Photosynthesis Research

, Volume 95, Issue 2–3, pp 147–154 | Cite as

Nomenclature for membrane-bound light-harvesting complexes of cyanobacteria

Mini review

Abstract

Accessory chlorophyll-binding proteins (CBP) in cyanobacteria have six transmembrane helices and about 11 conserved His residues that might participate in chlorophyll binding. In various species of cyanobacteria, the CBP proteins bind different types of chlorophylls, including chlorophylls a, b, d and divinyl-chlorophyll a, b. The CBP proteins do not belong to the light-harvesting complexes (LHC) superfamily of plant and algae. The proposed new name of CBP for this class of proteins, which is a unique accessory light-harvesting superfamily in cyanobacteria, clarifies the confusion of names of prochlorophytes chlorophyll binding protein (Pcb), PSII-like light-harvesting proteins and iron-stress-induced protein A (IsiA). The CBP complexes are a member of a larger family that includes the chlorophyll a-binding proteins CP43 and CP47 that function as core antennas of photosystem II.

Keywords

Light-harvesting protein complexes Chlorophyll-binding protein complexes Cyanobacteria Acaryochloris Prochlorophytes 

Abbreviations

CBP

Accessory chlorophyll-binding proteins

CP43/CP47

Core antenna of reaction center II

dCBP

Accessory divinylchlorophyll binding proteins

IsiA

Iron-stress-induced protein A

PBS

Phycobilisomes

Pcb

Prochlorophyte chlorophyll-binding protein complexes

PS

Photosystem

RC

Reaction center

Notes

Acknowledgments

MC is supported by a University of Sydney research fellowship and thanks the Australia Research Council for financial support. This work has been supported in part by US DOE Grant No. DE-FG02-04ER15550 to REB.

References

  1. Bibby TS, Nield J, Barber J (2001a) Iron deficiency induces the formation of an antenna ring around trimeric Photosystem I in cyanobacteria. Nature 412:743–745PubMedCrossRefGoogle Scholar
  2. Bibby TS, Nield J, Partensky F, Barber J (2001b) Oxyphotobacteria antenna ring around Photosystem I. Nature 413:590PubMedCrossRefGoogle Scholar
  3. Bibby TS, Mary I, Nield J, Partensky F, Barber J (2003a) Low-lightadapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424:1051–1054PubMedCrossRefGoogle Scholar
  4. Bibby TS, Nield J, Chen M, Larkum AWD, Barber J (2003b) Structure of a Photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc Natl Acad Sci USA 100:9050–9054PubMedCrossRefGoogle Scholar
  5. Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, Oxford, UKGoogle Scholar
  6. Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel KP, Pistorius EK, Kruip J (2001) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412:745–748PubMedCrossRefGoogle Scholar
  7. Boichenko VA, Pinevich AV, Stadnichuk IN (2007) Association of chlorophyll a/b-binding Pcb proteins with photosystems I and II in Prochlorothrix hollandica. Biochim Biophys Acta Bioenerg 1767:801–806CrossRefGoogle Scholar
  8. Bumba L, Prasil O, Vacha F (2005) Antenna ring around trimeric Photosystem I in chlorophyll b containing cyanobacterium Prochlorothrix hollandica. Biochim Biophys Acta Bioenerg 1708:15CrossRefGoogle Scholar
  9. Burmap RL, Troyan T, Sherman LA (1993) The highly abundant chlorophyll-protein of iron-deficient Synechococcus sp. PCC 7942 (CP43′) is encoded by the isiA gene. Plant Physiol 103:893–902CrossRefGoogle Scholar
  10. Chen M, Bibby TS (2005) Photosynthetic apparatus of antenna-reaction centres supercomplexes in oxyphotobacteria: insight through significance of Pcb/IsiA proteins. Photosynth Res 86:165–173PubMedCrossRefGoogle Scholar
  11. Chen M, Quinnell RG, Larkum AWD (2002) The major light-harvesting pigment protein of Acaryochloris marina. FEBS Lett 514:149–152PubMedCrossRefGoogle Scholar
  12. Chen M, Bibby TS, Nield J, Larkum AWD, Barber J (2005a) Structure of a large photosystem II supercomplex from Acaryochloris marina. FEBS Lett 579:1306–1310PubMedCrossRefGoogle Scholar
  13. Chen M, Bibby TS, Nield J, Larkum AWD, Barber J (2005b) Iron deficiency induces a chlorophyll d-binding Pcb antenna system around Photosystem I in Acaryochloris marina. Biochim Biophys Acta 1708:367–374PubMedCrossRefGoogle Scholar
  14. Chen M, Hiller RG, Howe CJ, Larkum AWD (2005c) Unique origin and lateral transfer of prokaryotic chlorophyll-b and chlorophyll-d light-harvesting systems. Mol Biol Evol 22:21–28PubMedCrossRefGoogle Scholar
  15. Cogdell RJ, Gall A, Kohler J (2006) The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q Rev Biophys 39:227–324PubMedCrossRefGoogle Scholar
  16. Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5. National Biomedical Research Foundation, Washington, DC, pp 345–352Google Scholar
  17. Dufresne A, Garczarek L, Partensky F (2005) Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol 6:R14 (10 pp)Google Scholar
  18. Durnford DG (2003) Structure and regulation of algal light-harvesting complex genes. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publishers, Dordrecht, pp 63–82Google Scholar
  19. Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E, Green BR (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J Mol Evol 48:59–68PubMedCrossRefGoogle Scholar
  20. Eaton-Rye JJ, Putnam-Evans C (2005) The CP47 and CP43 core antenna components. In: Wydryzynski TJ, Satoh K (eds) Photosystem II the light-driven water: plastoquinone oxidoreducase. Springer, Heidelberg, pp 45–70Google Scholar
  21. Garczarek L, Hess WR, Holtzendorff J, van der Staay GWM, Partensky F (2000) Multiplication of antenna genes as a major adaptation to low light in a marine prokaryote. Proc Natl Acad Sci USA 97:4098–4101PubMedCrossRefGoogle Scholar
  22. Garczarek L, van der Staay GWM, Hess WR, Le Gall F, Partensky F (2001) Expression and phylogeny of the multiple antenna genes of the low-light-adapted strain Prochlorococcus marinus SS120 (Oxyphotobacteria). Plant Mol Biol 46:683–693PubMedCrossRefGoogle Scholar
  23. Geiss U, Vinnemeier J, Schoor A, Hagemann M (2001) The iron-regulated isiA gene of Fischerella muscicola strain PCC 73103 is linked to a likewise regulated gene encoding a Pcb-like chlorophyll-binding protein. FEMS Microbiol Lett 197:123–129PubMedCrossRefGoogle Scholar
  24. Green BR, Parson WW (eds) (2003) Light-harvesting antennas in photosynthesis. Springer, HeidelbergGoogle Scholar
  25. Guindon S, Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  26. Havaux M, Guedeney G, Hagemann M, Yeremenko N, Matthijs HCP, Jeanjean R (2005) The chlorophyll-binding protein IsiA is inducible by high light and protects the cyanobacterium Synechocystis PCC6803 from photooxidative stress. FEBS Lett 579:2289–2293PubMedCrossRefGoogle Scholar
  27. Kojima K, Suzuki-Maenaka T, Kikuchi T, Nakamoto H (2006) Roles of the cyanobacterial isiABC operon in protection from oxidative and heat stresses. Physiol Plant 128:507–519CrossRefGoogle Scholar
  28. Krogh AB, Larsson van Heijne G. Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580PubMedCrossRefGoogle Scholar
  29. La Roche J, van der Staay GWM, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AWD, Green BR (1996) Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proc Natl Acad Sci USA 93:15244–15248PubMedCrossRefGoogle Scholar
  30. Lewin RA (2002) Prochlorophyta: a matter of class distinctions. Photosynth Res 73:59–61PubMedCrossRefGoogle Scholar
  31. Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL, An XM, Chang WR (2004) Crystal structure of spinach major light-harvesting complex at 2.72 angstrom resolution. Nature 428:287–292PubMedCrossRefGoogle Scholar
  32. Melkozernov AN, Barber J, Blankenship RE (2006) Light harvesting in photosystem I supercomplexes. Biochemistry 45:331–345PubMedCrossRefGoogle Scholar
  33. Nelson N, Ben-Shem A (2004) The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5:971–982PubMedCrossRefGoogle Scholar
  34. Partensky F, Garczarek L (2003) The photosynthetic apparatus of chlorophyll b- and d-containing oxyphotobacteria. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publishers, Dordrecht, pp 29–62Google Scholar
  35. Post AF, Bullerjahn GS (1994) The photosynthetic machinery in Prochlorophytes: structural properties and ecological significance. FEMS Microbiol Rev 13:393–414CrossRefGoogle Scholar
  36. Pugalenthi GK, Shameer K, Srinivasan N, Sowdhamini R (2006) Harmony: a server for the assessment of protein structures. Nucleic Acids Res 34:W231–W234PubMedCrossRefGoogle Scholar
  37. Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P, Krauss N (1998) A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. J Mol Biol 280:297–314PubMedCrossRefGoogle Scholar
  38. Schwede TJ, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385PubMedCrossRefGoogle Scholar
  39. van der Staay GWM, Yurkova N, Green BR (1998) The 38 kDa chlorophyll a/b protein of the prokaryote Prochlorothrix hollandica is encoded by a divergent pcb gene. Plant Mol Biol 36:709–716PubMedCrossRefGoogle Scholar
  40. Tamura KJ, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  41. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  42. Ting CS, Rocap G, King J, Chisholm SW (2002) Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol 10:134–142PubMedCrossRefGoogle Scholar
  43. Van Thor JJ, Mullineaux CW, Matthijs HCP, Hellingwerf KJ (1998) Light harvesting and state transitions in cyanobacteria. Bot Acta 111:430–443Google Scholar
  44. Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699PubMedGoogle Scholar
  45. Yang ZH (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556PubMedGoogle Scholar
  46. Yang ZN, Goldman N, Friday A (1994) Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. Mol Biol Evol 11:316–324PubMedGoogle Scholar
  47. Yeremenko N, Kouril R, Ihalainen JA, D’Haene S, van Oosterwijk N, Andrizhiyevskaya EG, Keegstra W, Dekker HL, Hagemann M, Boekema EJ, Matthijs HCP, Dekker JP (2004) Supramolecular organization and dual function of the IsiA chlorophyll-binding protein in cyanobacteria. Biochemistry 43:10308–10313PubMedCrossRefGoogle Scholar
  48. Yousef N, Pistorius EK, Michel KP (2003) Comparative analysis of idiA and isiA transcription under iron starvation and oxidative stress in Synechococcus elongatus PCC 7942 wild-type and selected mutants. Arch Microbiol 180:471–483PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of SydneySydneyAustralia
  2. 2.School of Information TechnologiesUniversity of SydneySydneyAustralia
  3. 3.Departments of Biology and ChemistryWashington UniversitySt. LouisUSA

Personalised recommendations