Photosynthesis Research

, Volume 95, Issue 2–3, pp 261–268 | Cite as

Phototrophic purple sulfur bacteria as heat engines in the South Andros Black Hole

  • Rodney A. Herbert
  • Andrew Gall
  • Takashi Maoka
  • Richard J. Cogdell
  • Bruno Robert
  • Shinichi Takaichi
  • Stephanie Schwabe
Regular Paper


Photosynthetic organisms normally endeavor to optimize the efficiency of their light-harvesting apparatus. However, here we describe two bacterial isolates belonging to the genera Allochromatium and Thiocapsa that demonstrate a novel adaptation by optimizing their external growth conditions at the expense of photosynthetic efficiency. In the South Andros Black Hole, Bahamas, a dense l-m thick layer of these anoxygenic purple sulfur bacteria is present at a depth of 17.8 m. In this layer the water temperature increases sharply to 36°C as a consequence of the low-energy transfer efficiency of their carotenoids (ca. 30%). These include spirilloxanthin, and related polyene molecules and a novel chiral carotenoid identified as spirilloxanthin-2-ol, not previously reported in purple bacteria. To our knowledge, this study presents the first evidence of such a bacterial mass significantly increasing the ambient water temperature. The transduction of light to heat energy to excess heat may provide these anoxygenic phototropic bacteria with a competitive advantage over non-thermotolerant species, which would account for their predominance within the microbial layer.


Anoxygenic purple sulfur bacteria Allochromatium Thiocapsa South Andros Black Hole Carotenoid Spirilloxanthin Energy-transfer 



We would like to acknowledge generous financial support from the Biotechnology and Biological Sciences Research Council, United Kingdom (RJC); the Centre National de la Recherche Scientifique, France (BR); the Commissariat à l’Energie Atomique, France (BR); the European Union (AG, contract MEIF-CT-2005-00951); the Federation of European Biochemical Societies (AG) and by a Grant-in-Aid for Scientific Research from the Society for the Promotion of Science, Japan (ST).

Supplementary material


  1. Cogdell RJ, Hipkins MF, MacDonald W, Truscott TG (1981) Energy transfer between the carotenoid and the bacteriochlorophyll within the B800-850 light harvesting pigment-protein complex of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 634:191–202PubMedCrossRefGoogle Scholar
  2. Diaz LTG, Savage M, Eggerth LL, Golerke CG (1993) Composting and recycling: municipal wastes. CRC Press, Boca RatonGoogle Scholar
  3. Dumont R, Pfander H (1984) Synthesis of (S)-Plectaniaxanthin. Helv Chim Acta 67:1283–1290CrossRefGoogle Scholar
  4. Dunstan P (1982) Depth-dependent photoadaptation by zooanthellae of the reef coral annularis. Mar Biol 68:253–264CrossRefGoogle Scholar
  5. Evans MB, Hawthornthwaite AM, Cogdell RJ (1990) Isolation and characterization of the different B800-850 light-harvesting complexes from low- and high-light grown cells of Rhodopseudomonas palustris, strain 2.1.6. Biochim Biophys Acta 1016:71–76CrossRefGoogle Scholar
  6. Frank HA, Cogdell RJ (1993) The photochemistry and function of carotenoids in photosynthesis. In: Young AJ, Britton G (eds) Carotenoids in photosynthesis. Springer-Verlag, London, pp 252–326Google Scholar
  7. Goedheer JC (1959) Energy transfer between carotenoids and bacteriochlorophyll in chromatophores of purple bacteria. Biochim Biophys Acta 35:1–8PubMedCrossRefGoogle Scholar
  8. Hawthornthwaite AM, Cogdell RJ (1991) Bacteriochlorophyll-binding proteins. In: Scheer H (ed) Chlorophylls. CRC, Boca Raton, pp 493–528Google Scholar
  9. Herbert RA, Ranchou-Peyruse A, Duran R, Guyoneaud R, Schwabe S (2005) Characterization of purple sulfur bacteria from the South Andros Black Hole cave system: highlights taxonomic problems for ecological studies among the genera Allochromatium and Thiocapsa. Environ Microbiol 7:1260–1268PubMedCrossRefGoogle Scholar
  10. Hunter OW (1917) Microrganisms and heat production in silage fermentation. J Agric Res 10:75–83Google Scholar
  11. Kahru M, Leppanen JM, Rud O (1993) Cyanobacterial blooms cause heating of the sea surface. Mar Ecol Prog Ser 101:1–7CrossRefGoogle Scholar
  12. Lewis M, Cullen R, Platt T (1983) Phytoplankton and thermal structures in the upper ocean: consequences of nonuniformity in chlorophyll profile. J Geophys Res 88:2565–2570Google Scholar
  13. Lindal TR, Liaaen-Jensen S (1997) Bacterial carotenoids 56. On the spirilloxanthin stereoisomeric set. Acta Chem Scand 51:1128–1131Google Scholar
  14. Madigan MT (1986) Chromatium tepidum sp. nov., a thermophilic photosynthetic bacterium of the family Chromatiaceae. Int J Syst Bacteriol 36:222–227CrossRefGoogle Scholar
  15. Nishimura M, Takamiya A (1966) Analyses of light-induced bacteriochlorophyll absorbance change and fluorescence emission in purple bacteria. Biochim Biophys Acta 120:34–44PubMedCrossRefGoogle Scholar
  16. Noguchi T, Hayashi H, Tasumi M (1990) Factors controlling the efficiency of energy transfer from carotenoids to bacteriochlorophyll in purple photosynthetic bacteria. Biochim Biophys Acta 1017:280–290CrossRefGoogle Scholar
  17. Overmann J, Beatty JT, Hall KJ, Pfennig N, Northcote TG (1991) Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake. Limnol Oceanogr 36:846–859Google Scholar
  18. Overmann J, Beatty JT, Hall KJ (1996a) Purple sulfur bacteria control the growth of aerobic heterotrophic bacterioplankton in a meromictic salt lake. Appl Environ Microbiol 62:3251–3258PubMedGoogle Scholar
  19. Overmann J, Beatty TJ, Krause HR, Hall KJ (1996b) The sulfur cycle in a meromictic salt lake. Limnol Oceanogr 41:147–156CrossRefGoogle Scholar
  20. Palmer RJ (1985) The Blue Holes of the Bahamas. Jonathan Cape, LondonGoogle Scholar
  21. Pfennig N, Trüper HG (1989) Family chromatiaceae. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore, pp 1637–1653Google Scholar
  22. Pfennig N, Trüper HG (1992) The family Chromatiaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, Springer Verlag, New York, pp 3200–3221Google Scholar
  23. Pinkney JL, Paerl HW, Bebout BM (1995) Salinity control of benthic microbial mat production in a Bahamian hypersaline lagoon. J Exp Mar Biol Ecol 187:222–237Google Scholar
  24. Schwabe S, Herbert RA (2004) Black Holes of the Bahamas: what are they and why they are black. Quatern Res Int 121:3–11Google Scholar
  25. Sealey NE (1994) Bahamian landscapes: an Introduction to the geography of the Bahamas. Media Publishing, MiamiGoogle Scholar
  26. Sullivan SA (1963) Experimental study of the absorption in distilled water, artificial sea water, and heavy water in the visible region of the spectrum. Opt Soc Am J 53:962–968CrossRefGoogle Scholar
  27. Takaichi S (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids, vol 8. Kluwer Academic Publisher, Dordrecht, pp 39–69CrossRefGoogle Scholar
  28. Takaichi S, Shimada K (1992) Characterization of carotenoids in photosynthetic bacteria. Methods Enzymol 213: 374–385CrossRefGoogle Scholar
  29. Takaichi S, Maoka T, Masamoto K (2001) Myxoxanthophyll in Synechocystis sp. PCC 6803 is myxol 2′-dimethyl-fucoside, (3R,2′S)-myxol 2′-(2,4-di-O-methyl-a-l-fucoside), not rhamnoside. Plant Cell Physiol 42: 756–762PubMedCrossRefGoogle Scholar
  30. van Gemerden H, Mas J (1995) Ecology of phototrophic sulfur bacteria. In: Blakenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria, vol 2. Kluwer Academic Publishers, Dordrecht, pp 49–85CrossRefGoogle Scholar
  31. Wang DIC, Cooney CL, Demain AL, Dunuill P, Humphrey AE, Lilly MD (1979) Fermentation and enzyme technology. John Wiley and Sons, New YorkGoogle Scholar
  32. Zuber H, Cogdell RJ (1995) Structure and organization of purple bacterial antenna complexes. In: Blakenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria, vol 2. Kluwer Academic Publishers, Dordrecht, pp 315–348Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Rodney A. Herbert
    • 1
  • Andrew Gall
    • 2
  • Takashi Maoka
    • 3
  • Richard J. Cogdell
    • 4
  • Bruno Robert
    • 2
  • Shinichi Takaichi
    • 5
  • Stephanie Schwabe
    • 6
  1. 1.Division of Environmental and Applied Biology, School of Life SciencesUniversity of DundeeDundeeUK
  2. 2.Institut de Biologie et Technologies de SaclayCommissariat à l’Energie AtomiqueGif sur YvetteFrance
  3. 3.Research Institute for Production DevelopmentSakyou-kuJapan
  4. 4.Institute of Biomedical and Life SciencesUniversity of GlasgowGlasgowUK
  5. 5.Biological LaboratoryNippon Medical SchoolNakaharaJapan
  6. 6.International Blue Holes FoundationCharlestonUSA

Personalised recommendations