Photosynthesis Research

, Volume 89, Issue 2–3, pp 63–69 | Cite as

The light-harvesting antenna of Chlorobium tepidum: Interactions between the FMO protein and the major chlorosome protein CsmA studied by surface plasmon resonance

  • Marie Østergaard Pedersen
  • Jonas Borch
  • Peter Højrup
  • Raymond P. Cox
  • Mette Miller
Regular Paper

Abstract

Green sulfur bacteria possess two external light-harvesting antenna systems, the chlorosome and the FMO protein, which participate in a sequential energy transfer to the reaction centers embedded in the cytoplasmic membrane. However, little is known about the physical interaction between these two antenna systems. We have studied the interaction between the major chlorosome protein, CsmA, and the FMO protein in Chlorobium tepidum using surface plasmon resonance (SPR). Our results show an interaction between the FMO protein and an immobilized synthetic peptide corresponding to 17 amino acids at the C terminal of CsmA. This interaction is dependent on the presence of a motif comprising six amino acids that are highly conserved in all the currently available CsmA protein sequences.

Keywords

Chlorobium tepidum Chlorosomes CsmA FMO Surface plasmon resonance 

Abbreviations

BChl

Bacteriochlorophyll

EDTA

Ethylenediamine-tetraacetic acid

FMO

Fenna–Matthews–Olson

MALDI-TOF MS

Matrix-assisted laser desorption ionization time of flight mass spectrometry

SDS

Sodium dodecyl sulfate

SPR

Surface plasmon resonance

TFA

Trifluoroacetic acid

Notes

Acknowledgements

This work was supported by a grant from the Danish Natural Science Research Council.

References

  1. Baird CL, Myszka DG (2001) Current and emerging commercial optical biosensors. J Mol Recognit 14:261–268PubMedCrossRefGoogle Scholar
  2. Ben-Shem A, Frolow F, Nelson N (2004) Evolution of photosystem I—from symmetry through pseudosymmetry to asymmetry. FEBS Lett 564:274–280PubMedCrossRefGoogle Scholar
  3. Blankenship RE, Matsuura K (2003) Antenna complexes from green photosynthetic bacteria. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 195–217Google Scholar
  4. Blankenship RE, Olson JM, Miller M (1995). Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 399–435Google Scholar
  5. Bryant DA, Vassilieva EV, Frigaard NU, Li H (2002) Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a. Biochemistry 41:14403–14411PubMedCrossRefGoogle Scholar
  6. Camara-Artigas A, Blankenship RE, Allen JP (2003) The structure of the FMO protein from Chlorobium tepidum at 2.2 Ångstrom resolution. Photosynth Res 75:49–55PubMedCrossRefGoogle Scholar
  7. Chung S, Frank G, Zuber H, Bryant DA (1994) Genes encoding 2 chlorosome components from the green sulfur bacteria Chlorobium vibrioforme Strain 8327D and Chlorobium tepidum. Photosynth Res 41:261–275CrossRefGoogle Scholar
  8. Chung SH, Shen GZ, Ormerod J, Bryant DA (1998) Insertional inactivation studies of the csmA and csmC genes of the green sulfur bacterium Chlorobium vibrioforme 8327: the chlorosome protein CsmA is required for viability but CsmC is dispensable. FEMS Microbiol Lett 164:353–361PubMedCrossRefGoogle Scholar
  9. Frigaard NU, Li H, Martinsson P, Das SK, Frank HA, Aartsma TJ, Bryant DA (2005) Isolation and characterization of carotenosomes from a bacteriochlorophyll c-less mutant of Chlorobium tepidum. Photosynth Res 86:101–111PubMedCrossRefGoogle Scholar
  10. Frigaard NU, Li H, Milks KJ, Bryant DA (2004) Nine mutants of Chlorobium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomes. J Bacteriol 186:646–653PubMedCrossRefGoogle Scholar
  11. Griesbeck C, Hager-Braun C, Rogl H, Hauska G (1998) Quantitation of P840 reaction center preparations from Chlorobium tepidum: chlorophylls and FMO-protein. Biochim Biophys Acta 1365:285–293CrossRefGoogle Scholar
  12. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539PubMedCrossRefGoogle Scholar
  13. Jonsson U, Fagerstam L, Ivarsson B, Johnsson B, Karlsson R, Lundh K, Lofas S, Persson B, Roos H, Ronnberg I, Sjolander S, Stenberg E, Stahlberg R, Urbaniczky C, Ostlin H, Malmqvist M (1991) Real-time biospecific interaction analysis using surface-plasmon resonance and a sensor chip technology. Biotechniques 11:620–627PubMedGoogle Scholar
  14. Li H, Frigaard NU, Bryant D (2005) Locations and interactions of chlorosome proteins on the chlorosome envelope in Chlorobium tepidum: insights from cross-linking experiments. In: van der Est A, Bruce D (eds) Photosynthesis: fundamental aspects to global perspectives. Allen Press, Lawrence, KS, pp 116–119Google Scholar
  15. Li YF, Zhou WL, Blankenship RE, Allen JP (1997) Crystal structure of the bacteriochlorophyll a protein from Chlorobium tepidum. J Mol Biol 271:456–471PubMedCrossRefGoogle Scholar
  16. Milks KJ, Danielsen M, Persson S, Jensen ON, Cox RP, Miller M (2005) Chlorosome proteins studied by MALDI-TOF-MS: topology of CsmA in Chlorobium tepidum. Photosynth Res 86:113–121PubMedCrossRefGoogle Scholar
  17. Montano GA, Bowen BP, LaBelle JT, Woodbury NW, Pizziconi VB, Blankenship RE (2003) Characterization of Chlorobium tepidum chlorosomes: a calculation of bacteriochlorophyll c per chlorosome and oligomer modeling. Biophys J 85:2560–2565PubMedCrossRefGoogle Scholar
  18. Sakuragi Y, Frigaard NU, Shimada K, Matsuura K (1999) Association of bacteriochlorophyll a with the CsmA protein in chlorosomes of the photosynthetic green filamentous bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 1413:172–180PubMedCrossRefGoogle Scholar
  19. Staehelin LA, Golecki JR, Drews G (1980) Supramolecular organization of chlorosomes (Chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta 589:30–45PubMedCrossRefGoogle Scholar
  20. Xin YY, Lin S, Montano GA, Blankenship RE (2005) Purification and characterization of the B808-866 light-harvesting complex from green filamentous bacterium Chloroflexus aurantiacus. Photosynth Res 86:155–163PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Marie Østergaard Pedersen
    • 1
  • Jonas Borch
    • 1
    • 2
  • Peter Højrup
    • 1
  • Raymond P. Cox
    • 1
  • Mette Miller
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
  2. 2.Biomedical Centre C12Lund UniversityLundSweden

Personalised recommendations