Photosynthesis Research

, Volume 89, Issue 2–3, pp 201–211 | Cite as

Cadmium response and redoxin targets in Chlamydomonas reinhardtii: a proteomic approach

  • Sylvie Gillet
  • Paulette DecottigniesEmail author
  • Solenne Chardonnet
  • Pierre Le Maréchal


A proteomic approach including two-dimensional electrophoresis and MALDI-TOF analysis has been developed to identify the soluble proteins of the unicellular photosynthetic algae Chlamydomonas reinhardtii. We first described the partial 2D-picture of soluble proteome obtained from whole cells grown on acetate. Then we studied the effects of the exposure of these cells to 150 μM cadmium (Cd). The most drastic effect was the decrease in abundance of both large and small subunits of the ribulose-1,5-bisphosphate carboxylase/oxygenase, in correlation with several other enzymes involved in photosynthesis, Calvin cycle and chlorophyll biosynthesis. Other down-regulated processes were fatty acid biosynthesis, aminoacid and protein biosynthesis. On the other hand, proteins involved in glutathione synthesis, ATP metabolism, response to oxidative stress and protein folding were up-regulated in the presence of cadmium. In addition, we observed that most of the cadmium-sensitive proteins were also regulated via two major cellular thiol redox systems, thioredoxin and glutaredoxin.


Cadmium stress Chlamydomonas reinhardtii Proteome Redox regulation Thioredoxin 



Ribulose-1,5-bisphophate carboxylase/oxygenase


Superoxide dismutase





We thank Dr S. D. Lemaire for help with translations from the Chlamydomonas genome.


  1. Balmer Y, Vensel WH, Tanaka CK, Hurkman WJ, Gelhaye E, Rouhier N, Jacquot JP, Manieri W, Schurmann P, Droux M, Buchanan BB (2004) Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc Natl Acad Sci USA 101:2642–2647PubMedCrossRefGoogle Scholar
  2. Chevallet M, Wagner E, Luche S, van Dorsselaer A, Leize-Wagner E, Rabilloud T (2003) Regeneration of peroxiredoxins during recovery after oxidative stress: only some overoxidized peroxiredoxins can be reduced during recovery after oxidative stress. J Biol Chem 278:37146–37153PubMedCrossRefGoogle Scholar
  3. Chrestensen CA, Starke DW, Mieyal JJ (2000) Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. J Biol Chem 275:26556–26565PubMedCrossRefGoogle Scholar
  4. Devriese M, Tsakaloudi V, Garbayo I, León R, Vílchez C, Vigara J (2001) Effect of heavy metals on nitrate assimilation in the eukariotic microalga Chlamydomonas reinhardtii. Plant Physiol Biochem 39:443–448CrossRefGoogle Scholar
  5. Ferianc P, Farewell A, Nystrom T (1998) The cadmium-stress stimulon of Escherichia coli K-12. Microbiology 144:1045–1050PubMedCrossRefGoogle Scholar
  6. Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of plants. Science 230:674–676CrossRefPubMedGoogle Scholar
  7. Hamer DH (1986) Metallothionein. Annu Rev Bioche 55:913–951Google Scholar
  8. Hippler M, Klein K, Fink A, Allinger T, Hoerth P (2001) Towards functional proteomics of membrane protein complexes: analysis of thylakoid membrane of Chlamydomonas reinhardtii. Plant J 28:596–606CrossRefGoogle Scholar
  9. Khoshmanesh A, Lawson F, Prince LG (1996) Cadmium uptake by unicellular green microalgae. Chem Eng J 62:81–88Google Scholar
  10. Kim J, Mayfield SP (1997) Protein disulfide isomerase as a regulator of chloroplast translational activation. Science 278:1954–1957PubMedCrossRefGoogle Scholar
  11. Kumar JK, Tabor S, Richardson CC (2004) Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli. Proc Natl Acad Sci USA 101:3759–3764PubMedCrossRefGoogle Scholar
  12. Lemaire SD, Miginiac-Maslow M (2004) The thioredoxin superfamily in Chlamydomonas reinhardtii. Photosynth Res 82:203–220PubMedCrossRefGoogle Scholar
  13. Lemaire SD, Guillon B, Le Maréchal P, Keryer E, Miginiac-Maslow M, Decottignies P (2004) New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 101:7475–7480PubMedCrossRefGoogle Scholar
  14. Lemaire S, Keryer E, Stein M, Schepens I, Issakidis-Bourguet E, Gérard-Hirne C, Miginiac-Maslow M, Jacquot JP (1999) Heavy-metal regulation of thioredoxin gene expression in Chlamydomonas reinhardtii. Plant Physiol 120:773–778PubMedCrossRefGoogle Scholar
  15. Lindahl M, Florencio FJ (2003) Thioredoxin-linked processes in cyanobacteria are as numerous as in chloroplasts, but targets are different. Proc Natl Acad Sci USA 100:16107–16112PubMedCrossRefGoogle Scholar
  16. Macfie SM, Tarmohamed Y, Welbourn PM (1994) Effects of cadmium, cobalt, copper and nickel on growth of the green alga Chlamydomonas reinhardtii: the influences of the cell wall and pH. Arch Environ Contam Toxicol 27:454–458CrossRefGoogle Scholar
  17. Marchand C, Le Marechal P, Meyer Y, Miginiac-Maslow M, Issakidis-Bourguet E, Decottignies P (2004) New targets of Arabidopsis thioredoxins revealed by proteomic analysis. Proteomics 4:2696–2706PubMedCrossRefGoogle Scholar
  18. Michelet L, Zaffagnini M, Marchand C, Collin V, Decottignies P, Tsan P, Lancelin JM, Trost P, Miginiac-Maslow M, Noctor G, Lemaire SD (2005) Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants. Proc Natl Acad Sci USA 102:16478–16483PubMedCrossRefGoogle Scholar
  19. Mosulén S, Domíngez MJ, Vigara J, Vílchez C, Guiraum A, Vega JM (2003) Metal toxicity in Chlamydomonas reinhardtii. Effect on sulfate and nitrate assimilation. Biomol Eng 20:199–203PubMedCrossRefGoogle Scholar
  20. Nagel K, Voigt J (1995) Impaired photosynthesis in a Cadmium-tolerant Chlamydomonas reinhardtii mutant strain. Microbiol Res 150:105–110Google Scholar
  21. Nagel K, Adelmeier U, Voigt J (1996) Subcellular distribution of cadmium in the unicellular green alga Chlamydomonas reinhardtii. J Plant Physiol 149:86–90Google Scholar
  22. Nguyen TO, Capra JD, Sontheimer RD (1996) Calreticulin is transcriptionally upregulated by heat shock, calcium and heavy metals. Mol Immunol 33:379–386PubMedCrossRefGoogle Scholar
  23. Nishikawa K, Yamakoshi Y, Uemura I, Tominaga N (2003) Ultrastructural changes in Chlamydomonas acidophila (Chlorophyta) induced by heavy metals and polyphosphate metabolism FEMS. Microbiol Ecol 44:253–259CrossRefGoogle Scholar
  24. Ouariti O, Boussama N, Zarrouk M, Cherif A, Ghorbal MH (1997) Cadmium and copper-induced changes in tomato membrane lipids. Phytochemistry 45:1343–1350PubMedCrossRefGoogle Scholar
  25. Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758CrossRefGoogle Scholar
  26. Pazour GJ, Agrin N, Leszyk J, Witman GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170:103–113PubMedCrossRefGoogle Scholar
  27. Petersson Grawe K, Pickova J, Dutta PC, Oskarsson A (2004) Fatty acid alterations in liver and milk of cadmium exposed rats and in brain of their suckling offspring. Toxicol Lett 148:73–82CrossRefGoogle Scholar
  28. Rochaix JD, Mayfield SP, Goldschmitdt-Clermont M, Erickson J (1988) Molecular biology of Chlamydomonas. In: Shaw CH (ed) Plant molecular biology: a practical approach, IRL, Oxford, pp 253–275Google Scholar
  29. Rouhier N, Villarejo A, Srivastava M, Gelhaye E, Keech O, Droux M, Finkemeier I, Samuelsson G, Dietz KJ, Jacquot JP, Wingsle G (2005) Identification of plant glutaredoxin targets. Antioxid Redox Signal 7:919–929PubMedCrossRefGoogle Scholar
  30. Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6:2180–2198PubMedCrossRefGoogle Scholar
  31. Shukla UC, Singh J, Joshi PC, Kakkar P (2003) Effects of bioaccumulation of cadmium on biomass productivity, essential trace elements, chlorophyll biosynthesis and macromolecules of wheat seedlings. Biol Trace Elem Res. 92:257–274PubMedCrossRefGoogle Scholar
  32. Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847PubMedCrossRefGoogle Scholar
  33. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336PubMedCrossRefGoogle Scholar
  34. Van Lis R, Atteia A, Mendoza-Hernández G, González-Halphen D (2003) Identification of novel mitochondrial protein components of Chlamydomonas reinhardtii: a proteomic approach. Plant Physiol 132:318–330PubMedCrossRefGoogle Scholar
  35. Vido K, Spector D, Lagniel G, Lopez S, Toledano MB, Labarre J (2001) A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J Biol Chem 276:8469–8474PubMedCrossRefGoogle Scholar
  36. Wagner V, Fiedler M, Markert C, Hippler M, Mittag M (2004) Functional proteomics of circadian expressed proteins from Chlamydomonas reinhardtii. FEBS Lett 559:129–135PubMedCrossRefGoogle Scholar
  37. Wagner V, Gessner G, Heiland I, Kaminski M, Hawat S, Scheffler K, Mittag M (2006) Analysis of the phosphoproteome of Chlamydomonas reinhardtii provides new insights into various cellular pathways. Eukaryot Cell 5:457–468PubMedCrossRefGoogle Scholar
  38. Watanabe M, Henni K, Ogawa K, Suzuki T (2003) Cadmium-dependent generation of reactive oxygen species and mitochondrial DNA breaks in photosynthetic and non-photosynthetic strains of Euglena gracilis. Comp Biochem Physiol Part C, 134:227–234Google Scholar
  39. Yamakura F, Suzuki K (1980) Cadmium, chromium and manganese replacement for iron-superoxide dismutase for Pseudomonas ovalis. J Biochem 88:191–196PubMedGoogle Scholar
  40. Yamaguchi K, Prieto S, Beligni MV, Haynes PA, Mc Donald WH, Yates JR 3rd (2002) Proteomic characterization of the small subunit of Chlamydomonas reinhardtii chloroplast ribosome: identification of a novel S1 domain-containing protein and unusually large orthologs of bacterial S2, S3 and S5. Plant cell 14:2957–2974PubMedCrossRefGoogle Scholar
  41. Yamaguchi K, Beligni MV, Prieto S, Haynes PA, Mc Donald WH, Yates JR 3rd, Mayfield SP (2003) Proteomic characterization of the Chlamydomonas reinhardtii chloroplast ribosome. Identification of proteins unique to the 70S ribosome. J Biol Chem. 278:33774–33785PubMedCrossRefGoogle Scholar
  42. Zhu JY, Huang HQ, Bao XD, Lin QM, Cai Z (2006) Acute toxicity profile of cadmium revealed by proteomics in brain tissue of Paralichthys olivaceus: potential role of transferrin in cadmium toxicity. Aquat Toxicol 78:127–135PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Sylvie Gillet
    • 1
  • Paulette Decottignies
    • 1
    Email author
  • Solenne Chardonnet
    • 1
  • Pierre Le Maréchal
    • 1
  1. 1.IBBMC, CNRS UMR 8619, Bat 430, Univ Paris-SudOrsay cedexFrance

Personalised recommendations