Photosynthesis Research

, Volume 95, Issue 1, pp 101–109 | Cite as

Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic cyanobacterium Thermosynechococcus elongatus

  • Beata Gubernator
  • Rafal Bartoszewski
  • Jaroslaw Kroliczewski
  • Guenter Wildner
  • Andrzej Szczepaniak
Regular Paper


Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) can be divided into two branches: the “red-like type” of marine algae and the “green-like type” of cyanobacteria, green algae, and higher plants. We found that the “green-like type” rubisco from the thermophilic cyanobacterium Thermosynechococcus elongatus has an almost 2-fold higher specificity factor compared with rubiscos of mesophilic cyanobacteria, reaching the values of higher plants, and simultaneously revealing an improvement in enzyme thermostability. The difference in the activation energies at the transition stages between the oxygenase and carboxylase reactions for Thermosynechococcus elongatus rubisco is very close to that of Galdieria partita and significantly higher than that of spinach. This is the first characterization of a “green-like type” rubisco from thermophilic organism.


Rubisco Specificity factor Thermostability Thermophilic cyanobacteria 





Specificity factor




Phenylmethylsulfonyl fluoride


3-Phosphoglyceric acid



This work was supported by a grant from the State Committee for Scientific Research (grant no. 2 P04C 050 28) to A.S. The authors are grateful to the VW foundation for their generous support. We thank L. Wallach for technical assistance.


  1. Bainbridge G, Madgwick PJ, Parmar S, Keys AJ, Pitts JE, Parry MA (1995) Engineering rubisco to change its catalytic properties. J Exp Bot 46:1269–1276Google Scholar
  2. Bowles G, Ogren WL, Hageman RH (1971) Phosphoglycolate production catalysed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun 45:716–722CrossRefGoogle Scholar
  3. Burisch C, Wildner G, Schlitter J (2007) Bioinformatic tools uncover Rubisco’s C-terminal strand as hot-spot for specificity-enhancing mutations. FEBS Lett 581:741–748PubMedCrossRefGoogle Scholar
  4. Cleland WW, Andrews TJ, Gutteridge S, Hartman FC, Lorimer GH (1998) Mechanism of rubisco: the carbamate as general base. Chem Rev 98:549–562PubMedCrossRefGoogle Scholar
  5. Delwiche CF, Plamer JD (1996) Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastid. Mol Biol Evol 13:873–882PubMedGoogle Scholar
  6. Du YC, Spreitzer RJ (2000) Suppressor mutations in the chloroplast-encoded large subunit improve the thermal stability of wild-type ribulose-1,5-bisphosphate carboxylase/oxygenase. J Biol Chem 275:19844–19847PubMedCrossRefGoogle Scholar
  7. Ellis RJ (1979) The most abudant protein in the world. Trends Biochem Sci 4:241–244CrossRefGoogle Scholar
  8. Gutteridge S, Rhoades DF, Herrmann C (1993) Site-specific mutation in a loop region of the C-terminal domain of the large subunit of ribulose bisphosphate carboxylase/oxygenase that influence substrate partitioning. J Biol Chem 268:7818–7824PubMedGoogle Scholar
  9. Hansen S, Burkow Vollan V, Hough E, Andersen K (1999) The crystal structure of rubisco from Alcaligenes eutrophus reveals a novel central eight-stranded β-barrel formed by β-strands from four subunits. J Mol Biol 288:609–621PubMedCrossRefGoogle Scholar
  10. Jordan DB, Orgen WL (1981) Species variation in specificity of ribulose bisphosphate carboxylase/oxygenase. Nature 291:513–515CrossRefGoogle Scholar
  11. Kent SS, Tomany MJ (1995) The differential of the ribulose-1,5-bisphosphate carboxylase/oxygenase specificity factor among higher plants and the potential for biomass enhancement. Plant Physiol Biochem 33:71–80Google Scholar
  12. Kostov RV, McFaden BA (1995) A sensitive, simultaneous analysis of ribulose-1,5-bisphosphate carboxylase/oxygenase: graphical determination of the CO2/O2 specificity factor. Photosynth Res 43:57–66CrossRefGoogle Scholar
  13. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  14. Laing WA, Ogren WL, Hageman RH (1975) Bicarbonate stabilization of ribulose 1,5-diphosphate carboxylase. Biochemistry 14:2269–2275PubMedCrossRefGoogle Scholar
  15. Lehmann M, Pasamontes L, Lassen SF, Wyss M (2000) The consensus concept for thermostability engineering of proteins. Biochim Biophys Acta 1543:408–415PubMedGoogle Scholar
  16. McCurry SD, Gee R, Tolbert NE (1982) Ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach, tomato, or tobacco leaves. Methods Enzymol 90(Pt E):515–521PubMedCrossRefGoogle Scholar
  17. Nakamura Y, Kaneko T, Sato S, Ikeuchi M, Katoh H, Sasamoto S, Watanabe A, Iriguchi M, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2002a) Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res 9:123–130PubMedCrossRefGoogle Scholar
  18. Nakamura Y, Kaneko T, Sato S, Ikeuchi M, Katoh H, Sasamoto S, Watanabe A, Iriguchi M, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2002b) Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (supplement). DNA Res 9:135–148PubMedCrossRefGoogle Scholar
  19. Newman J, Gutteridge S (1993) The X-ray structure of Synechococcus ribulose-bisphosphate carboxylase/oxygenase-activated quaternary complex at 2.2-A resolution. J Biol Chem 268:25876–25886PubMedGoogle Scholar
  20. Parry MA, Keys AJ, Gutteridge S (1989) Variation in the specificity factor of C3 higher plant rubisco determined by the total consumption of ribulose-P2. J Exp Bot 40:317–320CrossRefGoogle Scholar
  21. Read BA, Tabita FR (1992a) Amino acid substitutions in the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase that influence catalytic activity of the holoenzyme. Biochemistry 31:519–525PubMedCrossRefGoogle Scholar
  22. Read BA, Tabita FR (1992b) A hybrid ribulosebisphosphate carboxylase/oxygenase enzyme exhibiting a substantial increase in substrate specificity factor. Biochemistry 31:5553–5560PubMedCrossRefGoogle Scholar
  23. Read BA, Tabita FR (1994) High substrate specificity factor ribulose bisphosphate carboxylase/oxygenase from eukaryotic marine algae and properties of recombinant cyanobacterial rubisco containing ‘‘algal’’ residue modifications. Arch Biochem Biophys 312:210–218PubMedCrossRefGoogle Scholar
  24. Rice SC, Pon NG (1978) Direct spectrophotometric observation of ribulose-1, 5-bisphosphate carboxylase activity. Anal Biochem 87:39–48PubMedCrossRefGoogle Scholar
  25. Scandurra R, Consalvi V, Chiaraluce R, Politi L, Engel PC (1998) Protein thermostability in extremophiles. Biochimie 80:933–941PubMedCrossRefGoogle Scholar
  26. Schlitter J, Wildner GF (2000) The kinetics of conformation change as determinant of Rubisco’s specificity. Photosynth Res 65:7–13PubMedCrossRefGoogle Scholar
  27. Shimada A, Kanai S, Maruyama T (1995) Partial sequence of ribulose-1,5-bisphosphate carboxylase/oxygenase and the phylogeny of Prochloron and Prochlorococcus (Prochlorales). J Mol Evol 40:671–677PubMedCrossRefGoogle Scholar
  28. Smith SA, Tabita FR (2003) Positive and negative selection of mutant forms of prokaryotic (Cyanobacvterial) ribulose-1,5-bisphosphate carboxylase/oxygenase. J Mol Biol 331:557–569PubMedCrossRefGoogle Scholar
  29. Smith SA, Tabita FR (2004) Glycine 176 affects catalytic properties and stability of the Synechococcus sp. strain PCC6301 ribulose-1,5-bisphosphate carboxylase/oxygenase. J Biol Chem 279:25632–25637PubMedCrossRefGoogle Scholar
  30. Spreitzer RJ (2003) Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 414:141–149PubMedCrossRefGoogle Scholar
  31. Sugawara H, Yamamoto H, Shibata N, Inoue T, Okada S, Miyake C, Yokota A, Kai Y (1999) Crystal structure of carboxylase reaction-oriented ribulose 1, 5-bisphosphate carboxylase/oxygenase from a thermophilic red alga, Galdieria partita. J Biol Chem 274:15655–15661PubMedCrossRefGoogle Scholar
  32. Tabita FR (1999) Microbial ribulose 1,5-bisphosphate carboxylase oxygenase: a different perspective. Photosynth Res 60:1–28CrossRefGoogle Scholar
  33. Uemura K, Suzuki Y, Shikanai T, Wadano A, Jensen RG, Chmara W, Yokota A (1996) A rapid and sensitive method for determination of relative specificity of rubisco from various species by anion-exchange chromatography. Plant Cell Physiol 37:325–331Google Scholar
  34. Uemura K, Anwaruzzaman, Miyachi S, Yokota A (1997) Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic red algae with a strong specificity for CO2 fixation. Biochem Biophys Res Commun 233:568–571Google Scholar
  35. Wang YL, Zhou JH, Wang YF, Bao JS, Chen HB (2001) Properties of hybride enzymes between Synechococcus large subunit and higher plant small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in Escherichis coli. Arch Biochem Biophys 396:45–42CrossRefGoogle Scholar
  36. Whitman W, Tabita FR (1976) Inhibition of D-ribulose 1,5-bisphosphate carboxylase by pyridoxal 5′-phosphate. Biochem Biophys Res Commun 71:1034–1039PubMedCrossRefGoogle Scholar
  37. Whitmarsh J, Govindjee (1999) The photosynthetic process. In: Singhal GS, Renger G, Sopory SK, Irrgang K-D, Govindjee (eds) Photosynthesis and photomorphogenesis. Narosa Publishers, New Delhi, pp 11–51Google Scholar
  38. Wildner GF, Schlitter J, Szczepaniak A, Bartoszewski R (2002) Rubisco of a thermophillic cyanobacterium-Thermosynechococcus elongatus. Research signpost, vol. special issue: biotechnology and bioengineering of CO2 fixation, Trivandrum, 2002Google Scholar
  39. Yeoh H-H, Badger MR, Watson L (1981) Variations in kinetic properties of ribulose-1,5-bisphosphate carboxylase among plants. Plant Physiol 67:1151–1155PubMedCrossRefGoogle Scholar
  40. Yokota A, Kitaoka S (1985) Correct pK values for dissociation constant of carbonic acid lower the reported Km values of ribulose bisphosphate carboxylase to half. Presentation of a nomograph and an equation for determining the pK values. Biochem Biophys Res Commun 131:1075–1079PubMedCrossRefGoogle Scholar
  41. Zhu G, Spreitzer RJ (1996) Directed mutagenesis of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase. Loop 6 substitutions complement for structural stability but decrease catalytic efficiency. J Biol Chem 271:18494–18498PubMedCrossRefGoogle Scholar
  42. Zhu GH, Jensen RG, Bohnert HJ, Wildner GF, Schlitter J (1998) Dependence of catalysis and CO2/O2 specificity of Rubisco on the carboxy-terminus of the large subunit at different temperatures. Photosynthesis Research 57:71–79CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Beata Gubernator
    • 1
  • Rafal Bartoszewski
    • 1
  • Jaroslaw Kroliczewski
    • 1
  • Guenter Wildner
    • 2
    • 3
  • Andrzej Szczepaniak
    • 1
  1. 1.Department of BiotechnologyUniversity of WroclawWroclawPoland
  2. 2.Department of BiologyRuhr-University BochumBochumGermany
  3. 3.Department of Biochemistry and Molecular BiophysicsUniversity of ArizonaTucsonUSA

Personalised recommendations