Photosynthesis Research

, Volume 95, Issue 2–3, pp 247–252 | Cite as

Relative binding affinities of chlorophylls in peridinin–chlorophyll–protein reconstituted with heterochlorophyllous mixtures

  • T. H. P. Brotosudarmo
  • S. Mackowski
  • E. Hofmann
  • R. G. Hiller
  • C. Bräuchle
  • H. ScheerEmail author
Regular Paper


Peridinin–chlorophyll–protein (PCP), containing differently absorbing chlorophyll derivatives, are good models with which to study energy transfer among monomeric chlorophylls (Chls) by both bulk and single-molecule spectroscopy. They can be obtained by reconstituting the N-terminal domain of the protein (N-PCP) with peridinin and chlorophyll mixtures. Upon dimerization of these “half-mers”, homo- and heterochlorophyllous complexes are generated, that correspond structurally to monomeric protomers of native PCP from Amphidinium carterae. Heterochlorophyllous complexes contain two different Chls in the two halves of the complete structure. Here, we report reconstitution of N-PCP with binary mixtures of Chl a, Chl b, and [3-acetyl]-Chl a. The ratios of the pigments were varied in the reconstitution mixture, and relative binding constants were determined from quantification of these pigments in the reconstituted PCPs. We find higher affinities for both Chl b and [3-acetyl]-Chl a than for the native pigment, Chl a.


Dinoflagellate Light-harvesting Peridinin–chlorophyll–protein Chlorophyll Binding affinity 





Circular dichroism




Integral PCP


N-terminal domain of PCP







Work was supported by the Deutsche Forschungsgemeinschaft, Bonn (SFB 533, projects A6 and B7). T.H.P.B. is indebted for financial support from Ludwig-Maximilians University, München. S.M. acknowledges a grant from the Alexander-von-Humboldt foundation, Bonn. Work was supported by Center for Integrated Protein Science Munich (CiPSM).


  1. Bautista JA, Connors RE, Raju BB, Hiller RG, Sharples FP, Gosztola D, Wasielewski MR, Frank HA (1999) Excited state properties of peridinin: observation of a solvent dependence of the lowest excited state lifetime and spectral behavior unique among carotenoids. J Phys Chem B 103:8751–8758CrossRefGoogle Scholar
  2. Brotosudarmo THP, Hofmann H, Hiller RG, Wörmke S, Mackowski S, Zumbusch A, Bräuchle C, Scheer H (2006) Peridinin–chlorophyll–protein reconstituted with chlorophyll mixtures: preparation, bulk and single molecule spectroscopy. FEBS Lett 580:5257–5262PubMedCrossRefGoogle Scholar
  3. Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K (1996) Structural basis of light-harvesting by carotenoids: peridinin–chlorophyll–protein from Amphidinium carterae. Science 272:1788–1791PubMedCrossRefGoogle Scholar
  4. Kleima FJ, Wendling M, Hofmann E, Peterman EJ, van Grondelle R, van Amerongen H (2000) Peridinin chlorophyll a protein: relating structure and steady-state spectroscopy. Biochemistry 39:5184–5195PubMedCrossRefGoogle Scholar
  5. Lichtenthaler HK (1987) Chlorophyll and carotenoid: pigments of photosynthetic membrane. Meth Enzymol 148:350–386CrossRefGoogle Scholar
  6. Macpherson A, Hiller R (2003) Light-harvesting system in Chl c-containing algae in: light-harvesting antennas. In: Green B, Parson W (eds) Photosynthesis. Kluwer, Dordrecht, pp 323–352Google Scholar
  7. Mao L, Wang Y, Hu X (2003) π–π Stacking interactions in peridinin–chlorophyll–protein of Amphidinium carterae. J Phys Chem 107:3963–3971Google Scholar
  8. Marr IL, Suryana N, Lakulay P, Marr MI (1995) Determination of Chlorophyll a and b by simultaneous multi-component spectophotometry. Fresenius J Anal Chem 352:456–460CrossRefGoogle Scholar
  9. Miller DJ, Catmull J, Puskeiler R, Tweedale H, Sharples FP, Hiller RG (2005) Reconstitution of the peridinin–chlorophyll a-protein (PCP): evidence for functional flexibility in chlorophyll binding. Photosynth Res 86:229–240PubMedCrossRefGoogle Scholar
  10. Omata T, Murata N (1986) A rapid and efficient method to prepare chlorophyll a and b from leaves. Photochem Photobiol 31:183–185Google Scholar
  11. Polivka T, Pascher T, Sundstrom V, Hiller RG (2005) Tuning energy transfer in the peridinin–chlorophyll complex by reconstitution with different chlorophylls. Photosynth Res 86:217–227PubMedCrossRefGoogle Scholar
  12. Porra RJ (2002) The chequered history of the development and use of silmutaneous equations for the accurate determination of chlorophyll a and b. Photosynth Res 73:149–156PubMedCrossRefGoogle Scholar
  13. Pröll S, Wilhelm B, Robert B, Scheer H (2006) Myoglobin with modified tetrapyrrole chromophores: binding specificity and photochemistry. Biochim Biophys Acta 1757:750–763PubMedCrossRefGoogle Scholar
  14. Scheer H (2003) The pigments. In: Green B, Parson W (eds) Light-harvesting antennas in photosynthesis. Kluwer, Dordrecht, pp 29–81Google Scholar
  15. Scheer H, Hartwich G (1995) Bacterial reaction centers with modified tetrapyrrole chromophores. In: Blankenship R, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 649–663Google Scholar
  16. Struck A, Cmiel E, Katheder I, Scheer H (1990) Modified reaction centers from Rhodobacter sphaeroides R 26. 2. Bacteriochlorophylls with modified C-3 substituents at sites BA and BB. FEBS Lett 268:180–184PubMedCrossRefGoogle Scholar
  17. Wörmke S, Mackowski S, Brotosudarmo THP, Bräuchle C, Gracia A, Braun P, Scheer H, Hofmann E (2007a) Detection of single biomolecule fluorescence excited through energy transfer: application to light-harvesting complexes. Appl Phys Lett 90:193901CrossRefGoogle Scholar
  18. Wörmke S, Mackowski S, Brotosudarmo THP, Jung C, Zumbusch A, Ehrl M, Scheer H, Hofmann H, Hiller RG, Bräuchle C (2007b) Monitoring fluorescence of individual chromophores in peridinin–chlorophyll–protein complex using single-molecule spectroscopy. Biochim Biophys Acta 1767:956–964PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • T. H. P. Brotosudarmo
    • 1
    • 2
  • S. Mackowski
    • 1
  • E. Hofmann
    • 3
  • R. G. Hiller
    • 4
  • C. Bräuchle
    • 1
  • H. Scheer
    • 5
    Email author
  1. 1.Department of Chemistry and Biochemistry, Center for NanoscienceLudwig-Maximilians-UniversityMunchenGermany
  2. 2.IBLS Division of Biochemistry and Molecular Biology, Biomedical Research BuildingUniversity of GlasgowGlasgowUK
  3. 3.Department of BiologyRuhr-University BochumBochumGermany
  4. 4.School of Biological SciencesMacquarie UniversityNorth RydeAustralia
  5. 5.Department of BiologyLudwig-Maximilians-UniversityMunchenGermany

Personalised recommendations