 16:311–316. doi:10.1002/jbt.10052 PubMedCrossRefGoogle Scholar
  44. Poulos TL, Finzel BC, Gunsalus IC, Wagner GC, Kraut J (1985) The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. J Biol Chem 260:16122–16130PubMedGoogle Scholar
  45. Raag R, Martinis SA, Sligar SG, Poulos TL (1991) Crystal structure of the cytochrome P-450CAM active site mutant Thr252Ala. Biochemistry 30:11420–11429. doi:10.1021/bi00112a008 PubMedCrossRefGoogle Scholar
  46. Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA, Lavergne J (2002) Kinetics and pathways of charge recombination in photosystem II. Biochemistry 41:8518–8527. doi:10.1021/bi025725p PubMedCrossRefGoogle Scholar
  47. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE et al (2000) The catalytic pathway of cytochrome p450cam at atomic resolution. Science 287:1615–1622. doi:10.1126/science.287.5458.1615 PubMedCrossRefGoogle Scholar
  48. Schunemann V, Jung C, Trautwein AX, Mandon D, Weiss R (2000) Intermediates in the reaction of substrate-free cytochrome P450cam with peroxy acetic acid. FEBS Lett 479:149–154. doi:10.1016/S0014-5793(00)01886-X PubMedCrossRefGoogle Scholar
  49. Schunemann V, Jung C, Terner J, Trautwein AX, Weiss R (2002) Spectroscopic studies of peroxyacetic acid reaction intermediates of cytochrome P450cam and chloroperoxidase. J Inorg Biochem 91:586–596. doi:10.1016/S0162-0134(02)00476-2 PubMedCrossRefGoogle Scholar
  50. Shimada H, Nagano S, Ariga Y, Unno M, Egawa T, Hishiki T et al (1999) Putidaredoxin-cytochrome p450cam interaction. Spin state of the heme iron modulates putidaredoxin structure. J Biol Chem 274:9363–9369. doi:10.1074/jbc.274.14.9363 PubMedCrossRefGoogle Scholar
  51. Shimada H, Nagano S, Hori H, Ishimura Y (2001) Putidaredoxin-cytochrome P450cam interaction. J Inorg Biochem 83:255–260. doi:10.1016/S0162-0134(00)00173-2 PubMedCrossRefGoogle Scholar
  52. Sligar SG (1976) Coupling of spin, substrate, and redox equilibria in cytochrome P450. Biochemistry 15:5399–5406. doi:10.1021/bi00669a029 PubMedCrossRefGoogle Scholar
  53. Sligar SG, Gunsalus IC (1976) A thermodynamic model of regulation: modulation of redox equilibria in camphor monoxygenase. Proc Natl Acad Sci USA 73:1078–1082. doi:10.1073/pnas.73.4.1078 PubMedCrossRefGoogle Scholar
  54. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96:2841–2888. doi:10.1021/cr9500500 PubMedCrossRefGoogle Scholar
  55. Spolitak T, Dawson JH, Ballou DP (2006) Rapid kinetics investigations of peracid oxidation of ferric cytochrome P450cam: nature and possible function of compound ES. J Inorg Biochem 100:2034–2044. doi:10.1016/j.jinorgbio.2006.09.026 PubMedCrossRefGoogle Scholar
  56. Tosha T, Kagawa N, Arase M, Waterman MR, Kitagawa T (2008) Interaction between substrate and oxygen ligand responsible for effective O–O bond cleavage in bovine cytochrome P450 steroid 21-hydroxylase proved by Raman spectroscopy. J Biol Chem 283:3708–3717. doi:10.1074/jbc.M707338200 PubMedCrossRefGoogle Scholar
  57. Unno M, Shimada H, Toba Y, Makino R, Ishimura Y (1996) Role of Arg112 of cytochrome p450cam in the electron transfer from reduced putidaredoxin. Analyses with site-directed mutants. J Biol Chem 271:17869–17874. doi:10.1074/jbc.271.30.17869 PubMedCrossRefGoogle Scholar
  58. Vaz AD, Pernecky SJ, Raner GM, Coon MJ (1996) Peroxo-iron and oxenoid-iron species as alternative oxygenating agents in cytochrome P450-catalyzed reactions: switching by threonine-302 to alanine mutagenesis of cytochrome P450 2B4. Proc Natl Acad Sci USA 93:4644–4648. doi:10.1073/pnas.93.10.4644 PubMedCrossRefGoogle Scholar
  59. Vaz AD, McGinnity DF, Coon MJ (1998) Epoxidation of olefins by cytochrome P450: evidence from site-specific mutagenesis for hydroperoxo-iron as an electrophilic oxidant. Proc Natl Acad Sci USA 95:3555–3560. doi:10.1073/pnas.95.7.3555 PubMedCrossRefGoogle Scholar
  60. Vidakovic M, Sligar SG, Li H, Poulos TL (1998) Understanding the role of the essential Asp251 in cytochrome p450cam using site-directed mutagenesis, crystallography, and kinetic solvent isotope effect. Biochemistry 37:9211–9219. doi:10.1021/bi980189f PubMedCrossRefGoogle Scholar
  61. Zhang H, Gruenke L, Arscott D, Harris DL, Glavanovich M, Johnson R et al (2003) Determination of the rate of reduction of oxyferrous cytochrome P450 2B4 by 5-deazaFAD T491 V cytochrome P450 reductase. Biochemistry 42:11594–11603. doi:10.1021/bi034968u PubMedCrossRefGoogle Scholar
  62. Zhang H, Myshkin E, Waskell L (2005) Role of cytochrome b5 in catalysis by cytochrome P450 2B4. Biochem Biophys Res Commun 338:499–506. doi:10.1016/j.bbrc.2005.09.022 PubMedCrossRefGoogle Scholar
  63. Zhang H, Hamdane D, Im SC, Waskell L (2008) Cytochrome b5 inhibits electron transfer from NADPH-cytochrome P450 reductase to ferric cytochrome P450 2B4. J Biol Chem 283:5217–5225. doi:10.1074/jbc.M709094200 PubMedCrossRefGoogle Scholar
  64. Zhao B, Guengerich FP, Bellamine A, Lamb DC, Izumikawa M, Lei L et al (2005a) Binding of two flaviolin substrate molecules, oxidative coupling, and crystal structure of Streptomyces coelicolor A3(2) cytochrome P450 158A2. J Biol Chem 280:11599–11607. doi:10.1074/jbc.M410933200 PubMedCrossRefGoogle Scholar
  65. Zhao B, Guengerich FP, Voehler M, Waterman MR (2005b) Role of active site water molecules and substrate hydroxyl groups in oxygen activation by cytochrome P450 158A2: a new mechanism of proton transfer. J Biol Chem 280:42188–42197. doi:10.1074/jbc.M509220200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Djemel Hamdane
    • 1
  • Haoming Zhang
    • 1
  • Paul Hollenberg
    • 1
  1. 1.Department of PharmacologyThe University of MichiganAnn ArborUSA

Personalised recommendations